Nothing Special   »   [go: up one dir, main page]

Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Revisiting the Holocene global temperature conundrum

Abstract

Recent global temperature reconstructions for the current interglacial period (the Holocene, beginning 11,700 years ago) have generated contrasting trends. This Review examines evidence from indicators and drivers of global change, as inferred from proxy records and simulated by climate models, to evaluate whether anthropogenic global warming was preceded by a long-term warming trend or by global cooling. Multimillennial-scale cooling before industrialization requires extra climate forcing and major climate feedbacks that are not well represented in most climate models at present. Conversely, global warming before industrialization challenges proxy-based reconstructions of past climate. The resolution of this conundrum has implications for contextualizing post-industrial warming and for understanding climate sensitivity to several forcings and their attendant feedbacks, including greenhouse gases. From a large variety of available evidence, we find support for a relatively mild millennial-scale global thermal maximum during the mid-Holocene, but more research is needed to firmly resolve the conundrum and to advance our understanding of slow-moving climate variability.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: GMST anomalies during recent global warming and the mid-Holocene (6 ka) from proxies and models.
Fig. 2: List of climate-system features and metrics discussed in this Review.
Fig. 3: Holocene climate forcings and feedbacks (left) and selected reconstructions and proxy data (right).

Similar content being viewed by others

Data availability

All of the data used for this Review are from published literature, as cited in the text.

References

  1. Intergovernmental Panel on Climate Change (IPCC). IPCC summary for policymakers. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (eds Masson-Delmotte, V. et al.) 3–32 (Cambridge Univ. Press, 2021).

  2. Fischer, H. et al. Palaeoclimate constraints on the impact of 2 °C anthropogenic warming and beyond. Nat. Geosci. 11, 474–485 (2018). Review of warm periods over the past 3.5 million years, including a comparison of proxy data and model simulations and a discussion of climate feedbacks that can enhance warming.

    Article  ADS  CAS  Google Scholar 

  3. Kaufman, D. S. & McKay, N. P. Technical Note: Past and future warming – direct comparison on multi-century timescales. Clim. Past 18, 911–917 (2022).

    Article  Google Scholar 

  4. Rockström, J. et al. Planetary boundaries: exploring the safe operating space for humanity. Ecol. Soc. 14, 32 (2019).

    Article  Google Scholar 

  5. Lüning, S. & Vahrenholt, F. Paleoclimatological context and reference level of the 2°C and 1.5°C Paris Agreement long-term temperature limits. Front. Earth Sci. 5, 104 (2017).

    Article  ADS  Google Scholar 

  6. Marcott, S. A., Shakun, J. D., Clark, P. U. & Mix, A. C. A reconstruction of regional and global temperature for the past 11,300 years. Science 339, 1198–1201 (2013). The first reconstruction of GMST based on a compilation of globally distributed terrestrial and marine proxy datasets shows evidence for a global HTM. Note: we added 0.3 °C to the GMST reconstructed by Marcott et al. to account for their warmer reference period.

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Liu, Z. et al. The Holocene temperature conundrum. Proc. Natl Acad. Sci. 111, E3501–E3505 (2014). Coined the term ‘Holocene temperature conundrum’ to describe the mismatch between most climate models that simulate a warming trend during the Holocene, in contrast to proxy data that show gradual cooling during the second half of the Holocene (before industrialization).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bova, S., Rosenthal, Y., Liu, Z., Godad, S. P. & Yan, M. Seasonal origin of the thermal maxima at the Holocene and the last interglacial. Nature 589, 548–553 (2021). Presents a large-scale temperature reconstruction, with no global HTM, based on the assumption that sea-surface proxy records are controlled by local seasonal insolation.

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Thompson, A. J., Zhu, J., Poulsen, C. J., Tierney, J. E. & Skinner, C. B. Northern Hemisphere vegetation change drives a Holocene thermal maximum. Sci. Adv. 8, eabj6535 (2022). Experiments using the Community Earth System Model show that expanded Northern Hemisphere vegetation at 6 ka increases GMST by about 0.7 °C, in broad agreement with proxy records.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Liu, Y. et al. A possible role of dust in resolving the Holocene temperature conundrum. Sci. Rep. 8, 4434 (2018).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  11. Osman, M. B. et al. Globally resolved surface temperatures since the Last Glacial Maximum. Nature 599, 239–244 (2021). A data assimilation reconstruction of GMST for the past 24 kyr, based on sea-surface temperatures derived from proxy system models combined with time-slice model simulations, shows slight warming across the middle and late Holocene.

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Erb, M. P. et al. Reconstructing Holocene temperatures in time and space using paleoclimate data assimilation. Clim. Past 18, 2599–2629 (2022). A Holocene data assimilation reconstruction based on the Temp12k database and transient model simulations shows a minor global HTM and cooling between 6ka and the preindustrial period.

  13. Steig, E. J. Mid-Holocene climate change. Science 286, 1485–1487 (1999).

    Article  CAS  Google Scholar 

  14. Wanner, H., Mercolli, L., Grosjean, M. & Ritz, S. P. Holocene climate variability and change; a data-based review. J. Geol. Soc. 172, 254–263 (2015).

    Article  ADS  Google Scholar 

  15. Harrison, S. P. et al. Evaluation of CMIP5 palaeo-simulations to improve climate projections. Nat. Clim. Change 5, 735 (2015).

    Article  ADS  Google Scholar 

  16. Hou, J., Li, C.-G. & Lee, S. The temperature record of the Holocene: progress and controversies. Sci. Bull. 64, 565–566 (2019).

    Article  Google Scholar 

  17. Klimenko, V. V., Klimanov, V. A. & Fedorov, M. V. The history of the mean temperature of the Northern Hemisphere over the last 11000 years. Dokl. Earth Sci. 348, 626–629 (1995).

    Google Scholar 

  18. Kaufman, D. S. et al. Holocene thermal maximum in the western Arctic (0–180°W). Quat. Sci. Rev. 23, 529–560 (2004).

    Article  ADS  Google Scholar 

  19. Herzschuh, U. et al. Regional pollen-based Holocene temperature and precipitation patterns depart from the Northern Hemisphere mean trends. Preprint at EGUsphere https://doi.org/10.5194/egusphere-2022-127 (2022).

  20. Cartapanis, O., Jonkers, L., Moffa-Sanchez, P., Jaccard, S. L. & de Vernal, A. Complex spatio-temporal structure of the Holocene Thermal Maximum. Nat. Commun. 13, 5662 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  21. Crucifix, M., Loutre, M. F., Tulkens, P., Fichefet, T. & Berger, A. Climate evolution during the Holocene: a study with an Earth system model of intermediate complexity. Clim. Dyn. 19, 43–60 (2002).

    Article  Google Scholar 

  22. Renssen, H., Seppa, H., Crosta, X., Goosse, H. & Roche, D. M. Global characterization of the Holocene Thermal Maximum. Quat. Sci. Rev. 48, 7–19 (2012).

    Article  ADS  Google Scholar 

  23. Zhang, Y., Renssen, H., Seppä, H. & Valdes, P. Holocene temperature trends in the extratropical Northern Hemisphere based on inter-model comparisons. J. Quat. Sci. 33, 464–476 (2018).

    Article  Google Scholar 

  24. Wright, H. E. Jr et al. (eds) Global Climates Since the Last Glacial Maximum (Univ. Minnesota Press, 1993).

  25. Lorenz, S. J. et al. Orbitally driven insolation forcing on Holocene climate trends: evidence from alkenone data and climate modeling. Paleoceanography 21, PA1002 (2006).

    Article  ADS  Google Scholar 

  26. Ljungqvist, F. C. The spatio-temporal pattern of the mid-Holocene thermal maximum. Geografie 116, 91–110 (2011).

    Article  Google Scholar 

  27. Wanner, H. Late-Holocene: cooler or warmer? Holocene 31, 1501–1506 (2021).

    Article  ADS  Google Scholar 

  28. Brierley, C. M. et al. Large-scale features and evaluation of the PMIP4-CMIP6 midHolocene simulations. Clim. Past 16, 1847–1872 (2020). Mid-Holocene model simulations from the PMIP4 experimental protocol show an ensemble mean GMST change of −0.3 °C relative to preindustrial control runs.

    Article  Google Scholar 

  29. Ganopolski, A., Kubatzki, C., Claussen, M., Borvkin, V. & Petoukhov, V. The influence of vegetation-atmosphere-ocean interaction on climate during the mid-Holocene. Science 280, 1916–1919 (1998). A coupled atmosphere–ocean–vegetation model shows that, during the mid-Holocene (6 ka), changes in boreal summer insolation, vegetation cover, sea-ice cover and ocean circulation contribute to global HTM.

    Article  ADS  CAS  PubMed  Google Scholar 

  30. Otto-Bliesner, B. L. et al. The PMIP4 contribution to CMIP6 – part 2: two interglacials, scientific objective and experimental design for Holocene and Last Interglacial simulations. Geosci. Model Dev. 10, 3979–4003 (2017).

    Article  ADS  CAS  Google Scholar 

  31. Chen, D. et al. Framing, context, and methods. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (eds Masson-Delmotte, V. et al.) 147–286 (Cambridge Univ. Press, 2021).

  32. Schmidt, G. A. et al. Using palaeo-climate comparisons to constrain future projections in CMIP5. Clim. Past 10, 221–250 (2014).

    Article  ADS  Google Scholar 

  33. Kaufman, D. et al. Holocene global mean surface temperature, a multi-method reconstruction approach. Sci. Data 7, 201 (2020). Several palaeoclimate reconstruction methods applied to an extensive compilation of terrestrial and marine proxy datasets show a global HTM, followed by global cooling from around 6.5 ka until industrialization (Temp12k reconstruction).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kaufman, D. et al. A global database of Holocene paleotemperature records. Sci. Data 7, 115 (2020). A database of quality-controlled, globally distributed temperature proxy datasets used to create the Temp12k reconstruction.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zhang, W., Wu, H., Geng, J. & Cheng, J. Model-data divergence in global seasonal temperature response to astronomical insolation during the Holocene. Sci. Bull. 67, 25–28 (2022).

    Article  Google Scholar 

  36. Marcott, S. A., Shakun, J. D., Clark, P. U. & Mix, A. C. A reconstruction of regional and global temperature for the past 11,300 years. Science 339, 1198–1201 (2013). The first reconstruction of GMST based on a compilation of globally distributed terrestrial and marine proxy datasets shows evidence for a global HTM.

    Article  ADS  CAS  PubMed  Google Scholar 

  37. Shakun, J. D., Lea, D. W., Lisiecki, L. E. & Raymo, M. E. An 800-kyr record of global surface ocean δ18O and implications for ice volume-temperature coupling. Earth Planet. Sci. Lett. 426, 58–68 (2015).

    Article  ADS  CAS  Google Scholar 

  38. Huang, S. P., Pollack, H. N. & Shen, P.-Y. A late Quaternary climate reconstruction based on borehole heat flux data, borehole temperature data, and the instrumental record. Geophys. Res. Lett. 35, L13703 (2008).

    Article  ADS  Google Scholar 

  39. Mann, M. E., Schmidt, G. A., Miller, S. K. & LeGrande, A. N. Potential biases in inferring Holocene temperature trends from long-term borehole information. Geophys. Res. Lett. 36, L05708 (2009).

    Article  ADS  Google Scholar 

  40. Rao, Z. et al. Pollen data as a temperature indicator in the late Holocene: a review of results on regional, continental and global scales. Front. Earth Sci. 10, 845650 (2022).

    Article  Google Scholar 

  41. Zhang, W., Wu, H., Geng, J. & Cheng, J. Model-data divergence in global seasonal temperature response to astronomical insolation during the Holocene. Sci. Bull. 67, 25–28 (2022).

    Article  Google Scholar 

  42. Marsicek, J., Shuman, B. N., Bartlein, P. J., Shafer, S. L. & Brewer, S. Reconciling divergent trends and millennial variations in Holocene temperatures. Nature 554, 92–96 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  43. Deevey, E. S. & Flint, R. F. Postglacial hypsithermal interval. Science 125, 182–184 (1957).

    Article  ADS  CAS  PubMed  Google Scholar 

  44. Gulev, S. K. et al. Changing state of the climate system. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (eds Masson-Delmotte, V. et al.) 287–422 (Cambridge Univ. Press, 2021).

  45. Oerlemans, J. & Reichert, B. K. Relating glacier mass balance to meteorological data by using a seasonal sensitivity characteristic. J. Glaciol. 46, 1–6 (2000).

    Article  ADS  Google Scholar 

  46. Leclercq, P. W. & Oerlemans, J. Global and hemispheric temperature reconstruction from glacier length fluctuations. Clim. Dyn. 38, 1065–1079 (2012).

    Article  Google Scholar 

  47. Solomina, O. N. et al. Holocene glacier fluctuations. Quat. Sci. Rev. 111, 9–34 (2015).

    Article  Google Scholar 

  48. Porter, S. C. Neoglaciation in the American Cordilleras. in Encyclopedia of Quaternary Science (ed. Elias, S. A.) 1133–1142 (Elsevier, 2007).

  49. Porter, S. C. & Denton, G. H. Chronology of neoglaciation in the North American Cordillera. Am. J. Sci. 265, 177–210 (1967).

    Article  ADS  Google Scholar 

  50. Briner, J. P. et al. Holocene climate change in Arctic Canada and Greenland. Quat. Sci. Rev. 147, 340–364 (2016).

    Article  ADS  Google Scholar 

  51. Kingslake, J. et al. Extensive retreat and re-advance of the West Antarctic Ice Sheet during the Holocene. Nature 558, 430–434 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  52. Baggenstos, D. et al. Earth’s radiative imbalance from the Last Glacial Maximum to the present. Proc. Natl Acad. Sci. 116, 14881–14886 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  53. Rosenthal, Y., Kalansky, J., Morley, A. & Linsley, B. A paleo-perspective on ocean heat content: lessons from the Holocene and Common Era. Quat. Sci. Rev. 155, 1–12 (2017).

    Article  ADS  Google Scholar 

  54. Bereiter, B., Shackleton, S., Baggenstos, D., Kawamura, K. & Seeringhaus, J. Mean global ocean temperatures during the last glacial transition. Nature 553, 39–44 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  55. Matthews, J. A. & Briffa, K. R. The ‘Little Ice Age’: re‐evaluation of an evolving concept. Geogr. Ann. A Phys. Geogr. 87, 17–36 (2005).

    Article  Google Scholar 

  56. McGregor, H. V. et al. Robust global ocean cooling trend for the pre-industrial Common Era. Nat. Geosci. 8, 671–677 (2015).

    Article  ADS  CAS  Google Scholar 

  57. PAGES 2k Consortium. Continental-scale temperature variability during the past two millennia. Nat. Geosci. 6, 339–346 (2013).

    Article  ADS  Google Scholar 

  58. PAGES 2k Consortium. A global multiproxy database for temperature reconstructions of the Common Era. Sci. Data 4, 170088 (2017).

    Article  Google Scholar 

  59. Solomina, O. N. et al. Glacier fluctuations during the past 2000 years. Quat. Sci. Rev. 149, 61–90 (2016).

    Article  ADS  Google Scholar 

  60. Cuesta-Valero, F. J., Garcia-Garcia, A., Beltrami, H., González-Rouco, J. F. & Garcia-Bustamante, E. Long-term global ground heat flux and continental heat storage from geothermal data. Clim. Past 17, 451–468 (2021).

    Article  Google Scholar 

  61. Laskar, J. et al. A long-term numerical solution for the insolation quantities of the Earth. Astron. Astrophys. 428, 261–285 (2004).

    Article  ADS  Google Scholar 

  62. Lorenz, S. J. & Lohman, G. Acceleration technique for Milankovitch type forcing in a coupled atmosphere-ocean circulation model: method and application for the Holocene. Clim. Dyn. 23, 727–743 (2004).

    Article  Google Scholar 

  63. Lindén, M., Möller, P. E. R., Björck, S. & Sandgren, P. E. R. Holocene shore displacement and deglaciation chronology in Norrbotten, Sweden. Boreas 35, 1–22 (2006).

    Article  Google Scholar 

  64. Ullman, D. J. et al. Final Laurentide ice-sheet deglaciation and Holocene climate-sea level change. Quat. Sci. Rev. 152, 49–59 (2016).

    Article  ADS  Google Scholar 

  65. Routson, C. et al. Mid-latitude net precipitation decrease with Arctic warming during the Holocene. Nature 568, 83–87 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  66. Meyer, H. et al. Long-term winter warming trend in the Siberian Arctic during the mid- to late Holocene. Nat. Geosci. 8, 122–125 (2015).

    Article  ADS  CAS  Google Scholar 

  67. Baker, J., Lachniet, M., Chervyatsova, O., Asmerom, Y. & Polyak, V. J. Holocene warming in western continental Eurasia driven by glacial retreat and greenhouse forcing. Nat. Geosci. 10, 430–435 (2017).

    Article  ADS  CAS  Google Scholar 

  68. Holland, K. M., Porter, T. J., Froese, D. G., Kokelj, S. V. & Buchanan, C. A. Ice-wedge evidence of Holocene winter warming in the Canadian Arctic. Geophys. Res. Lett. 47, e2020GL087942 (2020).

    Article  ADS  Google Scholar 

  69. Longo, W. M. et al. Insolation and greenhouse gases drove Holocene winter and spring warming in Arctic Alaska. Quat. Sci. Rev. 242, 106438 (2020).

    Article  Google Scholar 

  70. Zhang, W. et al. Holocene seasonal temperature evolution and spatial variability over the Northern Hemisphere landmass. Nat. Commun. 13, 5334 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  71. Mantsis, D. F., Clement, A. C., Broccoli, A. J. & Erb, M. P. Climate feedbacks in response to changes in obliquity. J. Clim. 24, 2830–2845 (2011).

    Article  ADS  Google Scholar 

  72. Laepple, T. & Lohmann, G. Seasonal cycle as template for climate variability on astronomical timescales. Paleoceanography 24, PA4201 (2009).

    Article  ADS  Google Scholar 

  73. Prentice, I. C. & Jolly, D. BIOME 6000 participants. Mid-Holocene and glacial-maximum vegetation geography of the northern continents and Africa. J. Biogeogr. 27, 507–519 (2000).

    Article  Google Scholar 

  74. Cao, X., Tian, F., Dallmeyer, A. & Herzschuh, U. Northern Hemisphere biome changes (>30°N) since 40 cal ka BP and their driving factors inferred from model-data comparisons. Quat. Sci. Rev. 220, 291–309 (2019).

    Article  ADS  Google Scholar 

  75. Dallmeyer, A. et al. Holocene vegetation transitions and their climatic drivers in MPI-ESM1.2. Clim. Past 17, 2481–2513 (2021).

    Article  Google Scholar 

  76. O’ishi, R. & Abe-Ouchi, A. Polar amplification in the mid‐Holocene derived from dynamical vegetation change with a GCM. Geophys. Res. Lett. 38, L14702 (2011).

    ADS  Google Scholar 

  77. Diffenbaugh, N. S. & Sloan, L. C. Global climate sensitivity to land surface change: the Mid Holocene revisited. Geophys. Res. Lett. 29, 1476 (2002).

    Article  ADS  Google Scholar 

  78. He, F. et al. Simulating global and local surface temperature changes due to Holocene anthropogenic land cover change. Geophys. Res. Lett. 41, 623–631 (2014).

    Article  ADS  Google Scholar 

  79. Albani, S. et al. Twelve thousand years of dust: the Holocene global dust cycle constrained by natural archives. Clim. Past 11, 869–903 (2015).

    Article  Google Scholar 

  80. Liu, Y. et al. A possible role of dust in resolving the Holocene temperature conundrum. Sci. Rep. 8, 4434 (2018).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  81. Zhang, M., Liu, Y., Zhang, J. & Wen, Q. AMOC and climate responses to dust reduction and greening of the Sahara during the mid-Holocene. J. Clim. 34, 4893–4912 (2021).

    ADS  Google Scholar 

  82. Hopcroft, P. O. & Valdes, P. J. On the role of dust-climate feedbacks during the mid-Holocene. Geophys. Res. Lett. 46, 1612–1621 (2019).

    Article  ADS  Google Scholar 

  83. Braconnot, P. et al. Impact of dust in PMIP-CMIP6 mid-Holocene simulations with the IPSL model. Clim. Past 17, 1091–1117 (2021).

    Article  Google Scholar 

  84. Serreze, M. C. & Barry, R. G. Processes and impacts of Arctic amplification: a research synthesis. Glob. Planet. Change 77, 85–96 (2011).

    Article  ADS  Google Scholar 

  85. Stranne, C., Jakobsson, M. & Björk, G. Arctic Ocean perennial sea ice breakdown during the early Holocene insolation maximum. Quat. Sci. Rev. 92, 123–132 (2014).

    Article  Google Scholar 

  86. Funder, S. et al. A 10,000-year record of Arctic Ocean sea-ice variability—view from the beach. Science 333, 747–750 (2011).

    Article  ADS  CAS  PubMed  Google Scholar 

  87. de Vernal, A. et al. Natural variability of Arctic Ocean sea ice during the present interglacial. Proc. Natl Acad. Sci. 117, 26069–26075 (2020).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  88. Wolff, E. W. et al. Southern Ocean sea-ice extent, productivity and iron flux over the past eight glacial cycles. Nature 440, 491–496 (2006).

    Article  ADS  CAS  PubMed  Google Scholar 

  89. Crosta, X. et al. Antarctic sea ice over the past 130 000 years – part 1: a review of what proxy records tell us. Clim. Past 18, 1729–1756 (2022).

    Article  Google Scholar 

  90. Park, H.-S., Kim, S.-J., Stewart, A. L., Son, S.-W. & Seo, K.-H. Mid-Holocene Northern Hemisphere warming driven by Arctic amplification. Sci. Adv. 5, eaax8203 (2019). Model simulations show that, during the mid-Holocene (6 ka), mean annual temperature in the Northern Hemisphere increased in response to reduced Arctic sea-ice extent.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  91. Chen, J., Zhang, Q., Kjellström, E., Lu, Z. & Chen, F. The contribution of vegetation-climate feedback and resultant sea ice loss to amplified Arctic warming during the mid-Holocene. Geophys. Res. Lett. 49, e2022GL098816 (2022).

    Article  ADS  Google Scholar 

  92. Bader, J. et al. Global temperature modes shed light on the Holocene temperature conundrum. Nat. Commun. 11, 4726 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  93. Tomas, R. A., Deser, C. & Sun, L. The role of ocean heat transport in the global climate response to projected Arctic sea ice loss. J. Clim. 29, 6841–6859 (2016).

    Article  ADS  Google Scholar 

  94. Blackport, R. & Kushner, P. J. The role of extratropical ocean warming in the coupled climate response to Arctic sea ice loss. J. Clim. 31, 9193–9206 (2018).

    Article  ADS  Google Scholar 

  95. Hudson, S. R. Estimating the global radiative impact of the sea ice–albedo feedback in the Arctic. J. Geophys. Res. Atmos. 116, D16102 (2011).

    Article  ADS  Google Scholar 

  96. England, M. R., Polvani, L. M., Sun, L. & Deser, C. Tropical climate responses to projected Arctic and Antarctic sea-ice loss. Nat. Geosci. 13, 275–281 (2020).

    Article  ADS  CAS  Google Scholar 

  97. Wunderling, N., Willeit, M., Donges, J. F. & Winkelmann, R. Global warming due to loss of large ice masses and Arctic summer sea ice. Nat. Commun. 11, 5177 (2020).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  98. Tierney, J. E. et al. Past climates inform our future. Science 370, eaay3701 (2020).

    Article  CAS  PubMed  Google Scholar 

  99. Köhler, P., Nehrbass-Ahles, C., Schmitt, J., Stocker, T. F. & Fischer, H. A 156 kyr smoothed history of the atmospheric greenhouse gases CO2, CH4, and N2O and their radiative forcing. Earth Syst. Sci. Data 9, 363–387 (2017).

    Article  ADS  Google Scholar 

  100. Brovkin, V. et al. What was the source of the atmospheric CO2 increase during the Holocene? Biogeosciences 16, 2543–2555 (2019).

    Article  ADS  CAS  Google Scholar 

  101. Ruddiman, W. F. et al. Late Holocene climate: natural or anthropogenic? Rev. Geophys. 54, 93–118 (2016).

    Article  ADS  Google Scholar 

  102. Tzedakis, P. C., Channell, J. E. T., Hodell, D. A., Kleiven, H. F. & Skinner, L. C. Determining the natural length of the current interglacial. Nat. Geosci. 5, 138–141 (2012).

    Article  ADS  CAS  Google Scholar 

  103. Abram, N. J. et al. Early onset of industrial-era warming across the oceans and continents. Nature 536, 411–418 (2016).

    Article  CAS  PubMed  Google Scholar 

  104. Shindell, D. T., Schmidt, G. A., Miller, R. L. & Mann, M. E. Volcanic and solar forcing of climate change during the preindustrial era. J. Clim. 16, 4094–4107 (2003).

    Article  ADS  Google Scholar 

  105. PAGES 2k Consortium. Consistent multidecadal variability in global temperature reconstructions and simulations over the Common Era. Nat. Geosci. 12, 643–649 (2019).

    Article  ADS  CAS  PubMed Central  Google Scholar 

  106. Wu, C.-J., Krivova, N. A., Solanki, S. K. & Usoskin, I. G. Solar total and spectral irradiance reconstruction over the last 9000 years. Astron. Astrophys. 620, A120 (2018).

    Article  CAS  Google Scholar 

  107. Forster, P. et al. The Earth’s energy budget, climate feedbacks, and climate sensitivity. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (eds Masson-Delmotte, V. et al.) 923–1054 (Cambridge Univ. Press, 2021).

  108. Gray, L. J. et al. Solar influences on climate. Rev. Geophys. 48, RG4001 (2010).

    Article  ADS  Google Scholar 

  109. Soon, W. A review of Holocene solar-linked climatic variation on centennial to millennial timescales: physical processes, interpretative frameworks and a new multiple cross-wavelet transform algorithm. Earth Sci. Rev. 134, 1–15 (2014).

    Article  ADS  CAS  Google Scholar 

  110. Lu, W. et al. Temporal and spatial response of Holocene temperature to solar activity. Quat. Int. 613, 39–45 (2022).

    Article  Google Scholar 

  111. Wanner, H. et al. Mid- to late Holocene climate change: an overview. Quat. Sci. Rev. 27, 1791–1828 (2008). A review of middle to late Holocene climate change, summarizing key climate forcings and evidence from both proxies and models.

    Article  ADS  Google Scholar 

  112. Mayewski, P. A. et al. Holocene climate variability. Quat. Res. 62, 243–255 (2004).

    Article  Google Scholar 

  113. Traversi, R. et al. Nitrate in polar ice: a new tracer of solar variability. Sol. Phys. 280, 237–254 (2012).

    Article  ADS  CAS  Google Scholar 

  114. Sigl, M., Toohey, M., McConnell, J. R., Cole-Dai, J. & Severi, M. Volcanic stratospheric sulfur injections and aerosol optical depth during the Holocene (past 11,500 years) from a bipolar ice core array. Earth Syst. Sci. Data 14, 3167–3196 (2022).

    Article  ADS  Google Scholar 

  115. Schneider, D. P., Ammann, C. M., Otto-Bliesner, B. L. & Kaufman, D. S. Climate response to large, high-latitude and low-latitude volcanic eruptions in the Community Climate System Model. J. Geophys. Res. Atmos. 114, D15101 (2009).

    Article  ADS  Google Scholar 

  116. Miller, G. H. et al. Abrupt onset of the Little Ice Age triggered by volcanism and sustained by sea-ice/ocean feedbacks. Geophys. Res. Lett. 39, L02708 (2012).

    Article  ADS  Google Scholar 

  117. Gupta, M. & Marshall, J. The climate response to multiple volcanic eruptions mediated by ocean heat uptake: damping processes and accumulation potential. J. Clim. 31, 8669–8687 (2018).

    Article  ADS  Google Scholar 

  118. Lohmann, G., Pfeiffer, M., Laepple, T., Leduc, G. & Kim, J.-H. A model–data comparison of the Holocene global sea surface temperature evolution. Clim. Past 9, 1807–1839 (2013).

    Article  Google Scholar 

  119. Zhang, Q. et al. Climate change between the mid and late Holocene in northern high latitudes – part 2: model-data comparisons. Clim. Past 6, 609–626 (2010).

    Article  Google Scholar 

  120. Shakun, J. D. & Carlson, A. E. A global perspective on Last Glacial Maximum to Holocene climate change. Quat. Sci. Rev. 29, 1801–1816 (2010).

    Article  ADS  Google Scholar 

  121. Zhang, X. & Chen, F. Non-trivial role of internal climate feedback on interglacial temperature evolution. Nature 600, E1–E3 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  122. Laepple, T., Shakun, J., He, F. & Marcott, S. Concerns of assuming linearity in the reconstruction of thermal maxima. Nature 607, E12–E14 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  123. Bova, S. et al. Reply to: Non-trivial role of internal climate feedback on interglacial temperature evolution. Nature 600, E4–E6 (2021).

    Article  CAS  PubMed  Google Scholar 

  124. Bova, S. et al. Reply to: Concerns of assuming linearity in the reconstruction of thermal maxima. Nature 607, E15–E18 (2022).

    Article  CAS  PubMed  Google Scholar 

  125. Annan, J. D., Hargreaves, J. C. & Mauritsen, T. A new global surface temperature reconstruction for the Last Glacial Maximum. Clim. Past 18, 1883–1896 (2022).

    Article  Google Scholar 

  126. King, J. et al. A data assimilation approach to last millennium temperature field reconstruction using a limited high-sensitivity proxy network. J. Clim. 34, 7091–7111 (2021).

    ADS  Google Scholar 

  127. Johnson, J. S. et al. Review article: Existing and potential evidence for Holocene grounding line retreat and readvance in Antarctica. Cryosphere 16, 1543–1562 (2022).

    Article  ADS  Google Scholar 

  128. Jones, R. S. et al. Stability of the Antarctic ice sheet during the pre-industrial Holocene. Nat. Rev. Earth Environ. 3, 500–515 (2022).

    Article  ADS  Google Scholar 

  129. Kopp, R. E. et al. Temperature-driven global sea-level variability in the Common Era. Proc. Natl Acad. Sci. 113, E1434–E1441 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Lambeck, K., Rouby, H., Purcell, A., Sun, Y. & Sambridge, M. Sea level and global ice volumes from the Last Glacial Maximum to the Holocene. Proc. Natl Acad. Sci. 111, 15296–15303 (2014).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  131. Milne, G. A. & Mitrovica, J. X. Searching for eustasy in deglacial sea-level histories. Quat. Sci. Rev. 27, 2292–2302 (2008).

    Article  ADS  Google Scholar 

  132. Vacchi, M. et al. Multiproxy assessment of Holocene relative sea-level changes in the western Mediterranean: sea-level variability and improvements in the definition of the isostatic signal. Earth Sci. Rev. 155, 172–197 (2016).

    Article  ADS  Google Scholar 

  133. Meco, J. et al. Mid and late Holocene sea level variations in the Canary Islands. Palaeogeogr. Palaeoclimatol. Palaeoecol. 507, 214–225 (2018).

    Article  Google Scholar 

  134. Crawford, O. Quantifying the sensitivity of post-glacial sea level change to laterally varying viscosity. Geophys. J. Int. 214, 1324–1363 (2018).

    Article  ADS  Google Scholar 

  135. Kwiecien, O. et al. What we talk about when we talk about seasonality – a transdisciplinary review. Earth Sci. Rev. 225, 103843 (2022).

    Article  CAS  Google Scholar 

  136. Evans, M. N., Talwinski-Ward, S. E., Thompson, D. M. & Anchukaitis, K. J. Applications of proxy system modeling in high resolution paleoclimatology. Quat. Sci. Rev. 76, 16–28 (2013).

    Article  ADS  Google Scholar 

  137. Dee, S. G., Steiger, N. J., Emile-Geay, J. & Hakim, G. J. On the utility of proxy system models for estimating climate states over the common era. J. Adv. Model. Earth Syst. 8, 1164–1179 (2016).

    Article  ADS  Google Scholar 

  138. Wörmer, L. et al. Ultra-high-resolution paleoenvironmental records via direct laser-based analysis of lipid biomarkers in sediment core samples. Proc. Natl Acad. Sci. 111, 15669–15674 (2014).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  139. Williams, J. W., Kaufman, D. S., Newton, A. & von Gunten, L. Building open data: data stewards and community-curated data resources. PAGES Mag. 26, 50–51 (2018).

    Article  Google Scholar 

  140. Mitchell, J. F. B. Greenhouse warming: is the mid-Holocene a good analogue? J. Clim. 3, 1177–1192 (1990).

    Article  ADS  Google Scholar 

  141. Yoshimori, M. & Suzuki, M. The relevance of mid-Holocene Arctic warming to the future. Clim. Past 15, 1375–1394 (2019).

    Article  Google Scholar 

  142. Peltier, W. R. Global glacial isostasy and the surface of the ice-age Earth: the ICE-5G (VM2) model and GRACE. Annu. Rev. Earth Planet. Sci. 32, 111–1149 (2004).

    Article  ADS  CAS  Google Scholar 

  143. Rosenthal, Y., Linsley, B. K. & Oppo, D. W. Pacific Ocean heat content during the past 10,000 years. Science 342, 617–621 (2013).

    Article  ADS  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank our colleagues for their helpful input, including D. Baggenstos, S. Bova, R. Bradley, C. Brierley, R. Creel, S. Dee, M. Erb, H. Fischer, O. Heiri, U. Herzschuh, P. Hopcroft, T. Laepple, D. Lunt, N. McKay, M. Osman and A. Thompson. This Review was motivated by the need for a comprehensive assessment of palaeo GMST for the IPCC’s Sixth Assessment Report.

Author information

Authors and Affiliations

Authors

Contributions

D.S.K. conceived the Review, assembled the datasets and wrote the first manuscript. E.B. expanded and improved the manuscript and crafted the figures.

Corresponding author

Correspondence to Darrell S. Kaufman.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks Samantha Bova, Oliver Heiri, Peter Hopcroft and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaufman, D.S., Broadman, E. Revisiting the Holocene global temperature conundrum. Nature 614, 425–435 (2023). https://doi.org/10.1038/s41586-022-05536-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-022-05536-w

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing