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The asymmetric impact of global 
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97 hydro-climatic simulations
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Projection of future drought is often involved large uncertainties from climate models, emission 
scenarios as well as drought definitions. In this study, we investigate changes in future droughts in 
the conterminous United States based on 97 1/8 degree hydro-climate model projections. Instead 
of focusing on a specific drought type, we investigate changes in meteorological, agricultural, and 
hydrological drought as well as the concurrences. Agricultural and hydrological droughts are projected 
to become more frequent with increase in global mean temperature, while less meteorological drought 
is expected. Changes in drought intensity scale linearly with global temperature rises under RCP8.5 
scenario, indicating the potential feasibility to derive future drought severity given certain global 
warming amount under this scenario. Changing pattern of concurrent droughts generally follows that 
of agricultural and hydrological droughts. Under the 1.5 °C warming target as advocated in recent Paris 
agreement, several hot spot regions experiencing highest droughts are identified. Extreme droughts 
show similar patterns but with much larger magnitude than the climatology. This study highlights the 
distinct response of droughts of various types to global warming and the asymmetric impact of global 
warming on drought distribution resulting in a much stronger influence on extreme drought than on 
mean drought.

Drought is considered as one of the most costly natural disaster due to the devastating impacts on agriculture, 
infrastructure, industry, and tourism1. In recent years, major droughts have occurred across different regions 
of the world2, including Australia3, China4, the Amazon5, Sahel6 and North America7, 8 with huge impacts on 
water resource management and ecosystem productivity9–11. In order to mitigate the losses and manage water 
shortages accompanying droughts, it is necessary to investigate future evolution of droughts in a consistent and 
comprehensive manner. Previous studies show increases in the frequency and severity of droughts at the global 
scale under various climate change scenarios2, 12–16. However, discrepancy often exists in the projected change 
in specific characteristic of drought at the regional/local scale, which could be attributed to the difference in the 
drought type, drought index, spatial-temporal scales, hydro-climate model/data and our incomplete knowledge 
on the underlying mechanisms behind drought. For example, Sheffield et al.17 found little change in drought over 
the past 60 years when the changes in available energy, humidity and wind speed are considered in calculating the 
Palmer Drought Severity Index (PDSI)18, in contrast to other conclusions2, 19. Regionally, in the US Great Plains, 
the PDSI suggests more intense drought in the future across the Great Plains2, 20, 21, while weak drying is projected 
based on soil moisture projections22.

It is commonly accepted that drought can be grouped into meteorological, agricultural, hydrological and 
socio-economic drought categories23–26. Meteorological drought is defined as precipitation deficit while soil mois-
ture and low river flow are often termed as agricultural drought and hydrological drought, respectively. Because 
different drought indices measuring various drought types contrast sharply2, 17, it is important to compare these 
drought types to understand why their results are different. Previous studies have investigated future changes in 
drought based on the anomaly of precipitation27, 28, soil moisture29, 30 or streamflow/runoff16, 31, 32, separately. To 
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date, investigation of meteorological, hydrological and agricultural drought in a consistent manner is rare26, 33, not 
to mention its concurrence which could exert more severe effects than any other single drought type in terms of 
impacts34, 35. Recently, Zhang et al.36 has conducted a pioneering work by investigating the change pattern of four 
types of drought in India and examined drought impacts on wheat yield with a focus on the historical period. 
What’s more, a single drought event can be characterized by its duration and intensity, while several metrics can be 
used to measure the probabilistic distribution of droughts in a specific period, e.g., the total occurrences, mean and 
extreme duration/intensity and etc. Changes in drought with different duration and intensity have distinct impli-
cations for drought management and adaptations. Sheffield et al.13 investigated three classes of drought duration 
(i.e., short-term, medium term, and long-term) but only considering the soil moisture based drought from limited 
raw climate model simulations. To date, most of previous investigations mainly focused on the mean of droughts, 
leaving the changes in drought of various types under different categories and the extremes under-investigated.

Recently, the Paris agreement explicitly asks for an assessment of the impacts of 1.5 °C global warming above 
preindustrial levels37, 38. However, very few studies have reported scenarios consistent with the 1.5 °C target, espe-
cially on the droughts. Here, we link regional droughts to global temperature rise and, specifically, assess the 
response of droughts to the 1.5 °C target to provide scientific basis on mitigation and adaptation measures. We focus 
our investigation in the conterminous United States (CONUS) where droughts have resulted in average annual 
damage up to $6–8 billions1. In this study, we try to investigate the drought of various types rather than examining 
the discrepancy arising from the formulation of a specific drought index. Specifically, we use a large ensemble of 
97 1/8 degree hydro-climate model simulations to investigate future changes in the meteorological, agricultural, 
and hydrological droughts. By this, we attempt to explore the possible uncertainty in the projected droughts from 
the perspective of drought type, climate model and emission scenario, which is critical to inform policy-makings 
for adaptions. Specifically, we examine the following scientific questions: 1) How will drought change in terms of 
frequency, duration and intensity in response to different levels of global warming? 2) Are there robust patterns in 
the changes in meteorological, agricultural, hydrological drought and its concurrence? 3) Will the impacts of global 
warming on drought of various types and their probabilistic distributions be asymmetric? In other words, will 
drought change pattern be similar between the mean and extreme of the investigated drought types?

Results
Historical drought and model validation.  Figure 1 shows the spatial distribution of frequency, duration 
and intensity of the three drought types based on observed precipitation and Variable Infiltration Capacity (VIC) 
model simulations (i.e., OBS-VIC, see methods for detail). That is, meteorological drought is based on observed 
precipitation while hydrological and agricultural drought are based on the simulated runoff and soil moisture by 
the VIC model driven with observed climate39, respectively. Distinct spatial patterns are found in the frequency, 

Figure 1.  Spatial distribution of frequency (occurrences/30yrs), duration (months) and intensity (unitless) of 
meteorological, agricultural and hydrological droughts during 1971–2000. Meteorological drought is based on 
observed precipitation while hydrological and agricultural droughts are based on VIC simulated runoff and 
soil moisture driven by the observed climate, respectively. The frequency is referred to the number of drought 
occurrences for the given period while duration and intensity are for the climatology mean of those drought 
events. Figure was created by NCAR Command Language81.
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duration and intensity among the three drought types due to the role of land surface processes in regulating the 
response of agricultural and hydrological droughts to climate variability and change40. Specifically, soil moisture 
conditions, although correlated with precipitation at monthly timescales, could exhibit nonlinear responses to 
precipitation at shorter timescales23. In general, more frequent meteorological and hydrological droughts are 
found but with smaller durations than agricultural droughts. Meteorological droughts exhibit the largest intensity 
followed by agricultural and hydrological droughts across much of the country.

Future changes in droughts are based on bias-corrected CMIP5 climate and VIC simulations driven by 
bias-corrected CMIP5 climate (i.e., CMIP5-VIC, see methods for details). Before our investigation of future 
changes in droughts, we first examine the validity of CMIP5-VIC simulations in reproducing historical mete-
orological, agricultural and hydrological droughts by OBS-VIC over CONUS. Instead of examining the general 
drying trend as in previous climate model validations41, we specifically investigate the validity in reproducing 
the frequency, duration and intensity of the three drought types. Figure 2 shows the Taylor diagram between 
CMIP5-VIC and OBS-VIC (i.e., the patterns in Fig. 1) in terms of frequency, duration and intensity of the three 
drought types. The spatial correlations between CMIP5-VIC and OBS-VIC range from 0.5 to 0.8 for most mod-
els, indicating the reasonable performance of the bias-corrected CMIP5-VIC simulations in capturing historical 
drought events. Model performance varies among the three drought types (i.e., meteorological, agricultural and 
hydrological droughts) and depends on the drought feature (i.e., frequency, duration and intensity) and metric 
(e.g., the spatial correlation, standard deviation and model range). As for the frequency, meteorological drought 
has lower model range compared to agricultural and hydrological droughts, indicating the better performance 
in simulating meteorological drought. However, the spatial correlation of simulated meteorological drought 
with observation is lower compared to agricultural and hydrological droughts, indicating the worse model 

Figure 2.  Taylor-diagram on the performance of CMIP5-VIC simulations in reproducing the frequency, 
duration and intensity of meteorological, agricultural and hydrological droughts by OBS-VIC during 
1971–2000. The CMIP5-VIC refers to the bias-corrected CMIP5 climate and VIC simulations driven by bias-
corrected CMIP5 climate. Black circles denote the simulations driven by CMIP5-VIC combinations with the 
numbers indicating the simulations driven by the climate model identified by the ID numbers in Table S1. 
Figure was created using software MATLAB 2015a (http://www.mathworks.com/).

http://S1
http://www.mathworks.com/
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performance in simulating meteorological drought. As for the duration and intensity, the model performance 
in simulating meteorological drought is higher than agricultural and hydrological droughts, as indicated by the 
lower model range and similar magnitude of spatial correlation. Larger model ranges are found in simulating 
drought duration followed by frequency and intensity, while wider ranges in simulating hydrological and agricul-
tural droughts than meteorological drought are observed. The ability of bias-corrected CMIP-VIC simulations in 
reproducing historical drought patterns leads to higher confidence in projecting future droughts. Such validations 
have great implications for climate change impact assessment on droughts in which the adopted bias-correction 
technique is mainly used for reducing the bias in the climatology mean and/or quantile distributions42.

Distinct response of regional drought of various types to global warming.  Figure 3 shows the evo-
lution of US mean frequency and duration of meteorological, agricultural, hydrological and concurrent droughts 
based on CMIP5-VIC simulations under four Representative Concentration Pathway (RCP) scenarios (i.e., 
RCP8.5, RCP6.0, RCP4.5 and RCP2.6). Here, we show the changes with global mean temperature rather than the 
time, mainly because we attempt to link regional droughts with global temperature rise which are informative for 
mitigation and adaptation strategies. Changes in drought with time can be found in the Supplementary Figure S1. 
The US mean frequency of meteorological drought is decreasing with global warming, independent of emission 
scenarios. In contrast, agricultural and hydrological droughts are projected to become more frequent. This is rea-
sonable given the fact that meteorological drought is based on precipitation deficit while agricultural and hydro-
logical droughts are defined on the basis of soil moisture and runoff, respectively. Increase of precipitation does 
not necessarily result in increase of soil moisture and runoff, as the latter two are governed by several land surface 
processes such as evapotranspiration, soil storage and snow accumulation/melt2, 43–45. For example, evaporative 
demand would increase with global warming at a rate which is much faster than the increase of precipitation2. 
The deficit of precipitation minus evaporation (i.e., the available water) would result in less water in soils and 
rivers. Therefore, more agricultural and hydrological droughts are projected even if we have less meteorological 

Figure 3.  Changes in relations between US mean frequency and duration of (a) meteorological, (b) 
agricultural, (c) hydrological and (d) concurrent droughts by CMIP5-VIC simulations under RCP8.5, RCP6.0, 
RCP4.5 and RCP2.6 scenarios. Dots represent the multi-model ensemble mean values while error bar is for 
the one standard deviation to show the model ranges. The size of dots are scaled by global warming amount 
to characterize the regional changes in drought frequency and duration relations with global warming. For 
example, larger dots indicate larger global warming amounts or later future period given that global mean 
temperature exhibits an evident increasing trend with time, although there is small variation at the interannual 
scale. Figure was created using software MATLAB 2015a (http://www.mathworks.com/).

http://S1
http://www.mathworks.com/
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drought. In general, increases in drought statistics are greatest under the highest emission scenario RCP8.5, and 
least under the lowest emission scenario RCP2.6. The differing responses of droughts to the same level of global 
warming demonstrate the importance to investigate droughts of various types in a consistent manner, instead of 
focusing one drought type as in previous studies. This also emphasizes the need to explicitly examine the changes 
in specific drought features which are neglected in global and regional scale studies. Associated with droughts 
are pronounced durations while decreasing durations of meteorological droughts are projected under RCP2.6 
scenario. The most pronounced droughts are projected under RCP8.5 scenario in which global warming signal 
is much stronger than others.

In contrary to differing drought responses in terms of frequency and duration to global warming scenarios, 
more consistent changes in drought intensity are found. As shown in Fig. 4, droughts of all types are projected to 
become more severe with global warming independent of emission scenarios, although the inter-model ranges 
denoted by the error bars are considerable. The increase in drought severity could be attributed to increase in 
the vapor pressure deficits driven by higher temperatures and subsequent increase of atmospheric evaporative 
demand20. This also corroborates with previous findings demonstrating the role of temperature in strengthening 
drought severity in California46, Southern European47 and etc. Importantly, changes in drought intensity are 
found to scale linearly with global warming amount especially under RCP8.5 scenario at the 95% confidence 
level, implying that future drought intensities over CONUS can be derived directly from given level of global 
mean temperature rise. This has great implications for mitigation and adaptation strategies as drought projections 
often involve extensive computation cost in driving complex impact models with an ensemble of climate models. 
However, such relations are not evident under other emission scenarios. Changes in the concurrence of mete-
orological, agricultural, and hydrological droughts which could exert more severe effects than any other single 
drought type in terms of impacts generally follow the pattern of agricultural and hydrological droughts.

Spatially, most regions will experience decrease in meteorological drought frequency in the 1.5 °C warming 
world (Fig. 5). In regions that experience substantial snowfall in the winter and subsequent melt during the spring, 
higher temperature could further contribute to drying in spring/summer48, leading to increase in hydrological 
drought frequency. For example, agricultural and hydrological drought events show large percentage increase in 
Pacific Northwest and California where meteorological droughts are projected to decrease. Notably, the spatial 
patterns of changes in agricultural, hydrological and meteorological droughts are found to be weakly correlated. 
This indicates that agricultural and hydrological droughts cannot be directly determined from precipitation alone 

Figure 4.  Same as Fig. 3 but for relations between drought frequency and intensity. Figure was created using 
software MATLAB 2015a (http://www.mathworks.com/).

http://www.mathworks.com/
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as models add information to the signal derived from precipitation32. Concurrent droughts experience substantial 
increases, in particular, in the Texas, California, Pacific Northwest and Colorado with relatively small changes 
over Northern Great Plains and eastern US. Much larger areas will experience decreasing duration of droughts, 
which is consistent among drought types except for larger magnitude of changes in agricultural and hydrological 
drought durations. Drought intensities are projected to increase in most of the country independent of drought 
types. In extreme case, agricultural and meteorological drought intensities are projected to increase by more than 
40% in Pacific Northwest. Droughts are projected to increase the most in several hot spot regions which have 
experienced recent droughts (e.g., Texas, Pacific Northwest and California), highlighting the regions that are 
consistently projected to be more strongly affected by droughts in the future than other regions.

Asymmetric impacts of global warming on drought distribution.  A single drought event can be 
characterized by its duration and intensity, while certain number of droughts in a period can be measured by 
the climatological mean and distribution. Previous climate change impact studies mainly focused on the mean 
of droughts, leaving the changes in drought distribution under-investigated. Will impact of global warming on 
drought distribution be asymmetric? That is, will changes be similar between the mean and extreme droughts? 
Figure 6 shows the land fraction dominated by droughts in different duration bins. Here, we first calculate drought 
changes for each duration bin. We then compare the changes among the four duration bins and select the one 
which shows the largest change than other three bins as the dominant one (see methods). Generally, the drought 
structure exhibits an unstable pattern during the earlier study period (e.g., 1980s). The large variation during 
the earlier periods could be attributed to the fact that climate change impact signal is small in earlier periods as 
the changes are calculated relative to the reference period 1971–2000. With global warming, the signal tends to 
emerge with time and the defined drought structure become stable towards the end of 21st century. Specifically, 
changes in meteorological and concurrent droughts with duration ranging from 1–3 months dominate ~30% of 
US’s lands, while the land fraction dominated by droughts longer than 12 months is less than 5%.Droughts longer 
than 12 months dominate up to 30% and 20% of US lands for agricultural and hydrological droughts, respec-
tively, although durations of 4–6 months still exert the largest impacts. Importantly, land fractions dominated 

Figure 5.  Multi-model ensemble mean changes (%) in the frequency, duration and intensity of meteorological, 
agricultural, hydrological and concurrent droughts in 1.5 °C global warming. The global mean temperature is 
first calculated for each 30-year time window. We select the first 30-year period when the +1.5C global warming 
is crossed for each climate model under each RCP. We then calculate the drought changes in the selected period 
corresponding to a 1.5C warming world for each model and the multi-model ensemble mean under each RCP is 
shown. Figure was created by NCAR Command Language81.
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by different duration bins of droughts remain generally stable after 2020s for all drought types. Such pattern is 
consistent across the four emission scenarios although the magnitude would differ to some degree.

We also examine the changes in extreme droughts in terms of longest duration and largest intensity. Indeed, 
changes in the longest drought can exert more profound impacts than the mean droughts. When averaged over the 
country, changes in the longest drought remain generally stable towards the end of 21st century, consistent with the 
climatology mean but with larger uncertainty ranges (Supplementary Figures S2 and S3). However, it is evident that 
agricultural drought with the longest duration is projected to increase substantially from 15 months to 17 months 
at the end of 21st century. The longer drought durations could be attributed to the greater increases in extreme pre-
cipitation than in the mean in a warming climate, which could lead to a reduction in the number of wet days and an 
increase in dry spell length (i.e., longer drought durations)49–51. Regionally, the spatial pattern of changes in extreme 
droughts follows that of mean droughts, but with much larger magnitude of changes (Figure 7). Cayan et al.43 showed 
that future droughts in southwest of US would be aggregated by reduced spring snowpack and late spring/summer 
soil moisture induced by warmer temperature. Our results are consistent with Cayan et al.43 identifying the southwest 
US as one of the hot spot regions with aggravated droughts in the future. The asymmetric change in drought distri-
bution indicates that projected increases in droughts are mainly driven by changes in extreme droughts. Our results 
highlight the importance of examining drought distributions and its extremes given the uneven changing ratios as 
revealed in this study and the distinct implications of their impacts on water resource management and ecosystems.

Uncertainty and Limitations
In this paper, we aim to complement previous studies by analyzing the most up-to-date ensemble of 
97 hydro-climatic simulations under four emission scenarios. In particular, we analyze the changes in 

Figure 6.  Fraction of US land area dominated by four categories of durations (i.e. D1, D2, D3 and D4) of 
meteorological (first column), agricultural (second column), hydrological (third column) and concurrent 
droughts (fourth column) under RCP8.5, RCP6.0, RCP4.5 and RCP2.6 scenarios. D1, D2, D3 and D4 are 
droughts with durations of 1~3, 4~6, 7~12, >12 months, respectively. The changes are calculated in a 30-year 
time window along 1971–2099 relative to 1971–2000. The year axis represents the 30-year period centered 
at that year. For example, the year 1985 indicates the period 1971–2000. Figure was created using software 
MATLAB 2015a (http://www.mathworks.com/).

http://S2
http://S3
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meteorological, agricultural, hydrological drought and its concurrence. We also investigate the changing patterns 
of drought frequency, duration and intensity. Inclusion of other drought properties such as the total span (occur-
rence × duration) is not within the scope of this study. By this, we aim to provide a comprehensive estimation of 
the related uncertainties, depending on drought indices, climate models and emission scenarios. Besides model 
biases as indicated by the validations in the result section, there are additional limitations to our general conclu-
sions as certain influencing factors are not considered in the model, e.g., the effects of land use and land cover 
change52, human water use53, 54, vegetation dynamics55, groundwater and surface water interactions56. Especially, 
Leng et al.57 showed that irrigation water use can further exacerbate the low-flow conditions with climate warm-
ing. These local factors could interact and amplify/counteract the drought response to global warming. Hence, 
our results should mainly represent the first-order climate change impacts on droughts in CONUS.

In addition, we acknowledge that there are limitations in the analyzing approach. First, the period 1971–2000 
was chosen as the present-day period. Hence, our results could be dependent on the reference period chosen for 
analyses. Second, it is commonly accepted that drought is a multi-scalar phenomenon58, 59. The time scale over 
which water deficits accumulate is also important11. Therefore, droughts identified by the three indices would 
depend on the fitting function and time scales selected in this study. The longer time scale SPI, SSI and SRI would 

Figure 7.  Multi-model ensemble mean changes (%) in the longest duration and largest intensity (i.e., the most 
negative drought intensity) of meteorological, agricultural, hydrological and concurrent droughts in 1.5 °C 
global warming. The global mean temperature is first calculated for each 30-year time window. We select the 
first 30-year period when the +1.5C global warming is crossed for each climate model under each RCP. We 
then calculate the drought changes in the selected period corresponding to a 1.5C warming world for each 
model and the multi-model ensemble mean under each RCP is shown. Figure was created by NCAR Command 
Language81.
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be very similar due to the high correlation among precipitation, soil moisture and runoff. Whereas climate-based 
indices such as SPI describe the precipitation anomalies, we emphasize the importance to use hydrologic indices 
to describe the effects of climate anomalies on hydrologic conditions which are governed by land surface physical 
processes. However, only one impact model (i.e., VIC) is used in deriving agricultural and hydrological condi-
tions. Van Huijgevoort et al.32 found that the spread of simulated hydrological drought among ten hydrological 
models is largest in regions with low runoff and smallest in regions with high runoff. Fourth, we focus on the 
changes of drought at the decade scale, ignoring the seasonality of drought which would change disproportion-
ately, especially in snow dominated regions. Indeed, warmer temperatures tend to reduce snow cover through 
melting of the existing pack and increasing of the rainfall fraction to snowfall. Fifth, drought index has to rely on 
an assumption that samples follow a given probability density function. However, there is no single probability 
density function which is suitable for the whole world. In US, there are about 12% of sub-basins where the selected 
drought index can’t be fitted by the selected lognormal probability density function (Supplementary Figure S4). 
Therefore, caution should be exercised when interpreting the drought changes in these regions. Indeed, to fit one 
type of probability density across US characterized with distinct hydro-climatic regimes is difficult. This is one 
of the major challenges facing drought assessments as pointed out in our previous efforts on non-parametric 
drought index development59, 60. To focus on drought index is not within the scope of this study. Rather, we aim 
to provide an up-to-date comprehensive investigation of droughts of various types for the US domain. In addi-
tion, a drought event is defined when the drought index value is below -1 (corresponding to 6.7% of probability). 
Therefore, we have to acknowledge that the results may vary if a different drought threshold is used. Overall, 
although the revealed frequency-duration-intensity relations are dependent on the case study, impact model, 
drought index and drought threshold, and the model spread as quantified by the standard deviation is fairly large, 
it helps understand how regional drought of various types and its probabilistic distribution respond to various 
level of global warming amount.

Conclusions
Potential changes in drought would have adverse impacts on water management, ecosystem and social-economy. 
However, measuring drought itself is non-trivial as various drought indices have been used for different types of 
drought. A single drought event can be measured by its duration and intensity, while certain number of droughts 
in a period can be characterized by the probabilistic distribution (e.g., mean and extreme drought). Uncertainties 
arising from climate models, emission scenarios and impact models also add up to the uncertainties61, 62, often 
making it hard to inform policy-makings for adaptions. This study provides a comprehensive investigation on 
regional droughts over CONUS in response to global warming. Specifically, we investigate the changes in meteor-
ological, agricultural and hydrological droughts and the concurrence based on 97 high-resolution hydro-climatic 
model projections. We also conduct specific assessment of droughts in the 1.5 °C warming world as advocated in 
the recent Paris agreement to provide scientific basis for mitigation and adaptation strategies.

Our results show that historical drought patterns can be well reproduced by the model ensemble, although 
bias of various magnitudes exist in reproducing specific features of drought. With global warming, meteorolog-
ical drought frequency will decrease in the future, while agricultural and hydrological droughts are projected to 
increase. Durations of meteorological, hydrological and agricultural droughts remain relatively stable when aver-
aged over the country. On the contrary, the intensity of all drought types are projected to increase linearly under 
RCP8.5 scenario, indicating that future drought intensities over CONUS can be derived directly from a given level 
of global mean temperature rise in this scenario. The spatial structure of short, medium and long-term droughts 
will remain stable after 2020s while extreme droughts in terms of longest duration and intensity are projected to 
increase much faster than the climatological mean. Regionally, droughts are highlighted as one of the great chal-
lenges for several hot spot regions that are consistently projected to be more strongly affected by drought under 
the 1.5 °C warming world. Several of the regions are important agricultural areas (e.g., California and Midwest 
Corn Belt), on which global food production would critically depend in the future.

The projected increase in droughts with global warming represents a threat to humans and ecosystems in 
CONUS. The distinct response of droughts of various types to global warming indicates the importance of 
considering more than one type of drought in climate change impact assessments. This study emphasizes the 
asymmetric impact of global warming on the probabilistic distribution of droughts resulting in a much stronger 
influence on extreme droughts than mean droughts. This finding has important implications for informing water 
management strategies and adaption measures coping with high-impact drought extremes.

Data and Methodology
Hydro-climate projections.  In this study, 97 climate model projections from the Coupled Model 
Intercomparison Project Phase 5 (CMIP5)63 under four Representative Concentration Pathway (RCP) scenarios 
(RCP2.6, RCP4.5, RCP6.0 and RCP8.5)64 are used (Supplementary Table S1) to capture the possible uncertainty 
range arising from climate models and emissions pathways. Compared to the CMIP3, the CMIP5 models have 
notable changes in model physics, resolution and greenhouse gas emission and land cover change scenarios. The 
CMIP5 climate model projections are statistically downscaled to 1/8 degree resolution and bias-corrected against 
the observed climate39 over CONUS using the bias-correction and spatial-downscaling approach (BCSD)65. 
Specifically, daily precipitation is first aggregated into monthly scale for both CMIP5 simulations and observa-
tions, based on which monthly scaling factors are calculated between the two during the overlap period39. Then, 
a historical daily precipitation pattern is resampled for a specific month and adjusted by the monthly scaling 
factor to match simulated monthly precipitation totals with observations, while preserving the observed wet-day 
fractions. By this, the bias-corrected daily precipitation has the same monthly climatology and wet-day fractions 
with observations, but has its own wet-dry day sequence as produced by CMIP5 climate models. More details on 

http://S4
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the BCSD method can refer to Wood et al.65. In contrast to previous studies using GCM outputs directly66, runoff 
and soil moisture conditions are simulated by the Variable Infiltration Capacity (VIC) model67, 68 at the daily time 
step driven with the CMIP5 BCSD climate projections69 for 1950–2099 (hereafter referred to as CMIP5-VIC) 
and observed climate39 for 1950–2000 (hereafter referred to as OBS-VIC). The VIC model is a macroscale hydro-
logic model with representation of subgrid-scale variability67, 68 and has been widely used in investigating climate 
change impacts on droughts26, 29, 30. The VIC model settings including calibrated parameters and observed climate 
are based on Maurer et al.39. River routing is not considered in this study. Most of previous VIC applications used 
the first 1 year70, 71 or 3 years72 as model spinup period. Cosgrove et al.73 indicated that NLDAS models (including 
Mosaic, VIC, and Noah) can reach the equilibrium state within the first 1 to 2 years of simulations. Here, we con-
duct the analyses starting from 1971, discarding the first 21 years as the model spinup period.

Definition of meteorological, agricultural, hydrological drought and the concurrence.  In this 
study, the monthly meteorological, agricultural, and hydrological droughts are measured by the standardized 
precipitation index (SPI)74, 75, standardized soil moisture index (SSWI)76 and standardized runoff index (SRI)31, 
respectively. That is, meteorological drought is based on precipitation, while agricultural and hydrological 
drought is based on soil moisture and runoff, respectively. Here, the SPI is computed by fitting a gamma distri-
bution to precipitation for specified months during the reference period 1971–2000. The gamma distribution 
is adopted since the distribution of monthly precipitation is typically similar to a gamma distribution. The SPI 
is designed with respect to normal conditions at a given site for a given period74. The calculation procedure for 
SRI and SSWI is similar to the SPI but by fitting a log probability density function to the runoff and soil moisture 
series26. To test the goodness-of-fit, the Kolmogorov-Smirnov (KS) nonparametric test is used (Supplementary 
Figure S4). A drought event is defined as the period of time when the value of drought index (i.e., SPI, SSWI and 
SRI) is below −1.0 corresponding to the probability of 6.7%, following the National Drought Mitigation Center 
(NDMC, http://drought.unl.edu). Concurrent drought is defined as the period when meteorological, agricultural 
and hydrological droughts are all experienced. In this study, we use the following three metrics for measuring 
droughts: (1) frequency: the number of drought events in a specific period; (2) duration: the length of a drought 
event; and (3) intensity: the average of index value lower than the drought threshold.

Analysis.  Daily precipitation, soil moisture and runoff are first temporally aggregated into monthly scale, 
and then spatially aggregated to the regional scale. Instead of defining regions with similar features77, we conduct 
our analysis for the HUC4 (i.e., 4-digit Hydrologic Unit Code) sub-basins (http://water.usgs.gov/GIS/huc.html), 
which is a simple average over its 1/8 degree grids. Here, the aggregated soil moisture for the three soil layers 
as represented in the VIC model are used. Meteorological, agricultural and hydrological droughts are derived 
based on the monthly time series of HUC4 sub-basin mean precipitation, soil moisture and runoff, respectively. 
Historical droughts based on CMIP5-VIC are validated against those by observation based OBS-VIC for the 
reference period 1971–2000. Future changes are calculated in a 30-year time window along 1971–2099 relative to 
the reference period 1971–2000 for each CMIP5-VIC combination under each RCP scenario. We acknowledge 
that the magnitude of changes may differ if a different present-day period is selected for analysis. The multi-model 
ensemble mean is used for illustration and the standard deviation among simulations is used to denote the uncer-
tainty range from climate models78. Recently, the Paris agreement explicitly asks for assessments of the impacts 
of 1.5 °C global warming above preindustrial level79. Here, we conduct such assessments of 1.5 °C global warming 
on US droughts to provide the scientific basis for political discussions about mitigation and adaptation strategies. 
Specifically, global mean temperature is first calculated for each 30-year time window. We select the first 30-year 
period when the +1.5C global temperature is crossed for each climate model under each RCP. We then calculate 
the drought changes in the selected period corresponding to a 1.5C warming world for each model under each 
RCP. Investigation of drought changes with global warming can better inform policy-makers on regional mitiga-
tion and adaptation strategies, as governments and organizations are more concerned on the impacts associated 
with the target value of global mean temperature rise79, 80. In addition to climatological mean of droughts, we 
examine the changes in extreme droughts in terms of longest duration and largest intensity. What’s more, changes 
in droughts with four duration categories are calculated, i.e., D1, D2, D3 and D4 with duration of 1~3, 4~6, 7~12, 
>12 months, respectively. Specifically, we first calculate the changes in D1, D2, D3 and D4 droughts for each 
region. We then compare the changes among the four drought categories and select the one which shows the 
largest change than other three categories as the dominant one. The fraction of lands dominated by each drought 
category is then counted for each period to show the temporal evolutions.
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