Nothing Special   »   [go: up one dir, main page]

Facile Fabrication of Flower-Like LLM-105 Three-Dimensional Microstructures

Article Preview

Abstract:

Flower-like LLM-105 three-dimensional microstructures, which consisted of LLM-105 microrods with rectangular cross-sections, were prepared via a smiple template- and surfactant-free recrystallization process using [Bmim]CF3SO3 as good solvent and water as poor solvent. A tentative mechanism for the growth of the flower-like LLM-105 three-dimensional microstructures was proposed on the basis of the analysis of X-ray powder diffraction (XRD) and scanning electron microscopy (SEM). Comparing with LLM-105 raw material, the thermal decomposition took place at lower temperature and the weight loss has increased for the flower-like three-dimensional microstructures in the differential scanning calorimetric/thermogravimetric (DSC/TG) measurements.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 239-242)

Pages:

2942-2945

Citation:

Online since:

May 2011

Export:

Price:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] P.F. Pagoria, A. Mitchell, R. Schmidt and L. Fried: UCRL-ID-103483-99. (1999)

Google Scholar

[2] T.D. Tran, P.F. Pagoria, D.M. Hoffman, B.Cunningham, R.L. Simpson, R.S. Lee and J.L. Cutting: Lawrence Livermore National Laboratory, CA 94551. (2002)

Google Scholar

[3] B.B. Averkiev, M.Yu. Antipin and A.B. Sheremetev: J. Mol. Struct. Vol. 606 (2002), p.139

Google Scholar

[4] C. Rossi, K.L. Zhang, D. Estève, P. Alphonse, P. Tailhades and C. Vahlas: J Microelectromech Syst Vol. 16 (2007), p.919

DOI: 10.1109/jmems.2007.893519

Google Scholar

[5] Y.X. Zhang, D.B. Liu and CH.X. Lv: Prop., Explos., Pyrotech. Vol. 30 (2005), p.438

Google Scholar

[6] G.CH. Yang, F.D. Nie, H. Huang, L. Zhao and W.T. Pang: Prop., Explos., Pyrotech. Vol. 31 (2006), p.390

Google Scholar

[7] K.T. Nam, D.W. Kim, P.J. Yoo, C.Y. Chiang, N. Meethong, P. T. Hammond, Y.M. Chiang and A.M. Belcher: Science Vol. 312 (2006), p.885

DOI: 10.1126/science.1122716

Google Scholar

[8] L.SH. Zhong, J.S. Hu, H.P. Liang, A.M. Cao, W.G. Song and L.J. Wan: Adv. Mater Vol. 18 (2006), p.2426

Google Scholar

[9] M. Shang, W.ZH. Wang, L. Zhang, S.M. Sun, L. Wang and L. Zhou: J. Phys. Chem. C Vol. 113 (2009), p.14727

Google Scholar

[10] S. Prabakar, C.W. Bumby and R.D. Tilley: Chem. Mater. Vol. 21 (2009), p.1725

Google Scholar

[11] J.H. Han, B.M. Koo and K.D. Suh: Colloids and Surfaces A: Physicochem. Eng. Aspects Vol. 363 (2010), p.105

Google Scholar

[12] B.X. Li and Y.F. Wang: J. Phys. Chem. C Vol. 114 (2010), p.890

Google Scholar

[13] K. Zou, Y.SH. Wu and L.L. Wu: Advanced Materials Research Vol. 148-149 (2011), p.849

Google Scholar

[14] CH.H. Deng, H.M. Hu and G.Q. Shao: Materials Science Forum Vol. 663-665 (2011), p.982

Google Scholar

[15] L.H. Luo, Y.F. Wu, F. Wei, J.J. Shi and L. Cheng: Key EngineeringMaterials Vol. 434-435 (2010), p.554

Google Scholar

[16] P.F. Pagoria, G.S. Lee, A.R. Mitchell and R.D. Schmidt: presented at the Insensitive Munition and Energetic Materials Technology Symposium, Bordeaux, France (2001).

Google Scholar

[17] H. Zhang, D.R. Yang, X.Y. Ma, Y.J. Ji and D.L. Que: Nanotechnology Vol. 15 (2004), p.622

Google Scholar

[18] P. Li, H. Liu, Y.F. Zhang, Y. Wei and X.K. Wang: Mater. Chem. Phy. Vol. 106 (2007), p.63

Google Scholar