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NuInsSeg: A fully annotated 
dataset for nuclei instance 
segmentation in H&E-stained 
histological images
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In computational pathology, automatic nuclei instance segmentation plays an essential role in 
whole slide image analysis. While many computerized approaches have been proposed for this task, 
supervised deep learning (DL) methods have shown superior segmentation performances compared 
to classical machine learning and image processing techniques. However, these models need fully 
annotated datasets for training which is challenging to acquire, especially in the medical domain. In this 
work, we release one of the biggest fully manually annotated datasets of nuclei in Hematoxylin and 
Eosin (H&E)-stained histological images, called NuInsSeg. This dataset contains 665 image patches with 
more than 30,000 manually segmented nuclei from 31 human and mouse organs. Moreover, for the first 
time, we provide additional ambiguous area masks for the entire dataset. These vague areas represent 
the parts of the images where precise and deterministic manual annotations are impossible, even for 
human experts. The dataset and detailed step-by-step instructions to generate related segmentation 
masks are publicly available on the respective repositories.

Background & Summary
With the advent of brightfield and fluorescent digital scanners that produce and store whole slide images (WSIs) 
in digital form, there is a growing trend to exploit computerized methods for semi or fully-automatic WSI anal-
ysis1. In digital pathology and biomedical image analysis, nuclei segmentation plays a fundamental role in image 
interpretation2. Specific nuclei characteristics such as nuclei density or nucleus-to-cytoplasm ratio can be used 
for cell and tissue identification or for diagnostic purposes such as cancer grading2–4. Nuclei instance segmen-
tation masks enable the extraction of valuable statistics for each nucleus5. While experts can manually segment 
nuclei, this is a tedious and complex procedure as thousands of instances can appear in a small patch of a WSI4,6. 
It is also worth mentioning that due to various artifacts such as folded tissues, out-of-focus scanning, consider-
able variations of nuclei staining intensities within a single image, and the complex nature of some histological 
samples (e.g., high density of nuclei), accurate and deterministic manual annotation is not always possible, even 
for human experts. The inter- and intraobserver variability reported in previous studies showing a low level of 
agreement in the annotation of cell nuclei by medical experts confirms this general problem5,7.

In recent years, many semi- and fully-automatic computer-based methods have been proposed to perform 
nuclei instance segmentation automatically and more efficiently. A wide range of approaches from classical 
image processing to advanced machine learning methods have been proposed for this task4,7. Up to this point, 
supervised deep learning (DL) methods such as Mask R-CNN and its variants8,9, distance-based methods10,11 and 
multi encoder-decoder approaches6,12,13 have shown the best instance segmentation performances. However, to 
train these models, fully annotated datasets are required which is difficult to acquire in the medical domain4,5,14.
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A number of fully annotated nuclei instance segmentation datasets are available. These datasets were intro-
duced for various types of staining such as Hematoxylin and Eosin (H&E), immunohistochemical and immuno-
fluorescence stainings4,15–17. The most common staining type in routine pathology is H&E-staining. Therefore, 
most introduced datasets were based on this staining method. Although these datasets are valuable contribu-
tions to the research field and help researchers to develop better segmentation models, providing more anno-
tated datasets from different organs and centers to cover more data variability is still of high importance. Table 1 
shows the most prominent fully manually annotated H&E-stained nuclei segmentation datasets that have been 
actively used by the research community in the past few years. Besides these datasets, some semi-automatically 
generated datasets such as PanNuke18, Lizard (used in the CoNIC challenge)19,20, and Hou et al. dataset21 have 
also been introduced in the past. To generate these datasets, various approaches, such as using trained backbone 
models or point annotation, were exploited20,22,23. However, training models based on semi-automatically gen-
erated datasets may introduce a hidden bias towards the reference model instead of learning the true human 
expert style for nuclei instance segmentation. It is also worth mentioning that other publicly available datasets, 
such as the OCELOT challenge dataset24 or the DigestPath dataset25, have been introduced for different nuclei 
analysis tasks, including nuclei detection and classification. However, the primary focus of this study is on the 
task of nuclei instance segmentation.

In this paper, we present NuInsSeg26, one of the most comprehensive, fully manually annotated, publicly 
available datasets for nuclei segmentation in H&E-stained histological images. The primary statistic of this data-
set is presented in the last row of Table 1. Our dataset can be used alone to develop, test, and evaluate machine 
learning-based algorithms for nuclei instance segmentation or can be used as an independent test set to estimate 
the generalization capability of the already developed nuclei instance segmentation methods27.

Methods
Sample preparation.  The NuInsSeg dataset26 contains fully annotated brightfield images for nuclei instance 
segmentation. The H&E-stained sections of 23 different human tissues were provided by Associate Professor 
Adolf Ellinger, PhD from the specimen collection of the Department of Cell Biology and Ultrastructural 
Research, Center for Anatomy and Cell Biology, Medical University of Vienna. We only obtained the stained tis-
sue sections, not the original tissues. These images were only used for teaching purposes for a long time where no 
ethic votum applied. Some of the human tissues were formaldehyde-fixed, embedded in celloidin and sectioned 
at ≈ – m15 20μ  (jejunum, kidney, liver, oesophagus, palatine tonsil, pancreas, placenta, salivary gland, spleen, 
tongue). The other human tissues were formaldehyde-fixed and paraffin-embedded (FFPE) and sectioned  
at ≈ – m4 5μ  (cerebellum, cerebrum, colon, epiglottis, lung, melanoma, muscle, peritoneum, stomach (cardia), 
stomach (pylorus), testis, umbilical cord, and urinary bladder). Mouse tissue samples from bone (femur), fat 
(subscapularis), heart, kidney, liver, muscle (tibialis anterior muscle), spleen, and thymus were obtained from 
8-week-old male C57BL/6 J mice28. 4 μm sections of the FFPE tissue samples were stained with H&E (ROTH, 
Austria) and coverslipped with Entellan (Merck, Germany). With one exception (human melanoma) all tissues in 
our dataset are healthy tissues.

Sample acquisition.  WSIs were generated with a TissueFAXS (TissueGnostics, Austria) scanning system 
composed of an Axio Imager Z1 (Zeiss, Oberkochen, Germany), equipped with a Plan-Neofluar 40×/0.75 objec-
tive (40× air) in combination with the TissueFAXS Image Acquisition and Management Software (Version 6.0, 
TissueGnostics, Austria). Images were acquired at 8-bit resolution using a colour camera (Baumer HXG40c).

Field of view and patch selection.  The scanning system stores individual 2048 × 2048 Field of Views 
(FOV) with their respective locations in order to be able to combine them into a WSI. Instead of using WSIs, we 
utilized the FOVs to generate the dataset. A senior cell biologist selected the most representative FOVs for each 
human and mouse WSI. From each FOV, a 512 × 512 pixel image was extracted by central cropping. These images 

dataset vague mask # image tiles # nuclei magnification # organs tile size (pixels) source

Kumar et al.4 ✗ 30 21,623 40× 7 1000 × 1000 TCGA

MoNuSeg7 ✗ 44 28,846 40× 9 1000 × 1000 TCGA

MoNuSAC17 partial 209 31,411 40× 4 81 × 113 to 1422 × 2162 TCGA

CoNSeP6 ✗ 41 24,319 40× 1 1000 × 1000 UHCW

CPM-1540 ✗ 15 2,905 40×, 20× 2 400 × 400, 600 × 1000 TCGA

CPM-1740 ✗ 32 7,570 40×, 20× 4 500 × 500 to 600 × 600 TCGA

TNBC10 ✗ 50 4,022 40× 1 512 × 512 Curie Inst.

CRCHisto41 ✗ 100 29,756 20× 1 500 × 500 UHCW

Janowczyk42 ✗ 143 12,000 40× 1 2000 × 2000 n/a

Crowdsource43 ✗ 64 2,532 40× 1 400 × 400 TCGA

CryoNuSeg5 ✗ 30 7,596 40× 10 512 × 512 TCGA

NuInsSeg26 ✓ 665 30,698 40× 31 512 × 512 MUV

Table 1.  Publicly available H&E-stained nuclei segmentation datasets. In the table, TCGA refers to The Cancer 
Genome Atlas, UHCW refers to University Hospitals Coventry and Warwickshire, and MUV refers to Medical 
University of Vienna. The last row of the table represents the NuInsSeg dataset introduced in this work.
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were saved in lossless Portable Network Graphics (PNG) format. In total, 665 raw image patches were created to 
build the NuInsSeg dataset.

Generation of ground truth, auxiliary, and ambiguous area segmentation masks.  We used 
ImageJ28 (version 1.53, National Institutes of Health, USA) to generate the ground truth segmentation masks. 
We followed the same procedure suggested by Mahbod et al.5 to label nuclei. We used the region of interest (ROI) 
manager tool (available on the Analysis tab) and the freehand option to delineate the nuclei borders. We manually 
draw the nuclei border for each instance until all nuclei were segmented for a given image patch. Although some 
semi-automatic tools such as AnnotatorJ with U-Net backbone29 could be used to speed up the annotation, we 
stuck to fully manual segmentation to prevent any hidden bias toward the semi-autonomic annotation method. 
The delineated ROIs were saved as a zip file, and the Matlab software (version 2020a) was then used to create 
binary and labeled segmentation images (as PNG files). Besides the original raw image patches, binary and labe-
led segmentation masks, we also publish a number of auxiliary segmentation masks that can be useful for devel-
oping computer-based segmentation models. Auxiliary segmentation masks, including border-removed binary 
masks, elucidation distance maps of nuclei, weighted binary masks (where higher weights are assigned in the 
borders of touching objects), are published along with our dataset. The developed codes to generate these masks 
are available on the published GitHub repository. Moreover, we annotated the ambiguous areas in all images of 
the dataset for the first time. Indicating ambiguous regions was partially provided in the test set of the MoNuSAC 
challenge30, but in this work, we provide it for the entire dataset. We used an identical procedure and software to 
create the ambiguous segmentation masks. These vague areas consist of image parts with very complex appear-
ances where the accurate and reliable manual annotation is impossible. This is potentially helpful for in-depth 
analysis and evaluation of any automatic model for nuclei instance segmentation. Manual segmentation of nuclei 
and ambiguous areas detection were performed by three students with a background in cell biology. The annota-
tions were then controlled by a senior cell biologist and corrected when necessary. Some example images, along 
with related segmentation and vague masks, are shown in Fig. 1.

Data Records
The NuInsSeg dataset26 is publicly available on Zenodo (https://doi.org/10.5281/zenodo.10518968) and also 
on the Kaggle platform (https://www.kaggle.com/datasets/ipateam/nuinsseg). The related code to generate the 
binary, labeled, and auxiliary segmentation masks from the ImageJ ROI files is also available on the NuInsSeg 
published GitHub repository https://github.com/masih4/NuInsSeg. This dataset contains 665 image patches 
with 30,698 segmented nuclei from 31 human and mouse organs. The organ-specific details of the generated 
dataset are shown in Table 2. As shown in the table, the nuclei density in some tissues/organs (e.g., mouse 
spleen) is much higher in comparison to other tissues/organs (e.g., mouse muscle). This diversity allows for a 
more in-depth investigation into the capabilities of automatic models to handle different training and testing 
sizes for the nuclei instance segmentation task in the future studies.

Fig. 1  Example images and manual segmentation masks of three human organs from the NuInsSeg 
dataset. The first three columns show the original images, the labeled and the binary mask, respectively. The 
represented images in the fourth to sixth columns show auxiliary segmentation masks that can be beneficial 
for the development of segmentation algorithms. The last column shows the vague areas where accurate and 
deterministic manual segmentation is impossible. Some images do not contain ambiguous regions, such as the 
represented spleen image in the last row.
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Technical Validation
To create a baseline segmentation benchmark, we randomly split the dataset into five folds with an equal number 
of images per fold (i.e., 133 images per fold). We used the Scikit-learn Python package to create the folds with a 
fixed random state to reproduce the results (splitting code is available on the Kaggle and Github pages). Based on 
the created folds, we developed a number of DL-based segmentation models and evaluated their performance 
based on five-fold cross-validation. To facilitate to use of our dataset and developing segmentation models, we 
published our codes for two standard segmentation models, namely shallow U-Net and deep U-Net models31 on 
the Kaggle platform (https://www.kaggle.com/datasets/ipateam/nuinsseg/code?datasetId=1911713). The model 
architectures of the shallow U-Net and deep U-Net are very similar to the original U-Net model but we added 
drop out layers between all convolutional layers in both encoder and decoder parts. Four and five convolutional 
blocks were used in the encoder and decoder parts of the shallow U-Net and deep U-Net, respectively. The 
model architecture of these two models is publicly available at our published kernels on our NuInsSeg page on 
the Kaggle platform. Besides these two models, we also evaluated the performance of the attention U-Net32, 
residual attention U-Net32,33, two-stage U-Net34, and the dual decoder U-Net13 models. The architectural details 
of these models were published in the respective articles. We performed an identical five-fold cross-validation 
scheme in all experiments to compare the results. For evaluation, we utilized similarity Dice score, aggregate 
Jaccard index (AJI), and panoptic quality (PQ) scores as suggested in former studies5,6,35. The segmentation 
performance of the aforementioned models is reported in Table 3. As the results show, residual attention U-Net 
delivers the best overall Dice score between these models, but dual decoder U-Net provides the best average AJI 
and PQ scores. Interestingly, the dual decoder model achieved the best overall PQ score in the MoNuSAC post 
challenge leaderborad17,36, and it also achieved the best instance-based segmentation scores for the NuInsSeg 
dataset. It should be noted that these results can be potentially improved by using well-known strategies such as 
ensembling37, stain augmentation27,38 or test time augmentation39 but achieving the best segmentation scores is 

Organ Type # Images # Nuclei Avg. #Nuclei per image

Cerebellum human 12 549 45.8

Cerebrum human 12 146 12.2

Colon human 12 349 29.1

Epiglottis human 11 228 20.7

Jejunum human 10 874 87.4

Kidney human 11 1,222 111.1

Liver human 40 1,370 34.3

Lung human 11 318 28.9

Melanoma human 12 533 44.4

Muscle human 9 127 14.1

Oesophagus human 47 2,046 43.5

Palatine tonsil human 12 1,045 87.1

Pancreas human 44 2,178 49.5

Peritoneum human 12 468 39.0

Placenta human 40 1,966 49.2

Salivary gland human 44 3,129 71.1

Spleen human 34 3,286 96.7

Stomach (cardia) human 12 671 55.9

Stomach (pylorus) human 12 441 36.8

Testis human 12 380 31.7

Tongue human 40 1,415 35.4

Umbilical cord human 11 106 9.6

Urinary bladder human 12 400 33.3

Bone (femur) mouse 6 757 126.2

Fat (subscapularis) mouse 42 549 13.1

Heart mouse 28 738 26.4

Kidney mouse 40 1,597 39.9

Liver mouse 36 646 17.9

Muscle (tibialis anterior muscle) mouse 28 165 5.9

Spleen mouse 7 1,657 236.7

Thymus mouse 6 1,342 223.7

All human 472 23,247 49.3

All mouse 193 7,451 38.6

All human + mouse 665 30,698 46.2

Table 2.  Details of the NuInsSeg dataset per human and mouse organ.
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out of the focus of this study. Instead, these results could be used as baseline segmentation scores for comparison 
to other segmentation models in the future, given that the same five-fold cross-validation scheme is used.

Usage Notes
Our dataset, including raw image patches, binary and labeled segmentation masks, and other auxiliary seg-
mentation masks, is publicly available on the published NuInsSeg pages on Zenodo26 and Kaggle platform. 
Step-by-step instructions to perform manual annotations and related codes to generate the main and auxil-
iary segmentation masks are available at our published Github repository. We also provide three kernels on 
the Kaggle platform to facilitate using our dataset. One kernel is devoted to explanatory data analysis (EDA), 
where interested researchers can visualize and explore different statistics of the NuInsSeg dataset. The other two 
kernels consist of related codes to perform five-fold cross-validation based on two DL-based models, namely 
shallow U-Net and deep U-Net, as described in the previous section. Different Python packages were used in the 
coding of these kernels. To report statistics and visualize data in the EDA kernel, we mainly used Pandas (ver-
sion 1.3.5) and Matplotlib (version 3.5.1) Python packages. For the DL-based model development, we mainly 
used Tensorflow (version 2.6.2), Keras (version 2.6.0) frameworks, and finally, for performing cross-validation, 
pre-and post-processing, and augmentation, Scikit-learn (version 0.23.2), Scikit-image (version 0.19.1) and 
Albumentation (version 1.1.0) were exploited, respectively.

In addition to publishing the dataset on a well-known repository (i.e., Zenodo26), we have also made it avail-
able on the Kaggle platform, which offers limited free computational resources. Therefore, interested researchers 
can directly access our dataset and develop ML- or DL-based algorithms to perform nuclei instance segmenta-
tion on the NuInsSeg dataset. However, there is no limitation to downloading and saving the dataset on local 
systems and performing analysis using local or other cloud-based computational resources.

It is worth mentioning that the NuInsSeg dataset can be used alone to train, validate, and test any segmen-
tation algorithm, or it can be used as an independent test set to measure the generalization capability of already 
developed segmentation models.

Code availability
The dataset and required code to generate the dataset are publicly available on Zenodo26, Kaggle (https://www.
kaggle.com/datasets/ipateam/nuinsseg), and GitHub (https://github.com/masih4/NuInsSeg), respectively.
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