Purpose: To assess the concurrent validity of a continuous blood-glucose-monitoring system (CGM) postbreakfast, preexercise, exercise, and postexercise, while assessing the impact of 2 different breakfasts on the observed level of validity.
Methods: Eight nondiabetic recreational athletes (age = 30.8 [9.5] y; height = 173.6 [6.6] cm; body mass = 70.3 [8.1] kg) took part in the study. Blood glucose concentration was monitored every 10 minutes using both a CGM (FreeStyle Libre, Abbott, France) and finger-prick blood glucose measurements (FreeStyle Optimum) over 4 different periods (postbreakfast, preexercise, exercise, and postexercise). Two different breakfasts (carbohydrates [CHO] and protein oriented) over 2 days (2 × 2 d in total) were used. Statistical analyses included the Bland-Altman method, standardized mean bias (expressed in standardized units), median absolute relative difference, and the Clarke error grid analysis.
Results: Overall, mean bias was trivial to small at postbreakfast (effect size ± 90% confidence limits: -0.12 ± 0.08), preexercise (-0.08 ± 0.08), and postexercise (0.25 ± 0.14), while moderate during exercise (0.66 ± 0.09). A higher median absolute relative difference was observed during exercise (13.6% vs 7%-9.5% for the other conditions). While there was no effect of the breakfast type on the median absolute relative difference results, error grid analysis revealed a higher value in zone D (ie, clinically unsafe zone) during exercise for CHO (10.5%) compared with protein (1.6%).
Conclusion: The CGM device examined in this study can only be validly used at rest, after both a CHO and protein-rich breakfast. Using CGM to monitor blood glucose concentration during exercise is not recommended. Moreover, the accuracy decreased when CHO were consumed before exercise.
Keywords: carbohydrate; nutrition; protein; sport; technology.