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High-resolution genomic history of early 
medieval Europe

Leo Speidel1,2,3 ✉, Marina Silva1, Thomas Booth1, Ben Raffield4, Kyriaki Anastasiadou1, 
Christopher Barrington5, Anders Götherström6,7, Peter Heather8 & Pontus Skoglund1 ✉

Many known and unknown historical events have remained below detection thresholds 
of genetic studies because subtle ancestry changes are challenging to reconstruct. 
Methods based on shared haplotypes1,2 and rare variants3,4 improve power but are not 
explicitly temporal and have not been possible to adopt in unbiased ancestry models. 
Here we develop Twigstats, an approach of time-stratified ancestry analysis that can 
improve statistical power by an order of magnitude by focusing on coalescences in 
recent times, while remaining unbiased by population-specific drift. We apply this 
framework to 1,556 available ancient whole genomes from Europe in the historical 
period. We are able to model individual-level ancestry using preceding genomes to 
provide high resolution. During the first half of the first millennium ce, we observe  
at least two different streams of Scandinavian-related ancestry expanding across 
western, central and eastern Europe. By contrast, during the second half of the first 
millennium ce, ancestry patterns suggest the regional disappearance or substantial 
admixture of these ancestries. In Scandinavia, we document a major ancestry influx  
by approximately 800 ce, when a large proportion of Viking Age individuals carried 
ancestry from groups related to central Europe not seen in individuals from the early 
Iron Age. Our findings suggest that time-stratified ancestry analysis can provide a 
higher-resolution lens for genetic history.

Ancient genome sequencing has revolutionized our ability to recon-
struct expansions, migrations and admixture events in the ancient past 
and understand their impact on human genetic variation today. How-
ever, tracing history using genetic ancestry has remained challenging, 
particularly in historical periods for which the richest comparative 
information from history and archaeology often exists. This is because 
ancestries in many geographical regions are often so similar as to be 
statistically indistinguishable with current approaches. One example is 
northern and central Europe since the start of the Iron Age around 500 
bce, a period for which many long-standing questions remain, such as 
the nature of large-scale patterns of human migration during the fourth 
to sixth centuries ce, their impact on the Mediterranean world and later 
patterns of human mobility during the Viking Age (around 750–1050 ce).

Several recent studies have documented substantial mobility and 
genetic diversity in these time periods, suggesting stable population 
structure despite high mobility5, and have revealed genetic variation 
in Viking Age Scandinavia6–8, early medieval England3,9, early medieval 
Hungary10,11 and Iron Age and medieval Poland12. However, previous 
studies mostly used large modern cohorts to study ancestry change 
through time and space. This is because the differentiation between 
Iron Age groups in central and northern Europe is an order of magnitude 
lower (fixation index (FST) = 0.1–0.7%; Extended Data Fig. 1) than, for 
example, the more commonly studied hunter-gatherer, early farmer 
and steppe-pastoralist groups that shaped the ancestry landscape of 

Stone Age and Bronze Age Europe13–16 (FST = 5–9% (refs. 13,17)). Modern 
populations provide more power to detect differences, but their genetic 
affinity to ancient individuals may be confounded by later gene flow, 
that is, after the time of the ancient individual(s)18. The most principled 
approach is thus to build ancestry models in which source and ‘out-
group/reference’ populations are older than, or at least contemporary 
with, the target genome or group that we are trying to model18. However, 
this has been challenging, due to the limited statistical power offered 
by the thousands-fold lower sample sizes and reduced sequence qual-
ity of ancient genomes.

Reconstructing genetic histories and ancestry models from ancient 
DNA (aDNA) data commonly uses methods based on f-statistics13,19–22. 
Their popularity is rooted in a number of favourable properties, such 
as enabling analyses of lower-quality aDNA data, relative robustness 
to ascertainment and theoretical guarantees of unbiasedness, includ-
ing in the presence of population bottlenecks21,23. Approaches derived 
from f-statistics, such as qpAdm13, are close to unique in enabling the 
unbiased fitting of admixture models, including identifying the num-
ber of such events and the closest representatives of sources13,14,23. 
However, f-statistics have not always had sufficient power to recon-
struct events that involve closely related ancestries, despite increas-
ing sample sizes6,24. Methods that identify haplotypes, or shared 
segments of DNA that are not broken down by recombination, have 
previously been shown to have more power than those using individual 
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single-nucleotide polymorphism (SNP) markers, but this informa-
tion has not been accessible in combination with the advantages of 
f-statistics2,6,25,26. Furthermore, the overwhelming majority of available 
aDNA is from a panel of 1.2 million SNPs27, and few clear advantages 
have been demonstrated for analysis of the more than 50 million SNPs 
available with whole-genome shotgun data.

One class of methods that use haplotype information is full genea-
logical tree inference28,29, which can now readily be applied to many 
thousands of modern and ancient whole genomes30–35. Such meth-
ods have been successfully applied to boost the detection of positive 
selection32,36–38, population structure31,33,35,39, geographical locations of 
ancestors34,40, demography31,32 and mutation rate changes31. Genealogi-
cal trees can be thought of as containing essentially full, time-resolved 
information about genetic ancestry, including information typically 
captured by recent haplotype sharing or identity by descent. Genetic 
ancestry here refers to the full collection of genetic ancestors of indi-
viduals41, and genealogical trees reveal how and when these are shared 
across individuals. By contrast, rare variant ascertainment, haplotypes 
or chromosome blocks can be thought of as subsets or summaries of 
the information available in genealogies.

Here, we propose an approach that we refer to as ‘time-stratified 
ancestry analysis’ to boost the statistical power of f-statistics 
several-fold by using inferred genome-wide genealogies (Fig. 1a) and 
apply our method to reconstruct the genetic history of northern and 
central Europe from around 500 bce to 1000 ce.

 
Genealogies improve ancestry modelling
By definition, f-statistics count the occurrence of local genealogical 
relationships that are implied by how mutations are shared between 
individuals42. This inherent relationship between f-statistics and local 
genealogies makes it straightforward to compute f-statistics directly on 
inferred genealogies43. Instead of computing f-statistics on observed 
mutations, they are now calculated on the inferred branches of these 
genealogies, some of which may not be directly tagged by mutations 
but are inferred by resolving the local haplotype structure (Methods).

We develop mathematical theory and simulate a simple admixture 
model, in which the ancestry proportion is constrained in a single ratio of 
two f4-statistics19, to test this approach (Fig. 1b and Supplementary Note). 
While unbiased, we find that using f-statistics computed on genealogies 
by itself does not yet yield a large improvement in statistical power to 
quantify admixture events. However, we show, through both theoretical 
prediction and simulation, that large improvements in power can be 
gained without bias by restricting to recent coalescences, which are most 
informative for recent admixture events (Fig. 1c,d and Extended Data 
Figs. 2 and 3). We show that coalescences older than the time of diver-
gence of the sources carry no information with respect to the admixture 
event and only add noise to the f-statistics. Excluding these therefore 
increases statistical power, without introducing bias, in principle.

We implement this idea of studying the ‘twigs’ of gene trees in a tool, 
Twigstats (Fig. 1a and Methods), which we demonstrate in simulations 
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Fig. 1 | Twigstats performance on simulated data. a, A diagram of the Twigstats 
approach. We first construct genealogies from genetic variation data and  
then use Twigstats to compute f2-statistics between pairs of groups to be  
used by ADMIXTOOLS2. b, Admixture proportions inferred from an f4-ratio 
statistic or non-negative least squares method. Source groups P1 and P2 split 
250 generations ago and mix 50 generations ago, where P2 contributes 
proportion α and P1 contributes 1 − α. Effective population sizes are equal and 
constant except for a recent bottleneck in P2 (see Methods for simulation 
details). The Twigstats cut-off is set to 500 generations, the rare variant cut-off 
is set to 5%, and we additionally infer admixture proportions by generating 
‘first coalescence profiles’ for each population and modelling PX as a mixture 

of sources P1 and P2 using non-negative least squares (NNLS) (Methods).  
We sample 20 haploid sequences from each population. Data are mean ± 2 s.e. 
around the point estimate. c, The fold improvement of s.e. relative to the 
genotype case as a function of the Twigstats cut-off time, for the same simulation 
as in b and averaged across different true admixture proportions. The dashed 
line shows the best fold improvement of s.e. when ascertaining genotypes by 
frequency, when evaluated at different frequency cut-offs. d, The optimal 
Twigstats cut-off, defined as the largest reduction in s.e. relative to the genotype 
case, as a function of source split time in simulations using true trees. The dashed 
line indicates our theoretical prediction (Supplementary Note).
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reduces standard errors (s.e.) by up to tenfold and potentially more, 
depending on sample sizes and details of the genetic history model. The 
approach does not produce detectable bias in estimates of admixture 
proportions (Fig. 1b–d and Extended Data Fig. 3). Furthermore, we 
demonstrate that computing f-statistics on genotypes ascertained 
for young mutation ages produce a power gain nearly equal to that 
produced when using full genealogies in many examples, while add-
ing flexibility by allowing lower-quality genomes to be grafted onto a 
genealogy reconstructed with higher-quality genomes31.

We further confirm with simulations that genealogy-based f-statistics 
estimates are robust to sequencing and phase-switch errors of expected 
magnitude (Extended Data Fig. 3b). In fact, although sequence errors 
can affect SNP-based population-genetic approaches substantially, 
errors can be ‘corrected’ in genealogies as they take all variants in a 
region into account32.

Previous studies have suggested ascertaining rare mutations as a 
proxy for recent history3,4, but we show that this approach is prone to 
bias when effective population sizes vary between populations, and 
that using full time-restricted genealogies is both unbiased and more 
powerful (Fig. 1b and Extended Data Fig. 3). We attribute this to the 
observation that mutation age is not fully predictive of allele frequency 
(Extended Data Fig. 4) and that the genealogy-based approach gains 
power from the inclusion also of higher-frequency young mutations 
that ‘tag’ recent coalescences by closely pre-dating them. We demon-
strate that a widely used ‘chromosome painting’ approach, and any 
conceptually similar modelling based on identity by descent, that finds 
the nearest neighbours between chromosomal segments in a sample 
and model groups using a non-negative least squares of genome-wide 
painting profiles2 is also prone to bias, when source groups have under-
gone strong drift since the admixture event (Fig. 1b and Extended Data 
Fig. 3b).

We next test the Twigstats time-restricted genealogy approach 
on a range of empirical examples. First, we boost pairwise outgroup 
f3-statistics44 to quantify fine-scale population structure; we demon-
strate this improvement using a previously proposed simulation39 
(Extended Data Fig. 5a). When applied to published genomes from 
Neolithic Europe (Methods and Supplementary Table 1), we can repli-
cate the previously suggested fine-scale structure between individuals 
buried in megalithic structures in Ireland compared with others45, a 
relationship that is not apparent from SNP data alone (Extended Data 
Fig. 5b). For the well-studied example of three major ancestries contrib-
uting to prehistoric Europe, that is, Mesolithic hunter-gatherers, early 
farmers and steppe populations13–16, we obtain unbiased estimates and 
an approximately 20% improvement in standard errors in an already 
well-powered qpAdm model46 (Extended Data Fig. 5c).

Finally, we demonstrate that Twigstats can be used to resolve com-
peting models of punctual admixture and long-standing gene flow, or 
constrain the time of admixture. For instance, it has previously been 
suggested that long-standing deep structure and gene flow between 
Neanderthals and early modern humans in Africa may produce genetic 
patterns that resemble a punctual admixture event some 60,000 years 
ago47–49, casting doubt on the model of Neanderthal admixture into 
ancestors of Eurasians49–51. However, whereas such long-standing deep 
substructure would confound SNP-based f-statistics to produce pat-
terns similar to Neanderthal admixture, we demonstrate, in simula-
tions, that Twigstats can clearly distinguish this history from recent 
admixture (Extended Data Fig. 5d). Application of Twigstats on empiri-
cal whole genomes produces results inconsistent with deep substruc-
ture alone, but consistent with punctual admixture.

Ancestry models of early medieval Europe
Having demonstrated that the Twigstats approach can effectively 
improve resolution and statistical power to test ancestry models and 
estimate proportions, we turn to the history of early medieval Europe.  

In the first half of the first millennium ce, Roman historians such as  
Tacitus and Ammianus Marcellinus described the geographical dis-
tribution and movements of groups beyond the imperial frontier and 
suggested a potential role for them in the fall of the western Roman 
Empire52. However, the exact nature and scale of these historically 
attested demographic phenomena—and their genetic impact—
have been questioned53, and have been difficult to test with genetic 
approaches owing to the close relations shared between many groups 
that were ostensibly involved. Less is understood at further distances 
from the Roman frontier owing to a lack of historical accounts. The 
improved statistical power of time-restricted ancestry in Twigstats 
thus offers an opportunity to revisit these questions.

To develop an ancestry model for early medieval individuals (Supple-
mentary Table 1), we first need a broad characterization of the ancestry 
of the earlier sources from the early Iron Age (EIA) and Roman periods. 
We use hierarchical UPGMA clustering based on pairwise clade testing 
between all individuals, and formally test the cladality of proposed 
ancestry groups with qpWave5 (cladality in this sense means whether 
they are consistent with being symmetrically related to all other tested 
groups; Methods). This resulted in a set of model ancestry sources 
that included Iron Age and Roman Britain (n = 11), the Iron Age of cen-
tral European regions of mostly Germany, Austria and France (n = 10), 
Roman Portugal (n = 4), Roman Italy (n = 10), Iron Age Lithuania (n = 5), 
the EIA Scandinavian Peninsula (Sweden and Norway, n = 10) and several 
other more eastern groups dating to the Bronze Age and EIA (n = 25) 
(Fig. 2a and Extended Data Fig. 1). We then use a rotational qpAdm 
approach54 to narrow down the set of contributing sources from this 
larger pool of putative sources.

We additionally perform non-parametric multidimensional scaling 
(MDS) on outgroup-f3 statistics44 computed using Twigstats, the results 
of which do not depend on any modelling assumptions and which show 
increased resolution compared with conventional outgroup-f3 sta-
tistics (Fig. 2a,b, Extended Data Fig. 6 and Supplementary Table 2). 
Encouragingly, the MDS model supports regional fine-scale genetic 
structures reflected in our source groups, such as the separation of 
predominantly Norwegian and northern Swedish EIA individuals from 
southern Peninsular Scandinavia (Fig. 2a); this relationship is not 
detected without Twigstats. In this MDS analysis, we note a close affinity 
of wide-ranging individuals from Portugal, France, Germany, Austria 
and Britain. We hypothesize that this corresponds to areas associated 
with the Celtic-speaking world, and that their close genetic affinity is 
due to earlier expansions. Sparse sampling limits our understanding 
of the full extent of regional ancestry variation in central Europe and 
some other regions, but the continental ancestries differentiated in 
the MDS model suggests that major ancestry variation across Europe 
in this period is relatively well captured.

Expansions of Scandinavian-like ancestry
We assembled time transects using available aDNA data across several 
geographical regions in Europe, and infer their ancestry using a model 
with the EIA or Roman Iron Age sources previously defined (shown in 
Fig. 2a). Our modelling provides direct evidence of individuals with 
ancestry originating in northern Germany or Scandinavia appearing 
across Europe as early as the first century ce (Figs. 2b,c and 3 and Sup-
plementary Table 3).

In the region of present-day Poland, our analysis suggests several 
clear shifts in ancestry. First, in the Middle to Late Bronze Age (1500 bce  
to 1000 bce), we observe a clear shift away from preceding ancestry 
originally associated with Corded Ware cultures55 (Fig. 3a). Second, 
in the first to fifth century ce, individuals associated with Wielbark 
culture5,12 show an additional strong shift away from the preceding 
Bronze Age groups, and can only be modelled with a >75% component 
attributed to the EIA Scandinavian Peninsula. Multiple individuals, 
especially from earlier Wielbark cemeteries, have approximately 100% 
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ancestry related to EIA Scandinavian Peninsula (Fig. 2c). The Wielbark 
archaeological complex has been linked to the later Chernyakhov cul-
ture to the southeast and to early Goths, an historical Germanic group 
that flourished in the second to fifth centuries ce56. Our modelling 
supports the idea that some groups that probably spoke Germanic 
languages from Scandinavia expanded south across the Baltic into 
the area between the Oder and Vistula rivers in the early centuries ce, 
although whether these expansions can be linked specifically with 
historical Goths is still debatable. Moreover, since a considerable 

proportion of Wielbark burials during this period were cremations, 
the possible presence of individuals with other ancestries cannot be 
strictly rejected if they were exclusively cremated (and are therefore 
invisible in the aDNA record).

A previous study could not reject continuity in ancestry from the 
Wielbark-associated individuals to later medieval individuals from 
a similar region12. With the improved power of Twigstats, models of 
continuity are strongly rejected, with no one-source model of any pre-
ceding Iron Age or Bronze Age group providing a reasonable fit for the 
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medieval individuals (P ≪ 1 × 10−32). Instead, the majority of individuals 
from medieval Poland can be modelled only as a mixture of ancestries 
related to Roman Iron Age Lithuania, which is similar to ancestries of 
individuals from middle to late Bronze Age Poland (44%, 95% confidence 
interval 36–51%), an ancestry component related to Hungarian Scyth-
ians or Slovakian La Tène individuals (49%, 95% confidence interval 
41–57%) and potentially a minority component of ancestry related to 
Sarmatians from the Caucasus (P = 0.13) (Fig. 2c). Four out of twelve 
individuals from medieval Poland, three of whom are from the late 
Viking Age6, carried detectable Scandinavian-related ancestry. Some 
of the ancestry detected in individuals from later medieval Poland may 
have persisted during the late first millennium ce in the cremating 
portion of the population, but regardless, this points to large-scale 
ancestry transformation in medieval Poland (Fig. 3a). Future data could 
shed light on the extent to which this reflects the influence of groups 
speaking Slavic languages in the region.

In present-day Slovakia, individuals associated with the Iron 
Age La Tène period appear close to Hungarian Scythians in the two 
dimensions of our MDS analysis, and are modelled as a mixture of 
central and eastern European ancestry. However, a first-century ce 
burial of a 50–60-year-old woman from Zohor is modelled only with 
Scandinavian-related ancestry, providing evidence of ancestry related 
to the Scandinavian EIA appearing southwest of the range of the Wiel-
bark archaeological complex5,57 (Fig. 3b). Later early medieval individu-
als from Slovakia have partial Scandinavian-related ancestry, providing 
evidence for the integration between expanding and local groups.

Nearby, in present-day Hungary, we observe Scandinavian-related 
ancestry components in several burials dating to the sixth century 
ce associated with Longobards (Longobard_earlyMED(I))10 (Fig. 2c). 
This is consistent with the original study10, which reported affinity to 
present-day groups from northwestern Europe (GBR, CEU and FIN in 
the 1000 Genomes Project (1000GP))10 but which we can resolve with 
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(c), Italy (d), Britain and Ireland (e) and Scandinavia (f). The maps show sample 
locations of all available ancient genomes with at least 0.5× coverage from 

these regions (Supplementary Table 1). Their ancestry is shown on the same 
MDS model as in Fig. 2a for each time period. For each geographic region,  
the early medieval period is highlighted in orange and the area in the MDS 
corresponding to Scandinavian and central European ancestries is highlighted 
in an orange box.
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higher resolution using earlier genomes. Several other individuals from 
these Longobard burials (Longobard_earlyMED(II)) show no detectable 
ancestry from northern Europe and, instead, are more closely related to 
Iron Age groups in continental central Europe, putatively representing 
descendants of local people buried in a Longobard style. Our results are 
consistent with attestations that the Longobards originated in the areas 
of present-day northern Germany or Denmark, but that by the sixth 
century ce they incorporated multiple different cultural identities, and 
mixed ancestries. Present-day populations of Hungary do not appear 
to derive detectable ancestry from early medieval individuals from 
Longobard contexts, and are instead more similar to Scythian-related 
ancestry sources (Extended Data Fig. 6), consistent with the later impact 
of Avars, Magyars and other eastern groups58.

In southern Germany, the genetic ancestry of individuals from 
early medieval Bavaria probably associated with the historical 
Germanic-language-speaking Baiuvarii59 cannot be modelled as deriv-
ing ancestry solely from earlier groups in Iron Age central Germany 
(P ≪ 1 × 10−36). The Baiuvarii probably appeared in the region in the 
fifth century ce59, but their origins remain unresolved. Our current 
best model indicates a mixture with ancestry derived from EIA Pen-
insular Scandinavia and central Europe, suggesting an expansion of 
Scandinavian-related ancestry producing a regional ancestry shift 
(Figs. 2c and 3c).

In Italy, southward expansions of northern and central European ances-
tries appear by the Late Antiquity (approximately fourth century ce),  
where a clear diversification of ancestry can be observed compared 
with preceding time periods (Fig. 3d). However, no individuals with 
near 100% Scandinavian ancestry can be observed in the sampling 
data available so far.

In Britain, the ancestries of Iron Age and Roman individuals form a 
tight cluster in our MDS analysis (Fig. 3e), shifted relative to available 
preceding Bronze Age individuals from Ireland and Orkney, and adja-
cent to, but distinct from, available individuals in Iron Age and Roman 
central Europe. However, two first- to second-century ce burials from a 
Roman military fortress site in Austria (Klosterneuburg)5 carry ancestry 
that is currently indistinguishable from Iron Age or Roman popula-
tions of Britain, to the exclusion of other groups (qpWave cladality  
P = 0.11). One option is that they had ancestry from Britain; alternatively, 
currently unsampled populations from western continental Europe 
carried ancestries similar to Iron Age southern Britain.

Twigstats substantially improves models of admixture between 
ancestries from Iron Age Britain and northern Europe in early medi-
eval England9, halving standard errors from 9% with SNPs to 4% when 
using time stratification (point estimates 80% and 79% Iron Age 
Britain-related ancestry, respectively). We used this improved reso-
lution to demonstrate that an earlier Roman individual (6DT3) dating 
to approximately second to fourth century ce from the purported 
gladiator or military cemetery at Driffield Terrace in York (Roman 
Eboracum), England60, who was previously identified as an ancestry 
outlier61,62, specifically carried approximately 25% EIA Scandinavian 
Peninsula-related ancestry (Fig. 2c). This documents that people with 
Scandinavian-related ancestry already were in Britain before the fifth 
century ce, after which there was a substantial influx associated with 
Anglo-Saxon migrations9. Although it is uncertain whether this indi-
vidual was a gladiator or soldier, individuals and groups from northern 
Europe are indeed recorded in Roman sources both as soldiers and as 
enslaved gladiators63,64.

Across Europe, we see regional differences in the southeastern and 
southwestern expansions of Scandinavian-related ancestries. Early 
medieval groups from present-day Poland and Slovakia carry spe-
cific ancestry from one of the Scandinavian EIA groups—the one with 
individuals primarily from the northern parts of Scandinavia in the 
EIA—with no evidence of ancestry related to the other primary group 
in more southern Scandinavia (Fig. 2d). By contrast, in southern and 
western Europe, Scandinavian-related ancestry either derives from 

EIA southern Scandinavia—as in the cases of the probable Baiuvarii 
in Germany, Longobard-associated burials in Italy and early medieval 
burials in southern Britain—or cannot be resolved to a specific region 
in Scandinavia. If these expansions are indeed linked to language, this 
pattern is remarkably concordant with the main branches of Germanic 
languages, with the now-extinct eastern Germanic spoken by Goths in 
Ukraine on the one hand, and western Germanic languages such as Old 
English and Old High German recorded in the early medieval period 
on the other hand.

Influx into pre-Viking Age Scandinavia
In EIA Scandinavia (<500 ce), we find evidence for broad genetic homo-
geneity. Specifically, individuals from Denmark (100 ce–300 ce) were 
indistinguishable from contemporary people in the Scandinavian Pen-
insula (Fig. 2c). However, we observe a clear shift in genetic ancestry 
already in the eighth century ce (Late Iron Age/early Viking Age) on 
Zealand (present-day Denmark) for which a 100% EIA ancestry model 
is rejected (P = 1 × 10−17 using Twigstats; P = 7.5 × 10−4 without). This 
shift in ancestry persists among later Viking Age groups in Denmark, 
where all groups are modelled with varying proportions of ancestry 
related to Iron Age continental groups in central Europe (Figs. 3f  
and 4c). A non-parametric MDS of Viking Age individuals suggests 
that variation between individuals forms a cline spanning from the 
EIA Scandinavian Peninsula individuals to ancestry characteristic of 
central Europe (Fig. 4e). The observed shift in ancestry in Denmark 
cannot be confounded by potentially earlier unknown gene flow into 
Iron Age source groups in Austria, France and Germany, but such gene 
flow could affect the exact ancestry proportions.

These patterns are consistent with northward expansion of ancestry, 
potentially starting before the Viking Age, into the Jutland peninsula 
and Zealand island towards southern Sweden. The geographical ori-
gin of this ancestry is currently difficult to discern, as the available 
samples from Iron Age central Europe remain sparse. The timing 
of this expansion is constrained only by the samples available: this 
ancestry is not observed in individuals from the Copenhagen area of  
Denmark (around 100 ce–300 ce)6, an individual from the southern tip 
of Sweden (around 500 ce)16, individuals from the Sandby Borg mas-
sacre site on Öland in present-day Sweden (around 500 ce)7 and 31 indi-
viduals from the mid-eighth century Salme ship burials in present-day 
Estonia (Extended Data Fig. 9), who probably originated in central  
Sweden6. Therefore, this ancestry transformation most likely post- 
dated these individuals in each particular region and mostly occurred 
in the second half of the first millennium ce.

To assess the full extent of the impact of this ancestry influx into 
Scandinavia, we next aimed to understand the ancestry of individu-
als in Scandinavia during the Viking Age. Previous studies have sug-
gested that there was a diversity of ancestries in Scandinavia during this 
period6,7,65, due to increased maritime mobility, but have not reported 
per-individual ancestry estimates based on preceding ancestry. We 
analysed each individual’s ancestry using a rotational qpAdm scheme 
(Fig. 4a, Extended Data Fig. 9 and Supplementary Table 4), which 
showed increased power in distinguishing models when restricted 
to recent coalescences with Twigstats (more than 80% of accepted 
one-source models in Twigstats were also accepted one-source models 
using all SNPs, compared with less than 17% for the inverse).

We investigated regional differences in non-local ancestry across 
Scandinavia. In Denmark, 25 out of 53 Viking Age individuals had detect-
able (z-score > 1) central European-related ancestry (CentralEurope.
IronRoman or Portugal.IronRoman) in their best accepted qpAdm 
models. In Sweden 20 out of 62 individuals had detectable central 
European-related ancestry, concentrated almost entirely in southern 
regions (Fig. 4a,d). By contrast, in Norway, this ancestry was observed 
in only 2 out of 24 individuals, indicating a wide-ranging impact of 
incoming ancestry in southern Scandinavia and suggesting more 
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continuity from the EIA in Norway and northern Sweden (Fig. 4a). When 
considered collectively, the individuals who show evidence of central 
European-related ancestry are mostly observed in regions histori-
cally within the Danish sphere of influence and rule. Currently, no such 
individuals, for example, are noted in eastern central Sweden, which 
was a focus of regional power of the Svear (Fig. 4a). The difference in 
distribution could suggest that the central European-related ancestry 
was more common in regions dominated by the historical Götar and 
groups inhabiting the lands on the borders of the Danish kingdom.

To test the extent to which the variation in ancestry was consistent 
with mobility during the lifetime of the individuals or, alternatively, 

that of established groups, we focused on the island of Öland in south-
east Sweden, where 23 individuals for whom we could reconstruct 
ancestry portraits also had associated strontium stable isotope data66. 
Strontium isotope data from dental enamel reflect the geology of the 
region where an individual grew to maturity, and there are considerable 
differences in expectations between Öland and many other regions 
in northern Europe. The full range of strontium isotope ratios in 109 
individuals show two modes, a majority group with low ratios and a 
second minority group with high ratios falling outside the expected 
range of local fauna (Fig. 4b). Among 23 individuals with genomes in 
our data, all 5 individuals with 100% ancestry relating to central Europe 
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Fig. 4 | Ancestry in the Viking world. a, Map showing ancestry carried by 
Scandinavian Viking Age individuals as inferred using the best-fitting qpAdm 
model. These are chosen by either choosing the one-source model with largest 
P value and P > 0.01 or the two-source model with the largest P value and P > 0.01. 
Extended Data Fig. 7 shows the same map with all accepted models. b, Stable 
isotope data indicating the geology of childhood origin. The histogram shows 
the ratio of strontium isotopes 87 to 86 measured in 109 individuals in Öland69. 
For individuals included in our ancestry modelling, we plot Iron Age central 
European-related ancestry against their stable isotope values (grey circles, 
r = −0.39, P = 0.075). Shared area corresponds to the 95% confidence band 

around the regression line. c, The ancestry shift observed in Viking Age Danish 
groups using qpAdm on all SNPs or Twigstats. We show the best one-source and 
all two-source models with P > 0.05. For models with P < 0.05, the −log10[P value] 
is shown under the plot. Sample sizes for each group are shown in brackets.  
d, The ancestry proportion across Viking Age individuals in Denmark, Sweden 
and Norway grouped by latitude. e, Viking Age genetic variation (grey circles) 
visualized on the same MDS as in Fig. 2a,b. f, The best-fitting qpAdm ancestry 
model for far-flung Viking individuals. Detailed models for all individuals are 
shown in Extended Data Figs. 9 and 10. In c and f, we show one s.e. Rotating 
qpAdm sources are marked in bold in the key.
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(including one with ancestry related to Britain) are part of the majority 
strontium values, consistent with them having grown up locally. By 
contrast, the six most clearly non-local individuals based on the sta-
ble isotopes all have 50% or more EIA Scandinavian Peninsula-related 
ancestry, although three individuals with wholly EIA Scandinavian 
Peninsula-related ancestry also had local values. This suggests that 
the presence of central European-related ancestry was not a transient 
phenomenon, but an ancestry shift that occurred at some point after 
about 500 ce, the period to which individuals from the massacre site 
at Sandby Borg ringfort on Öland were dated; these individuals all have 
strictly EIA Scandinavian-related ancestry. Indeed, one hypothesis is 
that the massacre at Sandby Borg could represent conflict associated 
with movements of people that contributed to later ancestry change, 
although other scenarios are possible and further synthesis of biomo-
lecular and archaeological data is necessary to test this hypothesis.

Viking Age mobility into Scandinavia
Previous studies had suggested a major influx of ancestry related to 
Britain into Viking Age Scandinavia6,7. Although we detect this ances-
try in some individuals (7 individuals in Norway, 14 in Denmark and 
14 in Sweden), including some individuals whose ancestry appears to 
be entirely derived from Iron Age Britain, its overall impact appears 
reduced compared with previous reports. Our analysis indicates a pro-
portionally larger impact of ancestry from Iron Age Britain in northern 
Norway, with southern Scandinavia predominantly influenced by 
continental central European ancestries (Fig. 4d). We hypothesize 
that our estimates of ancestry from Britain are reduced relative to 
previous studies because ancestry related to Britain and continen-
tal central Europe may have been indistinguishable. This could be 
due to a lack of statistical power to distinguish these closely related 
sources with standard methods, as well as through potential biases 
introduced by using modern surrogate populations that have since 
been influenced by later gene flow (such as gene flow into Britain). 
We illustrate this by replicating the analyses previously described6,7 
(Extended Data Fig. 8).

Similarly, a previous study has suggested that individuals at sites such 
as Kärda in southern Sweden carried ancestry from southern Europe6. 
In our models, two Kärda individuals fit with central European-related 
ancestry, but none of the individuals has a substantial proportion of 
ancestry related to southern European sources (Extended Data Fig. 9). 
Instead, we detect ancestry from southern European sources in only 
three individuals from Scandinavia, and in relatively small propor-
tions (Fig. 4a).

Interestingly, we detect ancestry from Bronze and Iron Age sources 
from Eastern Europe (present-day Lithuania and Poland), concentrated 
in southeastern parts of Sweden, particularly the island of Gotland  
(14 individuals; Fig. 4a). This is consistent with previous genetic 
studies6,7. We find that this ancestry is enriched in male individuals 
(Extended Data Fig. 7d), suggesting male-biased mobility and/or burial. 
The closest match tends to be Roman Iron Age Lithuanian genomes 
associated with Balts, which would be consistent with mobility across 
the Baltic Sea, but we caution that the geographical representation of 
available genomes is still limited.

Viking Age expansion from Scandinavia
Traditionally, historical perspectives on what is now often referred 
to as the Viking diaspora placed an emphasis on the movements and 
settlements of population groups from various parts of Scandinavia67. 
Our explorative MDS analysis again indicates mixed ancestries related 
to the Scandinavian EIA, with regional differences that point to varied 
local admixture (Fig. 4e and Extended Data Fig. 10).

In Britain, most of the individuals recovered from the two late Viking 
Age mass graves identified at Ridgeway Hill, Dorset, and St John’s 

College, Oxford6, show ancestries typical of those seen in Viking Age 
southern Scandinavia (Fig. 4f). Further west, North Atlantic Viking Age 
individuals in the Faroe Islands, Iceland and Greenland carry ancestry 
from the Scandinavian Peninsula, with several individuals showing the 
continental central Europe-related ancestry signal found in south-
ern Scandinavia (Fig. 4f) and others who share substantial ancestry 
with Iron Age Britain. In contrast to previous hypotheses68, we found 
a marginal enrichment of ancestry related to Britain and Ireland in 
men (15 out of 17 men and 3 out of 6 women with at least one accepted 
model involving Iron or Roman Age Britain as source; Fisher’s exact 
test P = 0.089) (Extended Data Fig. 7c,e). However, sampling of addi-
tional individuals to improve distinction between early English- and 
Norse-related ancestries would be required to fully test this hypothesis.

In eastern Europe, we observe EIA Scandinavian ancestries in a Viking 
Age burial from Ukraine, and these ancestries are overrepresented 
in Viking Age burials from present-day Russia. At Staraya Ladoga in 
western Russia, we observe several individuals with EIA Scandinavian 
Peninsula-related ancestry and at least one individual dated to the 
eleventh century with apparent ancestry related to Iron Age Britain. 
The relative absence of Iron Age central European ancestry, which was 
largely restricted to southern Scandinavia during the Viking Age, is thus 
indicative that these individuals may have originated in the central/
northern parts of Sweden or Norway, where Viking Age individuals 
show the most similar ancestry profiles to them.

Conclusions
Our approach, Twigstats, transfers the power advantage of haplotype- 
based approaches to a fully temporal framework, which is applica-
ble to f-statistics and enables previously unavailable unbiased and 
time-stratified analyses of admixture. We demonstrated that Twigstats 
enables fine-scale quantitative modelling of ancestry proportions, 
revealing wide-ranging ancestry changes that affect northern and  
central Europe during the Iron, Roman and Viking ages. We reveal evi-
dence of the southward and/or eastward expansion of individuals who 
probably spoke Germanic languages and who had Scandinavian-related 
ancestry in the first half of the first millennium ce. We note that 
‘Scandinavian-related’ in this context relates to the ancient genomes 
available, and so it is entirely possible that these processes were driven, 
for example, from regions in northern-central Europe. This could be 
consistent with the attraction of the greater wealth, which tended to 
build up among Rome’s immediate neighbours and may have played 
a major role in vectors of migration internal to communities in Europe 
who lived beyond the Roman frontier52. Later, patterns of gene flow 
seem to have turned northwards, with the spread of Iron Age Central 
Europe-related ancestry into Scandinavia. Overall, our approach can 
be used for the reconstruction of new high-resolution genetic histories 
around the world.
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Methods

Twigstats
Twigstats takes the Relate32 output format as input and allows the 
computation of f-statistics directly on genealogies, by using the 
inferred expected number of mutations on each branch as input, 
which is computed as the product of a prespecified average muta-
tion rate per base per generation, the branch length and the num-
ber of bases each tree persists43. Importantly, Twigstats computes 
f2-statistics ascertained by an upper date threshold, such that only 
branches younger than this threshold are used. If a branch crosses 
the threshold, we use only the proportion of the branch under-
neath the threshold. Twigstats additionally enables us to specify a 
minimum derived allele frequency and lower date threshold. Twig-
stats can also compute f2-statistics on age-ascertained mutations, 
which is particularly convenient for individuals not built into the  
genealogies.

The computed f2-statistics are fed into ADMIXTOOLS270 to com-
pute derived statistics. ADMIXTOOLS2 implements computation of 
genome-wide f2-, f3- and f4-statistics, as well as qpgraph and qpAdm 
models. We implement the sample size correction as detailed in ref. 21.  
The f2-statistics are computed in blocks, typically of prespecified cen-
timorgan size or of prespecified physical distance. These blocks are 
used downstream in ADMIXTOOLS2 to compute standard errors using 
a block-jackknife approach. By default, we compute f-statistics only 
on internal branches and exclude singleton tip branches to increase 
robustness against sample age.

The optimal Twigstats time cut-off is a priori unknown; however, we 
develop a theory that predicts the optimal choice in a simple two-way 
admixture as a function of the admixture date, source split time and 
admixture proportion (Supplementary Note). In this case, the optimal 
cut-off equals approximately 1.4 times the split time between admixing 
source groups, depending on exact parameters in the model (Fig. 1b,c 
and Extended Data Fig. 2).

Non-negative least squares ancestry modelling. We implement 
an approach that uses genealogies to emulate the chromosome 
painting technique of identifying closest genetic relatives along the  
genome1,2 to fit admixture weights. When applied to true genea
logies in simulations, this approach represents an idealized version of  
this idea.

We implement this function in Twigstats, which, given known assign-
ment of each sample to a population, identifies, at each position in 
the genome, the population with which a sample coalesces first. Our 
implementation takes a list of reference populations as input, such 
that any coalescences that do not involve these reference populations 
are ignored when traversing back in time through genealogical trees. 
If the first coalescence involves multiple different reference popula-
tions, this coalescence event will be assigned to each population with 
a weight proportional to the number of samples in each population 
involved in that event.

We then implement a second function in Twigstats to compute, for 
each target population and putative source populations, the propor-
tion of the genome ‘painted’ by each of the reference populations. 
Given k reference populations, we denote by ai the vector of length k 
storing these proportions for population i. We fitted our target popu-
lation as a mixture of putative source populations using a non-negative 
least squares approach that finds a solution to the optimization prob-
lem min || − ||Σ0≤ ≤1 target 2a Aββℓ , where A is a matrix storing ℓa  for puta
tive source populations as its column vectors with ℓ indexing source 
populations and β are non-negative mixture weights.

Admixture simulations. We use msprime71 to simulate genetic vari-
ation data to test our approach. All simulation scripts are available at 
https://github.com/leospeidel/twigstats_paper.

f4-ratio admixture simulation. Our simulation in Fig. 1b and Extended 
Data Fig. 3b simulates five populations named PI, PO, P1, P2 and PX, 
where PO splits from all other populations 10,000 generations ago, P1 
and P2 represent two proxy source groups that split from each other at 
250 generations or 500 generations ago, PI splits from P1 100 genera-
tions ago and PX emerges from a pulse admixture between P1 and P2 
50 generations ago. All populations have a constant diploid population 
size of 5,000, a variable human-like recombination map, in which our 
simulation only covers chromosome 1, and a human-like mutation rate 
of 1.25 × 10−8 mutations per base per generation. We additionally have 
a modified simulation with a lower mutation rate of 4 × 10−9 mutation 
per base per generation, emulating a transversions-only dataset, and a 
simulation in which P2 has a diploid population size of 1,000 in the last 
50 generations, emulating a recent bottleneck in this population. We 
sample 20 haploid sequences from all populations. The ‘large sample 
size’ simulation samples 100 haploid sequences from all populations.

f4-ratio admixture simulation with genotype and phasing errors. 
We emulate the data quality we expect in imputed ancient genomes 
(Extended Data Fig. 3b). We implement a simple error model in which 
every haploid genotype at any segregating site can switch with a certain 
error probability. We can theoretically compute the predicted squared 
correlation coefficient (r2) between the true simulated genotypes and 
the genotypes that include error, stratified by minor allele frequency, 
to generate a plot similar to those used for evaluating imputation accu-
racy using downsampled high-coverage ancient genomes72 (Extended 
Data Fig. 3a). As imputation accuracy varies for each individual in real 
settings, we randomly sample the error probability for each individual 
uniformly between 1 × 10−4 and 1 × 10−3 (errors per SNP per haplotype). 
This yields r2 curves that are comparable to those observed in real data. 
We additionally simulate a high error case, for which we sample error 
probabilities between 1 × 10−3 and 1 × 10−2.

In real settings, we are additionally required to computationally 
phase genomes. We emulate this by combining two haploid sequences 
to construct a diploid individual. We then computationally rephase 
these diploid individuals without a reference panel. This approach is 
expected to result in suboptimal phasing and should therefore be well 
suited to test robustness to phase-switch errors.

qpAdm simulation. Our simulation in Extended Data Fig. 3c uses the 
simulation model and script provided with ref. 23, although we changed 
this script to use the human hotspot recombination map. We simulate 
only chromosome 1. In the original simulation model, admixing sources 
split 1,200 generations ago, with admixture occurring 40 generations 
ago. We additionally simulate a version in which all population split 
times and admixture times are reduced by a factor of 5. We sample 20 
haploid sequences per population.

Stepping-stone separation by distance simulation. We adapt the 
simulation model provided previously23 to simulate a stepping-stone 
model of nine populations organized on a 1D grid, in which individu-
als are able to migrate between adjacent populations (Extended Data 
Fig. 3d). We changed this script to use the human hotspot recombina-
tion map and simulate only chromosome 1. We simulate under migra-
tion rates of 0.001 and 0.005, corresponding to average FST values of 
0.01 and 0.002, respectively23. We sample 20 haploid sequences per 
population. We then fitted population 4 using pairs of other popu-
lations as sources in a rotational qpAdm scheme such that unused 
populations are assigned to the reference set.

We expect that this simulation model violates qpAdm assumptions 
of no (or limited) gene flow after admixture between sources and ref-
erence groups. Consistent with this idea, qpAdm models are rejected 
(P = 4 × 10−38 for migration rates of 0.001 and P = 5 × 10−8 for migration 
rates of 0.005) when using Twigstats with a cut-off of 1,000 genera-
tions. However, these are not rejected using regular qpAdm, including 
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when migration rates are high (and, therefore, FST is low), indicating 
that Twigstats is better powered to detect such scenarios of continued 
migration. Encouragingly, a model that involves the two immediately 
adjacent populations is selected in all replicates as the ‘best’ model 
(highest qpAdm P value) using Twigstats, whereas this is the case in 
only 80% (migration rate of 0.001) and 30% (migration rate of 0.005) 
of all replicates using regular qpAdm.

Neanderthal admixture and deep structure simulation. Our simula-
tion in Extended Data Fig. 5d emulates Neanderthal admixture, in which 
Neanderthals and ancestors of modern humans split 25,000 genera-
tions ago and admixture occurs 2,000 generations ago. The resulting 
admixed non-African-like population coexists with the non-admixed 
African-like population until the present day. Furthermore, two  
Neanderthal populations split from each other 7,000 generations ago, 
which can be interpreted as emulating the Altai and Vindija Neanderthal 
populations, with Vindija being closer to the admixing source.

We simulate an alternative model with two subgroups emulating 
ancestral modern humans in Africa that have a non-zero symmetric 
migration rate, ranging from 4 × 10−5 to 2 × 10−4 per generation, up until 
3,000 generations before present. One of these subgroups gives rise 
to a present-day African-like population, while the other gives rise to 
a present-day non-African-like population. We further sample two 
Neanderthal populations that split 7,000 generations ago and merge 
25,000 generations ago with the same ancestral modern human sub-
group that will eventually give rise to a non-African-like population.

We simulate whole genomes with human-like recombination rates 
and a mutation rate of 1.25 × 10−8 mutations per base per generation. 
Diploid effective population sizes are set to 10,000 except on the 
Neanderthal lineage, in which it is set to 3,000. We sample 2 haploid 
sequences for each Neanderthal population and 20 haploid sequences 
for the target admixed population and African non-admixed population.

Fine-scale structure simulation. Our simulation in Extended Data 
Fig. 5a emulates the emergence of a fine-scale population structure 
and is adapted from ref. 39. In this simulation, populations split 100 
generations ago into 25 subpopulations followed by a period in which 
individuals are allowed to migrate at a rate of 0.01 between adjacent 
populations in a 5 × 5 grid. The diploid effective population size is 500 
in each of the 25 populations, and 10,000 in the ancestral population. 
We simulate ten replicates of chromosome 10, with a human-like muta-
tion rate of 1.25 × 10−8 and hotspot recombination map. We sample two 
diploid individuals from each population. Furthermore, we sample 100 
individuals from an ancestral population that splits from the 25 target 
populations 100 generations ago, before the emergence of structure 
in these 25 populations. Relate trees are inferred assuming true muta-
tion rates, recombination rates and average coalescence rates across 
all samples.

Ancient sample selection. A full list of ancient genomes can be found 
in Supplementary Table 1. Published ancient shotgun genomes pro-
vided by refs. 7,8 were only available aligned against the GRCh38 refer-
ence sequence. These data were realigned to the GRCh37d5 reference 
sequence using bwa aln (v. 0.7.17-r1188).

We select genomes with average autosomal coverage above 0.5×, 
except for VK518, which has previously been suggested to be of Saami 
ancestry6 and which had a coverage of 0.438. We included VK518 in 
our panel to capture this ancestry. Genomes above a coverage cut-off 
of 0.5× have previously been shown to result in reliable imputation 
results72. We exclude samples with evidence of contamination. We 
remove any duplicate individuals, such as individuals who were rese-
quenced, choosing the file with the highest coverage. We then filter 
out any relatives annotated in the Allen Ancient DNA Resource v. 54.127, 
retaining the individual with the highest coverage in each family clade.

Our final dataset includes 1,556 ancient genomes.

Imputation of ancient genomes. We follow the recommended pipeline 
of GLIMPSE73 and first call genotype likelihoods for each genome in 
the 1000GP, segregating sites using bcftools mpileup with filter -q 20,  
-Q 20 and -C 50. We subsequently impute each genome separately using 
GLIMPSE v. 1.1.1 using the 1000GP phase 3 reference panel74 downloaded 
from https://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/. 
These imputed genomes are merged into a single VCF (variant call 
format) for further downstream processing.

We filter any site for which more than 2% of sites have an imputation 
posterior of less than 0.8 and retain all remaining sites so as not to have 
any missing genotypes at individual SNPs.

Relate-inferred genealogies. We merge imputed ancient genomes 
with a subset of the 1000GP dataset, including all European popula-
tions (CEU, Utah residents with northern and western European ances
try; CHB, Han Chinese in Bejing, China; FIN, Finnish in Finland; GBR, 
British in England and Scotland; BS, Iberian populations in Spain; TSI, 
Toscani in Italy, YRI, Yoruba in Ibadan, Nigeria). We create a second 
dataset in which we merge imputed genomes with the Simons Genome 
Diversity Project75 (SGDP) downloaded from https://sharehost.hms.
harvard.edu/genetics/reich_lab/sgdp/phased_data2021/. These two 
datasets contain, respectively, a total of 2,270 and 1,834 modern and 
ancient individuals.

We then infer genealogies for the joint dataset of ancient and modern 
genomes using Relate v. 1.2.1. We restrict our analysis to transversions 
only and assume a mutation rate of 4 × 10−9 mutations per base per gen-
eration and input sample dates as shown in Supplementary Table 1. We 
use coalescences rates pre-inferred for the 1000GP and SGDP datasets.

MDS analysis. We compute f2-statistics using the Twigstats function 
f2_blocks_from_Relate between all pairs of individuals and between all 
individuals and an outgroup (Han Chinese people in SGDP) using the 
Relate genealogies of SGDP modern and imputed ancient genomes. 
We set the argument t to specify a time cut-off and set the argument 
use_muts to FALSE to compute these f-statistics on branches of the 
genealogy and to TRUE to compute these only on the mutations. We 
use these to compute f3(outgroup, indiv1, indiv2) = 0.5 × ( f2(outgroup, 
indiv1) + f2(outgroup, indiv2) − f2(indiv1, indiv2)) for every pair of indi-
viduals, and store 1 − f3(outgroup, indiv1, indiv2) in a symmetric N × N  
matrix (where N is the number of individuals) for which we then  
compute an MDS using the R function cmdscale.

qpAdm modelling. In brief, qpAdm models are a generalization of 
f4-ratios, for which one-, two- and three-source models can be tested as 
hypotheses and admixture components and their s.e. obtained with a 
block jackknife13. A qpAadm model is fully specified by a set of putative 
source groups and additional ‘outgroups’ that are used to distinguish 
source ancestries. We used a rotating approach in which we itera
tively selected a subset of source groups and used all remaining puta-
tive sources as outgroups. This approach penalizes models where true 
contributing sources are used as outgroups. With sufficient statistical 
power, qpAdm models will be statistically rejected if true contributing 
sources are used as outgroups. If statistical power is more limited, 
several models will fit the data, but the correct model is expected to 
be preferred over wrong models. Throughout, we use the Relate gene-
alogies of SGDP modern and imputed ancient genomes in our qpAdm 
modelling and first compute f2-statistics using the Twigstats function 
f2_blocks_from_Relate between all populations involved, which we then 
feed to the ADMIXTOOLS2 package70.

Clustering using qpwave. To overcome challenges with hand-curating 
source groups used in qpAdm modelling, we follow ref. 5 and run  
qpwave using Twigstats between pairs of ancient individuals. We use 
Han Chinese individuals from Beijing and five European populations 
from the 1000GP as reference groups. This approach tests whether two 
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individuals form a clade with respect to reference groups. The reason 
why this is a principled approach despite the 1000GP groups post-dating 
the ancient individuals is that if a group of ancient individuals are truly 
homogeneous, they will be so also with respect to later individuals.

We then define clusters by running UPGMA (unweighted pair group 
method with arithmetic mean) on −log10[P values] obtained from 
qpwave between all pairs of individuals and cut the resulting dendro-
gram at a height corresponding to a P value of 0.01. We then further 
subdivide clusters by requiring all samples to be within 500 years of 
the mean cluster age.

To choose the source groups shown in Fig. 2a and Extended Data 
Fig. 1d, we run this algorithm on samples from Iron and Roman Age 
Europe (Supplementary Table 1). We retain groups that have at least 
three individuals and, therefore, exclude clusters of size one or two.

This approach results in two clusters in the Scandinavian Penin-
sula, approximately separating northern from southern Scandinavia, 
three clusters in Poland and Ukraine that separate samples tempo-
rally between the early and later Bronze Age, a cluster combining the 
Hungarian Scythian and Slovakian La Tène-associated individuals, 
and a cluster each for Iron and Roman Age Portugal, Italy and Lithu-
ania. In present-day Austria, Germany and France, this approach 
identifies three clusters, with each cluster spanning multiple archae-
ological sites in different countries, indicating genetic diversity in 
this region in the first millennium ce. Encouragingly, these clusters 
separate in our non-parametric MDS analysis (Fig. 2a), indicating that 
we are capturing real genetic differences between groups using this  
approach.

Fine-scale structure in Neolithic Europe. To quantify fine-scale struc-
ture in Neolithic Europe (Extended Data Fig. 5b), we aimed to select 
individuals in Neolithic Europe who have not yet been affected by the 
arrival of Steppe ancestry and do not show excess hunter-gatherer 
ancestry. We infer distal ancestry sources using Balkan_N, Yamnaya and  
Western Hunter-gatherers as source groups and reference groups  
according to a previously proposed qpAdm setup46 (Supplementary 
Table 1). For this analysis, we infer ancestry using qpAdm applied to  
1.2 million SNP sites of imputed genomes. We retain only Neolithic 
individuals with P > 0.01, z < 2 for Yamnaya ancestry, and z < 2 or  
proportion <0.25 for Western Hunter-gatherer ancestry.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
All aDNA data used in this study were publicly available, and accession 
codes are listed in Supplementary Table 1.

Code availability
Twigstats is freely available under an MIT licence through GitHub 
(https://github.com/leospeidel/twigstats), and detailed documenta-
tion, as well as example data, is available at https://leospeidel.github.
io/twigstats/. The code has also been deposited at Zenodo (https://
zenodo.org/records/13833120)76. All scripts to reproduce simulations, 
and to run Relate on imputed ancient genomes, and downstream 
analyses, including computation of f-statistics and running qpAdm 
models, are available through GitHub (https://github.com/leospeidel/ 
twigstats_paper).
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Extended Data Fig. 1 | Collection of ancient genomes used in this study.  
a, Ancient DNA samples included in this study (Supplementary Table 1). Samples 
older than 3000 BCE are shown at 3000 BCE. b, Map showing mean coordinates 
of groups in the Iron, Early Modern, and Viking Ages. c, Source groups used in 
qpAdm modelling of Metal Age and early Medieval Europe (Figs. 2, 3 and 4), 

showing sample ages. Sample sizes are shown in grey boxes. d, FST between 
Metal Age and early Medieval groups computed using popstats77 using options 
--FST --informative. Sample sizes are shown in brackets and we show one 
standard error.



Extended Data Fig. 2 | Twigstats optimal cutoff. a, Theoretically computed 
z-score of f4(PO,P1,PX,P2) at a single genomic locus (Supplementary Note), 
assuming PX is admixted between P1 and P2 at time 0.004 (in units of 2Ne 
generations), e.g. corresponding to 100 generations with 2Ne of 25,000. 
Sources split at time 0.02. b, The theoretical fold-improvement of the best 
Twigstats z-score of f4(PO,P1,PX,P2) relative to the z-score obtained with 

regular f4-statistics. We use the same parameters as in a, but vary source split 
times to illustrate the improved power for mixtures involving more closely 
related groups. c, The optimal Twigstats cutoff time as a function of the source 
split time and the ratio between the optimal cutoff time and source split time. 
d, Comparison of z-scores computed using Twigstats to the corresponding 
theoretical values shown in a.
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Extended Data Fig. 3 | Simulations. a, Theoretically computed r2 stratified  
by minor allele frequency between true genotypes and genotypes with 
randomly introduced errors (Methods), emulating imputation accuracy plots. 
b, Admixture simulation where sources P1 and P2 split 250 or 500 generations 
ago and a pulse admixture event gives rise to a target population PX 50 
generations ago. We vary demographic history, error rates, and sample sizes 
and simulate 20 replicates for each scenario (see Methods for simulation 
details). Admixture proportions are computed using an f4-ratio statistic and the 
Twigstats cutoff is set to twice the source split time and the rare variant cutoff 
is 5%. We plot two standard errors around the mean. c, qpAdm simulation taken 
from21,23, as well as an adapted version where all population split times and  
the admixture date are divided by 5. The Twigstats cutoff time is chosen to be 

1200 generations (top) and 600 generations (bottom). We simulate 10 replicates 
and plot two standard errors around the mean. d, Simulation adapted from23 of 
a stepping stone model with 9 populations organised on a 1-dimensional grid as 
shown, where individuals are able to migrate between adjacent fields. We run a 
rotational qpAdm to fit population 4 using other pairs of populations to the left 
and right as sources. We run 50 replicates and set the p-value of models with 
inferred proportions outside of [0,1] to 0. We then compute the proportion 
where a given pair achieves the best p-value (top) and show the median p-value 
across these replicates (bottom). In all simulations in b, c, d, we sample N = 20 
haploid sequences per population, except for one simulation in b, where we 
sample N = 100 sequences.



Extended Data Fig. 4 | Relationship of mutation age and MAF. a, Heatmap 
showing the distribution of mutation ages for each minor allele frequency 
(MAF) bin. To account for the uncertainty in when the mutation arose on a 
branch, we sample a random date between the lower and upper ends of the 
branch onto which it maps. We use 20 replicates of the simulation of Fig. 1b, 
where sources split 500 generations ago and the admixture proportion is 0%.  
b, Same as a but using mutation ages determined by Relate-inferred genealogies. 

We place mutations at the same relative height between the lower and upper 
ends of a branch as in the true trees to remove the uncertainty in when on the 
branch the mutation occurred, so that we would recover the true allele age 
from a correctly inferred genealogy. c, Pearson correlation between MAF, true 
mutation age, and Relate mutation ages, as well as the same comparisons when 
restricting to mutations of MAF less than 0.1.
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Extended Data Fig. 5 | Three examples of applying Twigstats. a Fine-scale 
population structure simulation emulating ref. 39 (see Methods for simulation 
details). First two principal components are computed from pairwise outgroup 
f3 statistics on the genotypes directly and on Relate trees inferred from the  
50 target individuals. Labels in plots show the average coordinates of members 
of that population. For each panel, we calculate a separation index (SI) as in39, 
which we define as the proportion of individuals for which the closest 
individual (by the Euclidean distance in PC space) is in the same population.  
b, Fine-scale genetic structure in Neolithic Europe quantified using an MDS 
calculated on a symmetric matrix that contains all pairwise outgroup f3 
statistics (outgroup: YRI) between individuals. These are either calculated 
directly on genotypes or calculated using Twigstats on Relate genealogies  
with a cutoff of 1000 generations. Individuals were selected by filtering based 
on Steppe and Western Hunter-gatherer ancestry (Methods). c, Admixture 
proportions inferred using qpAdm with three distal sources of Western 

Hunter-gatherers, early European farmers, and Yamnaya Steppe people46.  
We show results for Twigstats-5000. Bias is measured as the difference in 
admixture proportions obtained from Twigstats-5000 and all SNPs, and  
we show standard errors of the latter. We plot two standard errors around  
the mean. The standard error improvement shown is one minus the ratio of 
standard errors obtained from Twigstats-5000 and using all SNPs. d, Neanderthal 
admixture proportion inferred using an f4-ratio of the form f4(outgroup, Altai, 
target, Mbuti)/f4(outgroup, Altai, Vindija, Mbuti). We compute these on genetic 
variation data from the Simon’s Genome Diversity Project (SGDP)75 and use the 
high-coverage Altai and Vindija Neanderthals78,79. We also compute equivalent 
f4-ratio statistics in a simulation emulating Neanderthal admixture 50,000 years 
ago and a second simulation involving no Neanderthal admixture but deep 
structure that leads to a similar inference unless deep coalescences are ignored 
by Twigstats. We plot two standard errors around the mean.



Extended Data Fig. 6 | MDS of ancient and modern genomes. a, Same MDS as 
in Fig. 2 but only showing qpAdm source groups of Fig. 2a and modern groups 
in the Simons Genome Diversity Project (labelled) computed using genotypes 

(top) or Twigstats (bottom). b, MDS computed using genotypes showing one 
early medieval or Viking age group per facet. c, MDS computed using Twigstats 
showing one early medieval or Viking age group per facet.
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Extended Data Fig. 7 | Ancestry estimates stratified by genetic sex. a, Map 
showing ancestry carried by each Scandinavian Viking age individual. b, Ancestry 
proportions across individuals grouped by Latitude and genetic sex. c, Odds 
ratio and p-values calculated using a two-sided Fisher’s exact test on the number 
of males and females carrying each ancestry in Viking Age Denmark, Sweden, 
Norway, Iceland, and Gotland. d, F4 values of the form f4(Scandinavian_Peninsula_ 
EIA(I), alternative source group, males in Viking group, females in Viking group) 
computed using all SNPs and Twigstats. A significantly positive value is 

evidence of attraction of females with pop2 or males with Scandinavian_
Peninsula_EIA(I). Number of males and females is shown in each facet title and 
we restrict to groups with at least four males and females. We plot one standard 
error. e, Map showing ‘farflung’ Viking individuals grouped by ancestry and 
genetic sex. In contrast to Fig. 4a and d where we showed results for the ‘best’ 
qpAdm model, here in panels a, b, c, and e, an individual is assigned an ancestry 
group, if it has any accepted model (p > 0.01) where that ancestry features.



Extended Data Fig. 8 | Replication previous Viking Age ancestry modelling. 
a, P-values of 1-source qpAdm models with target groups shown as rows and 
source groups shown as columns, replicating Extended Data Fig. 5a of ref. 6 
Left column uses p-values obtained from ref. 6. Middle and right column 
correspond to newly computed p-values in a qpAdm using, respectively, all 
SNPs and Twigstats-2000. Outgroups are YRI, CHB, DevilsCave_N.SG, WHG, 
EHG, Anatolia_N, Yamnaya, Estonia_CordedWare.SG (Supplementary Table 1). 
We excluded Denmark_IA.SG and England_Roman.SG from the rotational 
scheme as these groups overlap in ancestry with England_IA.SG and Norway_IA, 
respectively. Only samples with coverage exceeding 0.5 are used. For each target 
group, the source group with the largest p-value is shown with a black circle.  

b, qpAdm models of ref. 7 where modern populations are used as sources.  
As in ref. 7, we show ancestry proportions averaged over individuals in each 
group, where for each individual the model with the smallest number of 
sources and largest p-value is chosen. c, Replication using the same target 
samples as in b. We fit a maximum of two sources and choose the model with 
the smallest number of sources and largest p-value, requiring p > 0.01 for  
1 source and p > 0.001 for 2 source models. The set of individuals used in b and c 
are identical and are comprised of targets with an accepted model in all SNPs 
and Twigstats-1000, removing 15 of 167 individuals. We additionally remove 17 
individuals that did not have a feasible model in ref. 7.
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Extended Data Fig. 9 | Ancestry models of Viking Age individuals in 
Scandinavia. a, MDS of each Scandinavian Viking group plotted on top of 
preceding Iron age and Roman individuals. b, All accepted qpAdm models using 
Twigstats-1000 for every Scandinavian Viking individual in Denmark, Sweden, 
and Norway, computed in a rotational qpAdm with source groups identical to 
Fig. 4. We only retain models with feasible admixture proportions, standard 
errors of <0.25, and show models with 1 source and a p-value greater than 0.01 

or otherwise with 2 sources and a p-value greater than 0.01. If several models 
satisfy p > 0.05, we show all such models, otherwise we select the model with 
the largest p-value. The -log10 p-values are shown to the left of each model.  
We combine models involving related sources, if they exist, by averaging their 
respective admixture proportions, standard errors, and p-values. We plot one 
standard error.



Extended Data Fig. 10 | Ancestry models of farflung Viking individuals.  
a, MDS of each farflung Viking group plotted on top of preceding Iron age and 
Roman individuals. b, All accepted qpAdm models using Twigstats-1000 for 

every non-Scandinavian Viking individual computed in a rotational qpAdm 
with source groups identical to Fig. 4. We plot one standard error.
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