Glutathione, NAD, and NADP are key nonprotein redox couples in the aqueous phase of virtually all cells, whereas in plant cells ascorbate also plays an important role in redox homeostasis. This work presents the development and validation of plate reader assays that allow rapid analysis of these four redox couples in extracts of Arabidopsis leaves. Analytical methods were adapted and validated for specific measurement of oxidized and reduced forms. Oxidized and reduced forms of glutathione and ascorbate, as well as NAD(+) and NADP(+), were measured in HCl extracts, NADH, and NADPH in parallel alkaline extracts. Both standards and extracts gave linear assay responses, and recovery quotients of added metabolites through the extraction procedure were generally high. The plate reader method was validated against more conventional spectrophotometric assays and also, for glutathione, by HPLC analysis. The method was shown to yield quantitative data for six independent extracts with a total sample preparation and analysis time of 4h. Analysis of the four redox couples throughout Arabidopsis rosette development showed that redox states were relatively constant but that total pools of NAD, glutathione, and ascorbate were significantly modified by day length and developmental stage.