Nothing Special   »   [go: up one dir, main page]

Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Analysis
  • Published:

Engineered nanomaterials reduce metal(loid) accumulation and enhance staple food production for sustainable agriculture

Abstract

Metal(loid) contaminants in food pose a global health concern. This study offers a global analysis of the impact of nanomaterials (NMs) on crop responses to metal(loid) stresses. Our findings reveal that NMs have a positive effect on the biomass production of staple crops (22.8%), while showing inhibitory effects on metal(loid) accumulation in plants (−38.3%) and oxidative damage (−21.6%) under metal(loid) stress conditions. These effects are influenced by various factors such as NM dose, exposure duration, size and composition. Here we introduce a method using interval-valued intuitionistic fuzzy values by integrating the technique for order preference by similarity to an ideal solution and entropy weights to compare the effectiveness of different NM application patterns. These results offer practical insights for the application of NMs in similar multi-criteria decision-making scenarios, contributing to sustainable agriculture and global food safety.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Map of sampling location and effects of NMs on metal(loid) accumulation and physiological responses in crops.
Fig. 2: Responses of plants and soil to NM applications under metal(loid) stress.
Fig. 3: Mechanisms of NM-mediated effects on metal(loid) uptake and translocation in soil–crop systems and plant defensive actions against metal(loid) stresses.
Fig. 4: Performance of the RF model.
Fig. 5: Effects of NM size, dose and exposure time on different metrics after NM applications under metal(loid) stresses.
Fig. 6: The framework of the IVIF–TOPSIS–EW method for calculating the comprehensive importance weights for selecting optimal NMs.

Similar content being viewed by others

Data availability

The data used herein are publicly available in the Analysis and Supplementary Information. Source data are provided with this paper. All other data that support the findings of this study are available from the corresponding authors upon reasonable request.

Code availability

All codes used for this study are available in Methods, Supplementary Information and Source Data.

References

  1. Hou, D. Y. et al. Metal contamination and bioremediation of agricultural soils for food safety and sustainability. Nat. Rev. Earth Environ. 1, 366–381 (2020).

    Article  ADS  Google Scholar 

  2. Jin, Y. L. et al. Integrated life cycle assessment for sustainable remediation of contaminated agricultural soil in China. Environ. Sci. Technol. 55, 12032–12042 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Kopittke, P. M. et al. Soil and the intensification of agriculture for global food security. Environ. Int. 132, 105078 (2019).

    Article  PubMed  Google Scholar 

  4. Closer to zero: reducing childhood exposure to contaminants from foods. US FDA https://www.fda.gov/food/environmental-contaminants-food/closer-zero-reducing-childhood-exposure-contaminants-foods (2022).

  5. Baby Foods Are Tainted with Dangerous Levels of Arsenic, Lead, Cadmium, and Mercury (US House of Representatives, 2021); https://oversightdemocrats.house.gov/sites/evo-subsites/democrats-oversight.house.gov/files/2021-02-04%20ECP%20Baby%20Food%20Staff%20Report.pdf#:~:text=commercial%20baby%20foods%20are%20tainted%20

  6. Gustin, M. S. et al. The term “heavy metal(s)”: history, current debate, and future use. Sci. Total Environ. 789, 147951 (2021).

    Article  CAS  PubMed  Google Scholar 

  7. Boregowda, N. et al. Recent advances in nanoremediation: carving sustainable solution to clean-up polluted agriculture soils. Environ. Pollut. 297, 118728 (2022).

    Article  CAS  PubMed  Google Scholar 

  8. Deng, P. et al. Development potential of nanoenabled agriculture projected using machine learning. Proc. Natl Acad. Sci. USA 120, e2301885120 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wang, D. J. et al. Nano-enabled pesticides for sustainable agriculture and global food security. Nat. Nanotechnol. 17, 347–360 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lowry, G. V. et al. Opportunities and challenges for nanotechnology in the agri-tech revolution. Nat. Nanotechnol. 14, 517–522 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Cao, W. C. et al. Impacts of typical engineering nanomaterials on the response of rhizobacteria communities and rice (Oryza sativa L.) growths in waterlogged antimony-contaminated soils. J. Hazard. Mater. 430, 128385 (2022).

    Article  CAS  PubMed  Google Scholar 

  12. Farooq, M. A. et al. Mitigation effects of exogenous melatonin–selenium nanoparticles on arsenic-induced stress in Brassica napus. Environ. Pollut. 292, 118473 (2022).

    Article  CAS  PubMed  Google Scholar 

  13. Khan, M. A. et al. Co application of biofertilizer and zinc oxide nanoparticles upregulate protective mechanism culminating improved arsenic resistance in maize. Chemosphere. 294, 133796 (2022).

    Article  CAS  PubMed  Google Scholar 

  14. Kah, M. et al. A critical evaluation of nanopesticides and nanofertilizers against their conventional analogues. Nat. Nanotechnol. 13, 677–684 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  15. Kah, M. et al. Nano-enabled strategies to enhance crop nutrition and protection. Nat. Nanotechnol. 14, 532–540 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  16. Zeshan, A. et al. Improvement of morpho-physiological, ultrastructural and nutritional profiles in wheat seedlings through astaxanthin nanoparticles alleviating the cadmium toxicity. J. Hazard. Mater. 424, 126511 (2022).

    Article  CAS  PubMed  Google Scholar 

  17. Cai, C. et al. Utilization of nanomaterials for in-situ remediation of heavy metal(loid) contaminated sediments: a review. Sci. Total Environ. 662, 205–217 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  18. Qi, W. Y. et al. Selenium nanoparticles ameliorate Brassica napus L. cadmium toxicity by inhibiting the respiratory burst and scavenging reactive oxygen species. J. Hazard. Mater. 417, 125900 (2021).

    Article  CAS  PubMed  Google Scholar 

  19. Lin, J. et al. Influence of different types of nanomaterials on soil enzyme activity: a global meta-analysis. Nanotoday. 42, 101345 (2022).

    Article  CAS  Google Scholar 

  20. Zhang, P. et al. Nanomaterial transformation in the soil–plant system: implications for food safety and application in agriculture. Small 16, 2070116 (2020).

    Article  Google Scholar 

  21. Kah, M. et al. Comprehensive framework for human health risk assessment of nanopesticides. Nat. Nanotechnol. 16, 955–964 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  22. Buriak, J. M. et al. Nano and plants. ACS Nano 16, 1681–1684 (2022).

    Article  CAS  Google Scholar 

  23. Liu, R. & Lal, R. Potentials of engineered nanoparticles as fertilizers for increasing agronomic productions. Sci. Total Environ. 514, 131–139 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  24. Wei, L. et al. Nano-hydroxyapatite alleviates the detrimental effects of heavy metals on plant growth and soil microbes in e-waste-contaminated soil. Environ. Sci. Process. Impacts 18, 760–767 (2016).

    Article  CAS  PubMed  Google Scholar 

  25. Sun, L. et al. Physiological, transcriptomic, and metabolomic analyses reveal zinc oxide nanoparticles modulate plant growth in tomato. Environ. Sci. Nano 7, 3587–3604 (2020).

    Article  CAS  Google Scholar 

  26. Lian, M. M. et al. Thiol-functionalized nano-silica for in-situ remediation of Pb, Cd, Cu contaminated soils and improving soil environment. Environ. Pollut. 280, 116879 (2021).

    Article  CAS  PubMed  Google Scholar 

  27. Nazir, M. M. et al. Exogenous calcium oxide nanoparticles alleviate cadmium toxicity by reducing Cd uptake and enhancing antioxidative capacity in barley seedlings. J. Hazard. Mater. 438, 129498 (2022).

    Article  CAS  PubMed  Google Scholar 

  28. Usman, M. et al. Effect of soil texture and zinc oxide nanoparticles on growth and accumulation of cadmium by wheat: a life cycle study. Environ. Res. 216, 114397 (2023).

    Article  CAS  PubMed  Google Scholar 

  29. Zhao, L. J. et al. Nanobiotechnology-based strategies for enhanced crop stress resilience. Nat. Food 3, 829–836 (2022).

    Article  PubMed  Google Scholar 

  30. Fan, N. et al. Nanosilicon alters oxidative stress and defence reactions in plants: a meta-analysis, mechanism and perspective. Environ. Sci. Nano 9, 3742 (2022).

    Article  CAS  Google Scholar 

  31. Haichar, F. Z. et al. Root exudates mediated interactions belowground. Soil Biol. Biochem. 77, 69–80 (2014).

    Article  CAS  Google Scholar 

  32. Azimi, F. et al. Chitosan–selenium nanoparticles (Cs–Se NPs) modulate the photosynthesis parameters, antioxidant enzymes activities and essential oils in Dracocephalum moldavica L. under cadmium toxicity stress. Plant Physiol. Biochem. 167, 257–268 (2021).

    Article  CAS  PubMed  Google Scholar 

  33. Su, H. J. et al. Remediation of hexavalent chromium contaminated soil by biochar-supported zero-valent iron nanoparticles. J. Hazard. Mater. 318, 533–540 (2016).

    Article  ADS  CAS  PubMed  Google Scholar 

  34. Wang, X. Y. et al. Synthesis, characterization, and reactivity of cellulose modified nano zero-valent iron for dye discoloration. Appl. Surf. Sci. 345, 57–66 (2015).

    Article  ADS  CAS  Google Scholar 

  35. Wang, Y. Y. et al. Long-term stabilization of Cd in agricultural soil using mercapto-functionalized nano-silica (MPTS/nano-silica): a three-year field study. Ecotoxicol. Environ. Saf. 197, 110600 (2020).

    Article  CAS  PubMed  Google Scholar 

  36. Meselhy, A. G. et al. Nanoscale sulfur improves plant growth and reduces arsenic toxicity and accumulation in rice (Oryza sativa L.). Environ. Sci. Technol. 55, 13490–13503 (2021).

    Article  ADS  Google Scholar 

  37. Tripathi, D. K. et al. Silicon nanoparticles more efficiently alleviate arsenate toxicity than silicon in maize cultiver and hybrid differing in arsenate tolerance. Front. Environ. Sci. 4, 46 (2016).

    Article  Google Scholar 

  38. Fu, L. B. et al. Copper oxide nanoparticles alleviate cadmium toxicity in cereal crops. Environ. Sci. Nano. 9, 3502–3513 (2022).

    Article  CAS  Google Scholar 

  39. Riaz, M. et al. Foliar application of silica sol alleviates boron toxicity in rice (Oryza sativa) seedlings. J. Hazard. Mater. 423, 127175 (2022).

    Article  CAS  PubMed  Google Scholar 

  40. Sardar, R. et al. Selenium nanoparticles reduced cadmium uptake, regulated nutritional homeostasis and antioxidative system in Coriandrum sativum grown in cadmium toxic conditions. Chemosphere 287, 132332 (2022).

    Article  CAS  PubMed  Google Scholar 

  41. Dang, F. et al. Threats to terrestrial plants from emerging nanoplastics. ACS Nano 16, 17157–17167 (2022).

    Article  CAS  PubMed  Google Scholar 

  42. Labouta, H. I. et al. Analysis of nanoparticle cytotoxicity via data-mining the literature. ACS Nano 13, 1583–1594 (2019).

    CAS  PubMed  Google Scholar 

  43. El-Naggar, A. et al. Biochar effectively remediates Cd contamination in acidic or coarse- and medium-textured soils: a global meta-analysis. Chem. Eng. J. 442, 136225 (2022).

    Article  CAS  Google Scholar 

  44. Bai, X. et al. Regulation of cell uptake and cytotoxicity by nanoparticle core under the controlled shape, size, and surface chemistries. ACS Nano 14, 289–302 (2020).

    Article  CAS  PubMed  Google Scholar 

  45. Gupta, P. et al. Multi-attribute group decision making based on extended TOPSIS method under interval-valued intuitionistic fuzzy environment. Appl. Soft Comput. 69, 554–567 (2018).

    Article  Google Scholar 

  46. Cao, Y. N. et al. Flooding influences on the C, N and P stoichiometry in terrestrial ecosystems: a meta-analysis. Catena 215, 106287 (2022).

    Article  CAS  Google Scholar 

  47. Rosenberg, M. S. The file-drawer problem revisited: a general weighted method for calculating fail-safe numbers in meta-analysis. Evolution 59, 464–468 (2005).

    PubMed  Google Scholar 

  48. Al-Nesf, M. A. Y. et al. Prognostic tools and candidate drugs based on plasma proteomics of patients with severe COVID-19 complications. Nat. Commun. 13, 946 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  49. Izadikhah, M. Group decision making process for supplier selection with TOPSIS method under interval-valued intuitionistic fuzzy numbers. Adv. Fuzzy Syst. 2, 1–14 (2012).

    MathSciNet  Google Scholar 

  50. Cao, Y. N. et al. Phytoremediation potential evaluation of multiple Salix clones for heavy metals (Cd, Zn and Pb) in flooded soils. Sci. Total Environ. 813, 152482 (2022).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Program for Guangdong Introducing Innovative and Entrepreneurial Teams (grant number 2019ZT08L213 (C.M.)); National Natural Science Foundation of China (grant numbers 52261135625 (C.M.) and 42107423 (Yini Cao)); Natural Science Foundation for Excellent Young Scientists of Hunan Province, China (grant number 2023JJ20099 (Yini Cao)); Creative Research Groups of Provincial Natural Science Foundation of Hunan, China (grant number 2024JJ1016 (W.Y.)); United States Department of Agriculture, National Institute of Food and Agriculture (grant number USDA NIFA AFRI 2023-67017-40721 (J.C.W.)); and the USDA Hatch Program (grant number MAS00616 (B.X.)).

Author information

Authors and Affiliations

Authors

Contributions

Yini Cao, C.M. and B.X. conceptualized the idea. Yini Cao, H.Y. and R.T. collected and analysed the data on meta-analysis. Yuchi Cao and F.Z. analysed the data on machine learning models and the IVIF–TOPSIS–EW method. Yini Cao, C.M., J.C.W., Y.H., M.K., W.Y. and B.X. reviewed and analysed the results and contributed to the writing and editing of the paper.

Corresponding authors

Correspondence to Chuanxin Ma, Wende Yan or Baoshan Xing.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Food thanks Honghong Wu, Pei Zhou and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–13, Methods 1–3, Results and Discussion; references for meta-analysis; machine learning Python code and R script; and PRISMA checklist.

Reporting Summary

Supplementary Tables 1–14

Tables and data in spreadsheets.

Supplementary Data 1

Source data for Supplementary Figs. 5–12 and the meta-analysis.

Source data

Source Data Fig. 1

Statistical source data.

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Source Data Fig. 5

Statistical source data.

Source Data Fig. 6

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, Y., Ma, C., White, J.C. et al. Engineered nanomaterials reduce metal(loid) accumulation and enhance staple food production for sustainable agriculture. Nat Food 5, 951–962 (2024). https://doi.org/10.1038/s43016-024-01063-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43016-024-01063-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing