Nothing Special   »   [go: up one dir, main page]

Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

DNA interference states of the hypercompact CRISPR–CasΦ effector

Abstract

CRISPR–CasΦ, a small RNA-guided enzyme found uniquely in bacteriophages, achieves programmable DNA cutting as well as genome editing. To investigate how the hypercompact enzyme recognizes and cleaves double-stranded DNA, we determined cryo-EM structures of CasΦ (Cas12j) in pre- and post-DNA-binding states. The structures reveal a streamlined protein architecture that tightly encircles the CRISPR RNA and DNA target to capture, unwind and cleave DNA. Comparison of the pre- and post-DNA-binding states reveals how the protein rearranges for DNA cleavage upon target recognition. On the basis of these structures, we created and tested mutant forms of CasΦ that cut DNA up to 20-fold faster relative to wild type, showing how this system may be naturally attenuated to improve the fidelity of DNA interference. The structural and mechanistic insights into how CasΦ binds and cleaves DNA should allow for protein engineering for both in vitro diagnostics and genome editing.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Structure of the crRNA-bound CasΦ poised for DNA recognition.
Fig. 2: Minimal domains mediate DNA recognition by CasΦ.
Fig. 3: DNA unwinding and target recognition activate CasΦ for DNA cutting.
Fig. 4: Structure of CasΦ with a trapped substrate in the active site.
Fig. 5: Helix α7 of the RecI domain regulates substrate accessibility of the RuvC.
Fig. 6: Helix α7 adjusts fidelity and can be engineered for sensitive nucleic acid detection.

Similar content being viewed by others

Data availability

The cryo-EM maps and model coordinates have been deposited to the EMDB (codes EMD-23600, EMD-23601 and EMD-23678) and PDB (codes 7LYS, 7LYT and 7M5O), respectively. Source data are provided with this paper.

References

  1. Barrangou, R. et al. CRISPR provides acquired resistance against viruses in prokaryotes. Science 315, 1709–1712 (2007).

    Article  CAS  PubMed  Google Scholar 

  2. Makarova, K. S. et al. Evolutionary classification of CRISPR–Cas systems: a burst of class 2 and derived variants. Nat. Rev. Microbiol. 18, 67–83 (2020).

    Article  CAS  PubMed  Google Scholar 

  3. Knott, G. J. & Doudna, J. A. CRISPR–Cas guides the future of genetic engineering. Science 361, 866–869 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Swarts, D. C. & Jinek, M. Cas9 versus Cas12a/Cpf1: structure–function comparisons and implications for genome editing. Wiley Interdiscip. Rev. RNA 9, e1481 (2018).

    Article  CAS  PubMed  Google Scholar 

  5. Gleditzsch, D. et al. PAM identification by CRISPR-Cas effector complexes: diversified mechanisms and structures. RNA Biol. 16, 504–517 (2019).

    Article  PubMed  Google Scholar 

  6. Westra, E. R., Dowling, A. J., Broniewski, J. M. & van Houte, S. Evolution and ecology of CRISPR. Annu. Rev. Ecol. Evol. Syst. 47, 307–331 (2016).

    Article  Google Scholar 

  7. Al-Shayeb, B. et al. Clades of huge phages from across Earth’s ecosystems. Nature 578, 425–431 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Pausch, P. et al. CRISPR-CasΦ from huge phages is a hypercompact genome editor. Science 369, 333–337 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Swarts, D. C. Stirring up the type V alphabet soup. CRISPR J. 2, 14–16 (2019).

    Article  PubMed  Google Scholar 

  10. Jinek, M. et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337, 816–821 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Jinek, M. et al. Structures of Cas9 endonucleases reveal RNA-mediated conformational activation. Science 343, 1247997 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Nishimasu, H. et al. Crystal structure of Cas9 in complex with guide RNA and target DNA. Cell 156, 935–949 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Anders, C., Niewoehner, O., Duerst, A. & Jinek, M. Structural basis of PAM-dependent target DNA recognition by the Cas9 endonuclease. Nature 513, 569–573 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zetsche, B. et al. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 163, 759–771 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Yamano, T. et al. Crystal structure of Cpf1 in complex with guide RNA and target DNA. Cell 165, 949–962 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Burstein, D. et al. New CRISPR-Cas systems from uncultivated microbes. Nature 542, 237–241 (2017).

    Article  CAS  PubMed  Google Scholar 

  17. Liu, J.-J. et al. CasX enzymes comprise a distinct family of RNA-guided genome editors. Nature 566, 218–223 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Takeda, S. N. et al. Structure of the miniature type V-F CRISPR-Cas effector enzyme. Mol. Cell 81, 558–570 (2021).

    Article  CAS  PubMed  Google Scholar 

  19. Karvelis, T. et al. PAM recognition by miniature CRISPR–Cas12f nucleases triggers programmable double-stranded DNA target cleavage. Nucleic Acids Res. 48, 5016–5023 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kluska, K., Adamczyk, J. & Krężel, A. Metal binding properties, stability and reactivity of zinc fingers. Coord. Chem. Rev. 367, 18–64 (2018).

    Article  CAS  Google Scholar 

  21. Yang, H., Gao, P., Rajashankar, K. R. & Patel, D. J. PAM-dependent target DNA recognition and cleavage by C2c1 CRISPR-Cas endonuclease. Cell 167, 1814–1828.e12 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Swarts, D. C., van der Oost, J. & Jinek, M. Structural basis for guide RNA processing and seed-dependent DNA targeting by CRISPR-Cas12a. Mol. Cell 66, 221–233.e4 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Swarts, D. C. & Jinek, M. Mechanistic insights into the cis- and trans-acting DNase activities of Cas12a. Mol. Cell 73, 589–600.e4 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Huang, X. et al. Structural basis for two metal-ion catalysis of DNA cleavage by Cas12i2. Nat. Commun. 11, 5241 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Gorski, S. A., Vogel, J. & Doudna, J. A. RNA-based recognition and targeting: sowing the seeds of specificity. Nat. Rev. Mol. Cell Biol. 18, 215–228 (2017).

    Article  CAS  PubMed  Google Scholar 

  26. Zhang, H., Li, Z., Xiao, R. & Chang, L. Mechanisms for target recognition and cleavage by the Cas12i RNA-guided endonuclease. Nat. Struct. Mol. Biol. 27, 1069–1076 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Stella, S. et al. Conformational activation promotes CRISPR-Cas12a catalysis and resetting of the endonuclease activity. Cell 175, 1856–1871.e21 (2018).

    Article  CAS  PubMed  Google Scholar 

  28. Wu, D., Guan, X., Zhu, Y., Ren, K. & Huang, Z. Structural basis of stringent PAM recognition by CRISPR-C2c1 in complex with sgRNA. Cell Res. 27, 705–708 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kleinstiver, B. P. et al. Engineered CRISPR-Cas9 nucleases with altered PAM specificities. Nature 523, 481–485 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Kleinstiver, B. P. et al. Engineered CRISPR–Cas12a variants with increased activities and improved targeting ranges for gene, epigenetic and base editing. Nat. Biotechnol. 37, 276–282 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Walton, R. T., Christie, K. A., Whittaker, M. N. & Kleinstiver, B. P. Unconstrained genome targeting with near-PAMless engineered CRISPR-Cas9 variants. Science 368, 290–296 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Stella, S., Alcón, P. & Montoya, G. Structure of the Cpf1 endonuclease R-loop complex after target DNA cleavage. Nature 546, 559–563 (2017).

    Article  CAS  PubMed  Google Scholar 

  33. Cofsky, J. C. et al. CRISPR-Cas12a exploits R-loop asymmetry to form double-strand breaks. eLife 9, e55143 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Punjani, A. & Fleet, D. J. 3D variability analysis: resolving continuous flexibility and discrete heterogeneity from single particle cryo-EM. J. Struct. Biol. 213, 107702 (2021).

    Article  CAS  PubMed  Google Scholar 

  35. Chen, J. S. et al. CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity. Science 360, 436–439 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Harrington, L. B. et al. Programmed DNA destruction by miniature CRISPR-Cas14 enzymes. Science 362, 839–842 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. East-Seletsky, A. et al. Two distinct RNase activities of CRISPR-C2c2 enable guide-RNA processing and RNA detection. Nature 538, 270–273 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hopfield, J. J. Kinetic proofreading: a new mechanism for reducing errors in biosynthetic processes requiring high specificity. Proc. Natl Acad. Sci. USA 71, 4135–4139 (1974).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ninio, J. Kinetic amplification of enzyme discrimination. Biochimie 57, 587–595 (1975).

    Article  CAS  PubMed  Google Scholar 

  40. Mallory, J. D., Igoshin, O. A. & Kolomeisky, A. B. Do we understand the mechanisms used by biological systems to correct their errors? J. Phys. Chem. B 124, 9289–9296 (2020).

    Article  CAS  PubMed  Google Scholar 

  41. Kleinstiver, B. P. et al. High-fidelity CRISPR–Cas9 nucleases with no detectable genome-wide off-target effects. Nature 529, 490–495 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Chen, J. S. et al. Enhanced proofreading governs CRISPR–Cas9 targeting accuracy. Nature 550, 407–410 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Liu, M.-S. et al. Engineered CRISPR/Cas9 enzymes improve discrimination by slowing DNA cleavage to allow release of off-target DNA. Nat. Commun. 11, 3576 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Strecker, J. et al. Engineering of CRISPR-Cas12b for human genome editing. Nat. Commun. 10, 212 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Punjani, A., Zhang, H. & Fleet, D. J. Non-uniform refinement: adaptive regularization improves single-particle cryo-EM reconstruction. Nat. Methods 17, 1214–1221 (2020).

    Article  CAS  PubMed  Google Scholar 

  46. Kaur, S. et al. Local computational methods to improve the interpretability and analysis of cryo-EM maps. Nat. Commun. 12, 1240 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Bepler, T. et al. Positive-unlabeled convolutional neural networks for particle picking in cryo-electron micrographs. Nat. Methods 16, 1153–1160 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Punjani, A. & Fleet, D. J. 3D variability analysis: resolving continuous flexibility and discrete heterogeneity from single particle cryo-EM. J. Struct. Biol. 213, 107702 (2021).

    Article  CAS  PubMed  Google Scholar 

  49. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D, Biol. Crystallogr. 60, 2126–2132 (2004).

    Article  CAS  Google Scholar 

  50. Afonine, P. V. et al. Real-space refinement in PHENIX for cryo-EM and crystallography. Acta Crystallogr. D, Struct. Biol. 74, 531–544 (2018).

    Article  CAS  Google Scholar 

  51. Liebschner, D. et al. Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in Phenix. Acta Crystallogr. D, Struct. Biol. 75, 861–877 (2019).

    Article  CAS  Google Scholar 

  52. Moriarty, N. W., Grosse-Kunstleve, R. W. & Adams, P. D. electronic Ligand Builder and Optimization Workbench (eLBOW): a tool for ligand coordinate and restraint generation. Acta Crystallogr. D, Biol. Crystallogr. 65, 1074–1080 (2009).

    Article  CAS  Google Scholar 

  53. Pettersen, E. F. et al. UCSF ChimeraX: structure visualization for researchers, educators, and developers. Protein Sci. 30, 70–82 (2021).

    Article  CAS  PubMed  Google Scholar 

  54. Pettersen, E. F. et al. UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).

    Article  CAS  PubMed  Google Scholar 

  55. Asarnow, D., Palovcak, E. & Cheng, Y. asarnow/pyem: UCSF pyem v.0.5. Zenodo https://doi.org/10.5281/zenodo.3576630 (2019).

  56. Afonine, P. V. et al. New tools for the analysis and validation of cryo-EM maps and atomic models. Acta Crystallogr. D Struct. Biol. 74, 814–840 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Madeira, F. et al. The EMBL-EBI search and sequence analysis tools APIs in 2019. Nucleic Acids Res. 47, W636–W641 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Waterhouse, A. M., Procter, J. B., Martin, D. M. A., Clamp, M. & Barton, G. J. Jalview version 2—a multiple sequence alignment editor and analysis workbench. Bioinformatics 25, 1189–1191 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Laskowski, R. A., Jabłońska, J., Pravda, L., Vařeková, R. S. & Thornton, J. M. PDBsum: structural summaries of PDB entries. Protein Sci. 27, 129–134 (2018).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank E. Charles, C. Huang, G. Knott, D. Smock and members of the Doudna and Nogales laboratories for discussion. We thank J. Cofsky and G. Knott for critical reading and comments on the manuscript. We thank J. Remis, D. Toso and G. Knott for electron microscopy assistance and A. Chintangal for computational support. EM data were collected at the Cal-Cryo facility located at UC Berkeley. P.P. is supported by the NIH Somatic Cell Genome Editing consortium (NIH U01AI142817-02). C.A.T. is supported by Campus Executive Grants 2101705 and 1655264 through Sandia National Laboratories. B.A.-S. was supported by an NSF Graduate Research Fellowship (DGE 1752814). J.A.D. receives funding from the Centers for Excellence in Genomic Science of the National Institutes of Health under award number RM1HG009490, from the Somatic Cell Genome Editing Program of the Common Fund of the National Institutes of Health under award number U01AI142817-02, and from the National Science Foundation under award number 1817593. D.A.H. was supported by the EMBO (ALTF 1002-2018) and SNSF (P2BSP3_181878). J.A.D. and E.N. are Howard Hughes Medical Institute Investigators.

Author information

Authors and Affiliations

Authors

Contributions

P.P. conceived the study with input from J.A.D. P.P. designed experiments and analyzed data. P.P. cloned constructs, purified proteins and performed biochemical experiments. K.M.S. and P.P. prepared cryo-EM grids. K.M.S. collected and processed cryo-EM data for 3D image reconstruction and 3DVA with input from E.N. and D.A.H. P.P. built and refined structure models. C.A.T. provided materials. B.A.-S. and J.F.B. provided the sequence information and bioinformatics analysis for CRISPR–CasΦ homologs, before publication of refs. 7,8. P.P. wrote the manuscript and prepared figures with input from K.M.S. and J.A.D.. The manuscript was reviewed and approved by all co-authors.

Corresponding author

Correspondence to Jennifer A. Doudna.

Ethics declarations

Competing interests

The Regents of the University of California, Berkeley have patents pending for CRISPR technologies on which the authors are inventors. J.A.D. is a cofounder of Caribou Biosciences, Editas Medicine, Scribe Therapeutics, Intellia Therapeutics and Mammoth Biosciences. J.A.D. is a scientific advisory board member of Vertex, Caribou Biosciences, Intellia Therapeutics, eFFECTOR Therapeutics, Scribe Therapeutics, Mammoth Biosciences, Synthego, Algen Biotechnologies, Felix Biosciences, The Column Group and Inari. J.A.D. is a director at Johnson & Johnson and Tempus and has research projects sponsored by Biogen, Pfizer, AppleTree Partners and Roche. J.F.B. is a founder of Metagenomi. The remaining authors declare no competing interests.

Additional information

Peer review information Nature Structural and Molecular Biology thanks Ryan Jackson and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available. Anke Sparmann was the primary editor on this article and managed its editorial process and peer review in collaboration with the rest of the editorial team.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Cryo-EM data processing for CasΦ in the binary state.

a, Cryo-EM data processing schematic. b, Local resolution map for the final cryoSPARC map calculated in cryoSPARC v3.1 with FSC threshold 0.5. Figure was generated in Chimera v.1.14 using the Surface color function and Chimera map sigma level 3.67 with dust removal size 5. c, Particle orientation distribution plot. d, Left: Gold standard FSC curves for the binary complex from the final round of the refinement in cryoSPARC v.3.1. Right: Map vs model FSC plots of the final binary model refined to the LocSpiral map and plotted with the final cryoSPARC sharp experimental map.

Source data

Extended Data Fig. 2 The architecture of CasΦ is similar to, but distinct from the architecture of large type V effectors.

For comparison to CasΦ (above), ternary structures of a representative set of type V effectors in the crRNA (Cas12a and Cas12i), or crRNA/tracrRNA (Cas12b, CasX and Cas14), and DNA bound states are shown. Ternary states were selected for comparison, since binary structures were not available for all effectors. Structures are shown as colored cartoons. Domains are color coded according to the legend on the right. Following models were used to prepare the figure: CasΦ binary structure (this study); Cas12a (PDB-ID: 6I1K23); Cas12b (PDB-ID: 5WTI28); CasX (PDB-ID: 6NY217); Cas14 (PDB-ID: 7C7L18) and Cas12i (PDB-ID: 6W5C26).

Extended Data Fig. 3 A Cas12-typical OBD domain recruits the crRNA to CasΦ.

For comparison to CasΦ (above, left), the OBD domains from representative type V effectors in the crRNA (Cas12a and Cas12i), or crRNA/tracrRNA (Cas12b, CasX and Cas14), and DNA bound states are shown. Following models were used to prepare the figure: CasΦ binary structure (this study); Cas12a (PDB-ID: 6I1K23); Cas12b (PDB-ID: 5WTI28); CasX (PDB-ID: 6NY217); Cas14 (PDB-ID: 7C7L18) and Cas12i (PDB-ID: 6W5C26).

Extended Data Fig. 4 Cryo-EM data processing for CasΦ in the ternary state.

a, Cryo-EM data processing schematic. b, Local resolution map for the final cryoSPARC map calculated in cryoSPARC v3.1 with FSC threshold 0.5. Figure was generated in Chimera v.1.14 using the Surface color function and Chimera map sigma level 3.71 with dust removal size 5. c, Particle orientation distribution plot. d, Left: Gold standard FSC curves for the binary complex from the final round of the refinement in cryoSPARC v.3.1. Right: Map vs model FSC plots of the final binary model refined to the LocSpiral map and plotted with the final cryoSPARC sharp experimental map.

Source data

Extended Data Fig. 5 Superhelical DNA is efficiently cut in the presence of alternative PAMs.

a, dsDNA cleavage assay in probing the ability of CasΦ to cleave linear PCR fragments (left) and supercoiled plasmid targets (right) in dependence of different PAM motifs. b, Quantified cleavage efficiencies for linear PCR fragments (left) and supercoiled plasmid targets (right) in dependence of different PAM motifs. (n = 3 independent reaction replicates; means ± SD). c, Analytical agarose gel electrophoresis images of three subsequently run independent technical replicates corresponding to the plot shown in b. Samples were processed in parallel.

Source data

Extended Data Fig. 6 Helix α7 repositions close to the NTS upon transition from the binary to the ternary state.

CasΦ in the ternary state is shown as a colored cartoon. To highlight the rearrangement of Helix α7 (arrow), the structure of CasΦ in the binary state (purple) was superimposed to the ternary state structure. For clarity, only the RecI domain of the CasΦ binary structure is shown.

Extended Data Fig. 7 The lid-loop associates with the crRNA:TS duplex in the ternary state.

a, CasΦ in the ternary state is shown as a colored cartoon. The lid-loop element is highlighted in purple and the corresponding LocSpiral cryo-EM map around residues 610-638 is shown as a translucent surface, contoured at 12 σ. b, dsDNA cleavage assay probing the ability of WT and mutant CasΦ to cleave linear PCR fragments. Shown is the analytical agarose gel electrophoresis image of three independent reaction replicates that were processed in parallel. Analyzed time point, t = 1h. c, analytical size-exclusion chromatogram showing that the analyzed variants elute as single peaks. d, FQ-assay testing the ability of wild type and variant CasΦ to indiscriminately cut the FQ-reporter in dependence of a crRNA complementary ssDNA activator at a concentration of 2 nM. (n = 3 independent reaction replicates; means).

Source data

Extended Data Fig. 8 Cryo-EM data processing for CasΦ in the ternary state with phosphorothioate DNA and Mg2+.

a, Cryo-EM data processing schematic. b, Local resolution map for the final cryoSPARC map calculated in cryoSPARC v3.1 with FSC threshold 0.5. Figure was generated in Chimera v.1.14 using the Surface color function and Chimera map sigma level 4.75 with dust removal size 5. c, Particle orientation distribution plot. d, Left: Gold standard FSC curves for the binary complex from the final round of the refinement in cryoSPARC v.3.1. Right: Map vs model FSC plots of the final binary model refined to the LocSpiral map and plotted with the final cryoSPARC sharp experimental map.

Source data

Extended Data Fig. 9 The PAM-distal TS is single-stranded.

Above: Overview of the LocSpiral map (left panel, colored volume, contoured at 7.6 σ) and model of CasΦ (right panel) in the ternary state in presence of the phosphorothioate NTS-DNA and the magnesium cofactors (purple spheres). Below: Close up onto the DNA arrangement observed in the ternary structure. The hexagons (magenta) highlight the active site (AS).

Extended Data Fig. 10 3D variability analysis of heterogeneous DNA states around the active site.

Shown are two 90°-rotated views of the states observed in the 3DVA for the CasΦ ternary complexes in absence (above) and presence (below) of the magnesium cofactor. Two distinct states (frame 1 and frame 20) for each mode are shown to highlight the structural heterogeneity. Purple density indicates density corresponding to dynamic DNA, not accounted for by our model.

Supplementary information

Supplementary Information

Supplementary Notes, Supplementary Figs. 1–12, Supplementary Tables 1–4 and Source Data for Supplementary Figs. 1, 2, 7, 9 and 10.

Reporting Summary

Peer Review File

Source data

Source Data Fig. 2

Source data for binding curves (numerical values).

Source Data Fig. 3

Source data for binding curves (numerical values).

Source Data Fig. 5

Source data for cleavage kinetics (numerical values).

Source Data Fig. 6

Source data for DNA cleavage assay and FQ reporter kinetics (numerical values).

Source Data Extended Data Fig. 1

Source data for FSC curves (numerical values).

Source Data Extended Data Fig. 4

Source data for FSC curves (numerical values).

Source Data Extended Data Fig. 5

Source data for DNA cleavage assay (numerical values).

Source Data Extended Data Fig. 5

Source data for DNA cleavage assay (images).

Source Data Extended Data Fig. 7

Source data for FQ reporter kinetics (numerical values).

Source Data Extended Data Fig. 7

Source data for DNA cleavage assay (images).

Source Data Extended Data Fig. 8

Source data for FSC curves (numerical values).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pausch, P., Soczek, K.M., Herbst, D.A. et al. DNA interference states of the hypercompact CRISPR–CasΦ effector. Nat Struct Mol Biol 28, 652–661 (2021). https://doi.org/10.1038/s41594-021-00632-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41594-021-00632-3

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology