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Many known and unknown historical events have remained below detection thresholds
of genetic studies because subtle ancestry changes are challenging to reconstruct.
Methods based on shared haplotypes'?and rare variants>* improve power but are not
explicitly temporal and have not been possible to adopt in unbiased ancestry models.
Here we develop Twigstats, an approach of time-stratified ancestry analysis that can
improve statistical power by an order of magnitude by focusing on coalescences in
recent times, while remaining unbiased by population-specific drift. We apply this
framework to 1,556 available ancient whole genomes from Europe in the historical
period. We are able to model individual-level ancestry using preceding genomes to
provide high resolution. During the first half of the first millennium CE, we observe
atleast two different streams of Scandinavian-related ancestry expanding across
western, central and eastern Europe. By contrast, during the second half of the first
millennium CE, ancestry patterns suggest the regional disappearance or substantial
admixture of these ancestries. In Scandinavia, we document amajor ancestry influx
by approximately 800 CE, when alarge proportion of Viking Age individuals carried
ancestry from groups related to central Europe not seen in individuals from the early
Iron Age. Our findings suggest that time-stratified ancestry analysis can provide a
higher-resolution lens for genetic history.

Ancient genome sequencing has revolutionized our ability to recon-
struct expansions, migrations and admixture eventsin the ancient past
and understand their impact on human genetic variation today. How-
ever, tracing history using genetic ancestry has remained challenging,
particularly in historical periods for which the richest comparative
information from history and archaeology often exists. Thisisbecause
ancestries in many geographical regions are often so similar as to be
statistically indistinguishable with current approaches. One example is
northernand central Europe since the start of the Iron Age around 500
BCE, a period for which many long-standing questions remain, such as
the nature of large-scale patterns of human migration during the fourth
tosixth centuries CE, theirimpact on the Mediterranean world and later
patterns of humanmobility during the Viking Age (around 750-1050 CE).

Several recent studies have documented substantial mobility and
genetic diversity in these time periods, suggesting stable population
structure despite high mobility’, and have revealed genetic variation
in Viking Age Scandinavia® %, early medieval England®®, early medieval
Hungary'®" and Iron Age and medieval Poland™. However, previous
studies mostly used large modern cohorts to study ancestry change
through time and space. This is because the differentiation between
Iron Age groupsin centraland northern Europeis an order of magnitude
lower (fixation index (Fs;) = 0.1-0.7%; Extended Data Fig. 1) than, for
example, the more commonly studied hunter-gatherer, early farmer
and steppe-pastoralist groups that shaped the ancestry landscape of

Stone Age and Bronze Age Europe® ¢ (Fs; = 5-9% (refs.13,17)). Modern
populations provide more power to detect differences, but their genetic
affinity to ancient individuals may be confounded by later gene flow,
thatis, after the time of the ancient individual(s)'®. The most principled
approach is thus to build ancestry models in which source and ‘out-
group/reference’ populations are older than, or at least contemporary
with, the target genome or group that we are trying to model™. However,
this has been challenging, due to the limited statistical power offered
by the thousands-fold lower sample sizes and reduced sequence qual-
ity of ancient genomes.

Reconstructing genetic histories and ancestry models from ancient
DNA (aDNA) data commonly uses methods based on f-statistics™'* 22,
Their popularity is rooted in a number of favourable properties, such
as enabling analyses of lower-quality aDNA data, relative robustness
toascertainment and theoretical guarantees of unbiasedness, includ-
inginthe presence of population bottlenecks™*. Approaches derived
from f-statistics, such as qpAdm’, are close to unique in enabling the
unbiased fitting of admixture models, including identifying the num-
ber of such events and the closest representatives of sources'>*?,
However, f-statistics have not always had sufficient power to recon-
struct events that involve closely related ancestries, despite increas-
ing sample sizes®?*. Methods that identify haplotypes, or shared
segments of DNA that are not broken down by recombination, have
previously been shown to have more power than those using individual
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Fig.1| Twigstats performance onsimulated data. a, Adiagram of the Twigstats
approach. Wefirst construct genealogies from genetic variation dataand
then use Twigstats to compute f,-statistics between pairs of groups tobe
used by ADMIXTOOLS2. b, Admixture proportions inferred from anf,-ratio
statistic or non-negative least squares method. Source groups P1and P2 split
250 generations ago and mix 50 generations ago, where P2 contributes
proportion aand P1contributes1-a. Effective populationsizes areequaland
constant except forarecentbottleneckinP2 (see Methods for simulation
details). The Twigstats cut-offis set to 500 generations, the rare variant cut-off
issetto 5%, and we additionally infer admixture proportions by generating
‘first coalescence profiles’ for each population and modelling PX as a mixture

single-nucleotide polymorphism (SNP) markers, but this informa-
tion has not been accessible in combination with the advantages of
[f-statistics***>2¢, Furthermore, the overwhelming majority of available
aDNA is from a panel of 1.2 million SNPs?, and few clear advantages
have been demonstrated for analysis of the more than 50 million SNPs
available with whole-genome shotgun data.

One class of methods that use haplotype information is full genea-
logical tree inference?®?, which can now readily be applied to many
thousands of modern and ancient whole genomes®**~*, Such meth-
ods have been successfully applied to boost the detection of positive
selection®?¢%8 populationstructure®***5*, geographical locations of
ancestors>**°, demography®*?and mutationrate changes™. Genealogi-
cal trees canbe thought of as containing essentially full, time-resolved
information about genetic ancestry, including information typically
captured by recent haplotype sharing or identity by descent. Genetic
ancestry here refers to the full collection of genetic ancestors of indi-
viduals*, and genealogical trees reveal how and when these are shared
acrossindividuals. By contrast, rare variant ascertainment, haplotypes
or chromosome blocks can be thought of as subsets or summaries of
the information available in genealogies.

Here, we propose an approach that we refer to as ‘time-stratified
ancestry analysis’ to boost the statistical power of f-statistics
several-fold by using inferred genome-wide genealogies (Fig.1a) and
apply our method to reconstruct the genetic history of northern and
central Europe from around 500 BCE to 1000 CE.

=8= Twigstats mutations (Relate)

of sources P1and P2 using non-negative least squares (NNLS) (Methods).
Wesample 20 haploid sequences from each population. Dataare mean = 2s.e.
around the point estimate. ¢, The fold improvement of s.e. relative to the
genotype case as afunction of the Twigstats cut-offtime, for the same simulation
asinbandaveraged acrossdifferent true admixture proportions. The dashed
line shows the best fold improvement of s.e. when ascertaining genotypes by
frequency, when evaluated at different frequency cut-offs.d, The optimal
Twigstats cut-off, defined as thelargest reductionins.e. relative to the genotype
case,asafunction of sourcesplit time in simulations using true trees. The dashed
lineindicates our theoretical prediction (Supplementary Note).

Genealogiesimprove ancestry modelling

By definition, f-statistics count the occurrence of local genealogical
relationships that are implied by how mutations are shared between
individuals**. Thisinherent relationship between f-statistics and local
genealogies makes it straightforward to compute f-statistics directly on
inferred genealogies®. Instead of computing f-statistics on observed
mutations, they are now calculated on the inferred branches of these
genealogies, some of which may not be directly tagged by mutations
butareinferred by resolving the local haplotype structure (Methods).
We develop mathematical theory and simulate a simple admixture
model,inwhichthe ancestry proportionis constrainedinasingleratio of
twof,-statistics”, to test this approach (Fig.1b and Supplementary Note).
While unbiased, we find that using f-statistics computed on genealogies
by itself does not yet yield a large improvement in statistical power to
quantify admixture events. However, we show, through both theoretical
prediction and simulation, that large improvements in power can be
gained without bias by restricting torecent coalescences, which are most
informative for recent admixture events (Fig. 1c,d and Extended Data
Figs. 2 and 3). We show that coalescences older than the time of diver-
gence of the sources carry noinformation with respect to the admixture
event and only add noise to the f-statistics. Excluding these therefore
increases statistical power, without introducing bias, in principle.
Weimplement thisidea of studying the ‘twigs’ of gene treesinatool,
Twigstats (Fig.1aand Methods), which we demonstrate in simulations
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reduces standard errors (s.e.) by up to tenfold and potentially more,
depending onsample sizes and details of the genetic history model. The
approach does not produce detectable bias in estimates of admixture
proportions (Fig. 1b—-d and Extended Data Fig. 3). Furthermore, we
demonstrate that computing f-statistics on genotypes ascertained
for young mutation ages produce a power gain nearly equal to that
produced when using full genealogies in many examples, while add-
ing flexibility by allowing lower-quality genomes to be grafted onto a
genealogy reconstructed with higher-quality genomes®.

We further confirm with simulations that genealogy-based f-statistics
estimates are robust to sequencing and phase-switch errors of expected
magnitude (Extended Data Fig. 3b). Infact, although sequence errors
can affect SNP-based population-genetic approaches substantially,
errors can be ‘corrected’ in genealogies as they take all variantsina
regionintoaccount®.

Previous studies have suggested ascertaining rare mutations as a
proxy for recent history**, but we show that this approach s prone to
bias when effective population sizes vary between populations, and
that using full time-restricted genealogies is both unbiased and more
powerful (Fig. 1b and Extended Data Fig. 3). We attribute this to the
observation that mutation age is not fully predictive of allele frequency
(Extended Data Fig. 4) and that the genealogy-based approach gains
power from the inclusion also of higher-frequency young mutations
that ‘tag’ recent coalescences by closely pre-dating them. We demon-
strate that a widely used ‘chromosome painting’ approach, and any
conceptually similar modelling based onidentity by descent, that finds
the nearest neighbours between chromosomal segments inasample
and model groups using anon-negative least squares of genome-wide
painting profiles?is also prone to bias, when source groups have under-
gone strong drift since the admixture event (Fig. 1band Extended Data
Fig.3b).

We next test the Twigstats time-restricted genealogy approach
on arange of empirical examples. First, we boost pairwise outgroup
f>-statistics* to quantify fine-scale population structure; we demon-
strate this improvement using a previously proposed simulation®
(Extended Data Fig. 5a). When applied to published genomes from
Neolithic Europe (Methods and Supplementary Table 1), we can repli-
cate the previously suggested fine-scale structure between individuals
buried in megalithic structures in Ireland compared with others*, a
relationship that is not apparent from SNP data alone (Extended Data
Fig.5b). For the well-studied example of three major ancestries contrib-
utingto prehistoric Europe, that is, Mesolithic hunter-gatherers, early
farmers and steppe populations®, we obtain unbiased estimates and
an approximately 20% improvement in standard errors in an already
well-powered gpAdm model*® (Extended Data Fig. 5¢).

Finally, we demonstrate that Twigstats can be used to resolve com-
peting models of punctual admixture and long-standing gene flow, or
constrain the time of admixture. For instance, it has previously been
suggested that long-standing deep structure and gene flow between
Neanderthals and early modern humans in Africamay produce genetic
patternsthat resemble a punctual admixture event some 60,000 years
ago**, casting doubt on the model of Neanderthal admixture into
ancestors of Eurasians* ', However, whereas such long-standing deep
substructure would confound SNP-based f-statistics to produce pat-
terns similar to Neanderthal admixture, we demonstrate, in simula-
tions, that Twigstats can clearly distinguish this history from recent
admixture (Extended Data Fig. 5d). Application of Twigstats on empiri-
calwholegenomes producesresultsinconsistent with deep substruc-
ture alone, but consistent with punctual admixture.

Ancestry models of early medieval Europe

Having demonstrated that the Twigstats approach can effectively
improve resolution and statistical power to test ancestry models and
estimate proportions, we turnto the history of early medieval Europe.
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In the first half of the first millennium Cg, Roman historians such as
Tacitus and Ammianus Marcellinus described the geographical dis-
tribution and movements of groups beyond the imperial frontier and
suggested a potential role for them in the fall of the western Roman
Empire®2. However, the exact nature and scale of these historically
attested demographic phenomena—and their genetic impact—
have been questioned*®?, and have been difficult to test with genetic
approaches owingto the close relations shared between many groups
that were ostensibly involved. Less is understood at further distances
from the Roman frontier owing to a lack of historical accounts. The
improved statistical power of time-restricted ancestry in Twigstats
thus offers an opportunity to revisit these questions.

Todevelop anancestry model for early medieval individuals (Supple-
mentary Table 1), we first need abroad characterization of the ancestry
oftheearlier sources fromthe early Iron Age (EIA) and Roman periods.
We use hierarchical UPGMA clustering based on pairwise clade testing
between all individuals, and formally test the cladality of proposed
ancestry groups with gqpWave’® (cladality in this sense means whether
they are consistent with being symmetrically related to all other tested
groups; Methods). This resulted in a set of model ancestry sources
thatincluded Iron Age and Roman Britain (n =11), the Iron Age of cen-
tral Europeanregions of mostly Germany, Austriaand France (n=10),
Roman Portugal (n =4), Romanltaly (n =10), Iron Age Lithuania (n =5),
the EIA Scandinavian Peninsula (Sweden and Norway, n =10) and several
other more eastern groups dating to the Bronze Age and EIA (n =25)
(Fig. 2a and Extended Data Fig. 1). We then use a rotational gpAdm
approach® to narrow down the set of contributing sources from this
larger pool of putative sources.

We additionally perform non-parametric multidimensional scaling
(MDS) on outgroup-f; statistics** computed using Twigstats, the results
of which do not depend on any modelling assumptions and which show
increased resolution compared with conventional outgroup-f; sta-
tistics (Fig. 2a,b, Extended Data Fig. 6 and Supplementary Table 2).
Encouragingly, the MDS model supports regional fine-scale genetic
structures reflected in our source groups, such as the separation of
predominantly Norwegian and northern Swedish EIAindividuals from
southern Peninsular Scandinavia (Fig. 2a); this relationship is not
detected without Twigstats. In this MDS analysis, we note a close affinity
of wide-ranging individuals from Portugal, France, Germany, Austria
and Britain. We hypothesize that this corresponds to areas associated
with the Celtic-speaking world, and that their close genetic affinity is
due to earlier expansions. Sparse sampling limits our understanding
of the full extent of regional ancestry variation in central Europe and
some other regions, but the continental ancestries differentiated in
the MDS model suggests that major ancestry variation across Europe
inthis period s relatively well captured.

Expansions of Scandinavian-like ancestry

We assembled time transects using available aDNA data across several
geographicalregionsin Europe, and infer their ancestry usingamodel
with the EIA or Roman Iron Age sources previously defined (shownin
Fig. 2a). Our modelling provides direct evidence of individuals with
ancestry originating in northern Germany or Scandinavia appearing
across Europe as early as the first century CE (Figs. 2b,cand 3 and Sup-
plementary Table 3).

In the region of present-day Poland, our analysis suggests several
clearshiftsinancestry.First,in the Middle to Late Bronze Age (1500 BCE
to 1000 BCE), we observe a clear shift away from preceding ancestry
originally associated with Corded Ware cultures® (Fig. 3a). Second,
in the first to fifth century CE, individuals associated with Wielbark
culture®? show an additional strong shift away from the preceding
Bronze Age groups, and can only be modelled with a>75% component
attributed to the EIA Scandinavian Peninsula. Multiple individuals,
especially from earlier Wielbark cemeteries, have approximately 100%
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Fig.2|Ancestry fromtheIron Age to the early medieval period in Europe.
a, Source groups used for gpAdm modelling of early medieval Europe. MDS is
computed jointly withindividuals from later periods using pairwise outgroup
f;statistics (outgroup: Han Chinese people). These are calculated using
Twigstats on Relate genealogies with a cut-off of1,000 generations. The
geographical map shows samplinglocations of these individuals. b, The
genetic structure of ancient groups predominantly from early medieval
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computed without Twigstats on the same samples as the Twigstats MDS and
focusing on early medieval or laterindividuals. ¢, Ancestry models of early
medieval (EM) groups across Europe computed using qgpAdm. Sample sizes are

ancestry related to EIA Scandinavian Peninsula (Fig. 2c). The Wielbark
archaeological complex hasbeen linked to the later Chernyakhov cul-
ture tothe southeast and to early Goths, an historical Germanic group
that flourished in the second to fifth centuries CE*®. Our modelling
supports the idea that some groups that probably spoke Germanic
languages from Scandinavia expanded south across the Baltic into
the areabetween the Oder and Vistularivers in the early centuries CE,
although whether these expansions can be linked specifically with
historical Goths is still debatable. Moreover, since a considerable

Italy.Imperial(l)

12| Italy.Imperial(ll)

Italy.IronRepublic
Kyrgyzstan_TianShanHun
Lithuania.lronRoman

E Longobard_earlyMED(l)
Longobard_earlyMED(Il)
Montenegro_earlyMED

Netherlands_Friesland_earlyMED

[4] scandinavian_Peninsula_EIA()
Scandinavian_Peninsula_EIA(ll)

IE‘ Slovakia_Zohor_Germanic_Roman

Slovakia_earlyMED

Slovenia.lronRoman

@ Slovenia.Roman.oNorthEurope

[©] Poland_Middle_Ages(l)

|7| Poland_Middle_Ages(ll)

Poland_Wielbark(l)

Poland_Wielbark(ll)

| m| Poland_Wielbark(ll)

PolandUkraine_MLBA(l)

PolandUkraine_MLBA(Il)

E Portugal.lronRoman

I§| Russia_Sarmatian
Saami

showninblack boxes. Sources are highlighted inaand marked as bold inthe
key,and were usedin arotational gpAdm scheme. For each target group, we
remove models with infeasible admixture proportions (falling outside [0, 1])
and use a Twigstats cut-off of 1,000 generations. Allmodels satisfy P> 0.01,
unlessa-log,,[Pvalue]is shown next to the model. If models satisfy P> 0.05,
we show all such models; otherwise, we show only the model with the largest
Pvalue.d, The ancestry proportion derived from EIA Scandinaviain groups
withanon-zerocomponent of thisancestry. We show groups modelledinc
thathave afeasiblemodel (P>0.01).Inc,d, weshowones.e.BA, Bronze Age;
CNE, continental northern Europeans; EBA, early Bronze Age; EVA, early Viking
Age; A, Iron Age; MED, medieval; MLBA, middle/late Bronze Age; VA, Viking Age.

proportion of Wielbark burials during this period were cremations,
the possible presence of individuals with other ancestries cannot be
strictly rejected if they were exclusively cremated (and are therefore
invisible in the aDNA record).

A previous study could not reject continuity in ancestry from the
Wielbark-associated individuals to later medieval individuals from
asimilar region'>. With the improved power of Twigstats, models of
continuity are strongly rejected, with no one-source model of any pre-
cedingIron Age or Bronze Age group providing areasonable fit for the
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Fig.3| Time transects across sixgeographical regionsin Europe.

a-f, Ancestry change visualized over a time transect spanning from the Bronze
AgetothepresentdayinPoland (a), southeastern Europe (b), central Europe
(c), Italy (d), Britain and Ireland (e) and Scandinavia (f). The maps show sample
locations of all available ancient genomes with at least 0.5 coverage from

medieval individuals (P <1 x107). Instead, the majority of individuals
frommedieval Poland can be modelled only as a mixture of ancestries
related to Roman Iron Age Lithuania, which is similar to ancestries of
individuals frommiddleto late Bronze Age Poland (44%, 95% confidence
interval 36-51%), an ancestry component related to Hungarian Scyth-
ians or Slovakian La Téne individuals (49%, 95% confidence interval
41-57%) and potentially a minority component of ancestry related to
Sarmatians from the Caucasus (P=0.13) (Fig. 2c). Four out of twelve
individuals from medieval Poland, three of whom are from the late
Viking Age®, carried detectable Scandinavian-related ancestry. Some
oftheancestry detected inindividuals from later medieval Poland may
have persisted during the late first millennium CE in the cremating
portion of the population, but regardless, this points to large-scale
ancestry transformationin medieval Poland (Fig. 3a). Future data could
shed light on the extent to which this reflects the influence of groups
speaking Slavic languages in the region.
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theseregions (Supplementary Table 1). Their ancestry is shown on the same
MDS model asin Fig.2afor eachtime period. For each geographicregion,

the early medieval periodis highlighted inorange and the areain the MDS
corresponding to Scandinavianand central European ancestries is highlighted
inanorangebox.

In present-day Slovakia, individuals associated with the Iron
Age La Téne period appear close to Hungarian Scythians in the two
dimensions of our MDS analysis, and are modelled as a mixture of
central and eastern European ancestry. However, a first-century CE
burial of a 50-60-year-old woman from Zohor is modelled only with
Scandinavian-related ancestry, providing evidence of ancestry related
tothe Scandinavian EIA appearing southwest of the range of the Wiel-
bark archaeological complex>¥ (Fig. 3b). Later early medieval individu-
als from Slovakia have partial Scandinavian-related ancestry, providing
evidence for the integration between expanding and local groups.

Nearby, in present-day Hungary, we observe Scandinavian-related
ancestry components in several burials dating to the sixth century
CE associated with Longobards (Longobard_earlyMED(1))* (Fig. 2c).
Thisis consistent with the original study', which reported affinity to
present-day groups from northwestern Europe (GBR, CEU and FIN in
the 1000 Genomes Project (1000GP))™ but which we can resolve with



higher resolution using earlier genomes. Several other individuals from
these Longobard burials (Longobard_earlyMED(II)) show no detectable
ancestry fromnorthern Europe and, instead, are more closely related to
Iron Age groupsin continental central Europe, putatively representing
descendants of local people buried ina Longobard style. Our results are
consistent with attestations that the Longobards originated in the areas
of present-day northern Germany or Denmark, but that by the sixth
century CE they incorporated multiple different cultural identities, and
mixed ancestries. Present-day populations of Hungary do not appear
to derive detectable ancestry from early medieval individuals from
Longobard contexts, and areinstead more similar to Scythian-related
ancestry sources (Extended DataFig. 6), consistent with the laterimpact
of Avars, Magyars and other eastern groups®®.

In southern Germany, the genetic ancestry of individuals from
early medieval Bavaria probably associated with the historical
Germanic-language-speaking Baiuvarii*® cannot be modelled as deriv-
ing ancestry solely from earlier groups in Iron Age central Germany
(P« 1x107¢%), The Baiuvarii probably appeared in the region in the
fifth century CE*’, but their origins remain unresolved. Our current
best model indicates a mixture with ancestry derived from EIA Pen-
insular Scandinavia and central Europe, suggesting an expansion of
Scandinavian-related ancestry producing a regional ancestry shift
(Figs.2cand 3c).

Inltaly, southwardexpansionsofnorthernand centralEuropeanances-
tries appear by the Late Antiquity (approximately fourth century CE),
where a clear diversification of ancestry can be observed compared
with preceding time periods (Fig. 3d). However, no individuals with
near 100% Scandinavian ancestry can be observed in the sampling
dataavailable so far.

In Britain, the ancestries of Iron Age and Roman individuals form a
tight cluster in our MDS analysis (Fig. 3e), shifted relative to available
preceding Bronze Age individuals from Ireland and Orkney, and adja-
centto, butdistinct from, availableindividualsinIron Age and Roman
central Europe. However, two first- to second-century CE burials froma
Roman military fortress site in Austria (Klosterneuburg)’ carry ancestry
that is currently indistinguishable from Iron Age or Roman popula-
tions of Britain, to the exclusion of other groups (qpWave cladality
P=0.11). One optionis that they had ancestry from Britain; alternatively,
currently unsampled populations from western continental Europe
carried ancestries similar to Iron Age southern Britain.

Twigstats substantially improves models of admixture between
ancestries from Iron Age Britain and northern Europe in early medi-
eval England’, halving standard errors from 9% with SNPs to 4% when
using time stratification (point estimates 80% and 79% Iron Age
Britain-related ancestry, respectively). We used this improved reso-
lution to demonstrate that an earlier Romanindividual (6DT3) dating
to approximately second to fourth century CE from the purported
gladiator or military cemetery at Driffield Terrace in York (Roman
Eboracum), England®®, who was previously identified as an ancestry
outlier®*®?, specifically carried approximately 25% EIA Scandinavian
Peninsula-related ancestry (Fig. 2c). This documents that people with
Scandinavian-related ancestry already were in Britain before the fifth
century CE, after which there was a substantial influx associated with
Anglo-Saxon migrations®. Although it is uncertain whether this indi-
vidual was agladiator or soldier, individuals and groups from northern
Europe areindeed recorded in Roman sources both as soldiers and as
enslaved gladiators®***,

Across Europe, we see regional differences in the southeastern and
southwestern expansions of Scandinavian-related ancestries. Early
medieval groups from present-day Poland and Slovakia carry spe-
cific ancestry from one of the Scandinavian EIA groups—the one with
individuals primarily from the northern parts of Scandinavia in the
EIA—with no evidence of ancestry related to the other primary group
in more southern Scandinavia (Fig. 2d). By contrast, in southern and
western Europe, Scandinavian-related ancestry either derives from

EIA southern Scandinavia—as in the cases of the probable Baiuvarii
in Germany, Longobard-associated burialsin Italy and early medieval
burialsinsouthern Britain—or cannot be resolved to a specific region
inScandinavia. If these expansions areindeed linked to language, this
patternis remarkably concordant with the mainbranches of Germanic
languages, with the now-extinct eastern Germanic spoken by Gothsin
Ukraine onthe one hand, and western Germanic languages such as Old
English and Old High German recorded in the early medieval period
onthe other hand.

Influx into pre-Viking Age Scandinavia

InEIA Scandinavia (<500 ce), we find evidence for broad genetic homo-
geneity. Specifically, individuals from Denmark (100 CE-300 CE) were
indistinguishable from contemporary peoplein the Scandinavian Pen-
insula (Fig. 2c). However, we observe a clear shift in genetic ancestry
already in the eighth century CE (Late Iron Age/early Viking Age) on
Zealand (present-day Denmark) for which a100% EIA ancestry model
is rejected (P=1x10"" using Twigstats; P=7.5 x 10~* without). This
shiftin ancestry persists among later Viking Age groups in Denmark,
where all groups are modelled with varying proportions of ancestry
related to Iron Age continental groups in central Europe (Figs. 3f
and 4c). A non-parametric MDS of Viking Age individuals suggests
that variation between individuals forms a cline spanning from the
EIA Scandinavian Peninsula individuals to ancestry characteristic of
central Europe (Fig. 4e). The observed shift in ancestry in Denmark
cannot be confounded by potentially earlier unknown gene flow into
Iron Age source groupsin Austria, France and Germany, but such gene
flow could affect the exact ancestry proportions.

These patterns are consistent with northward expansion of ancestry,
potentially starting before the Viking Age, into the Jutland peninsula
and Zealand island towards southern Sweden. The geographical ori-
gin of this ancestry is currently difficult to discern, as the available
samples from Iron Age central Europe remain sparse. The timing
of this expansion is constrained only by the samples available: this
ancestry is not observed in individuals from the Copenhagen area of
Denmark (around100 ce-300 cE)®, an individual from the southern tip
of Sweden (around 500 cE)*, individuals from the Sandby Borg mas-
sacresite on Oland in present-day Sweden (around 500 cE)” and 31indi-
viduals from the mid-eighth century Salme ship burials in present-day
Estonia (Extended Data Fig. 9), who probably originated in central
Sweden®. Therefore, this ancestry transformation most likely post-
dated theseindividualsineach particular region and mostly occurred
inthe second half of the first millennium CE.

To assess the full extent of the impact of this ancestry influx into
Scandinavia, we next aimed to understand the ancestry of individu-
alsin Scandinavia during the Viking Age. Previous studies have sug-
gested that there was a diversity of ancestriesin Scandinavia during this
period®”%, due toincreased maritime mobility, but have not reported
per-individual ancestry estimates based on preceding ancestry. We
analysed eachindividual’s ancestry using arotational gpAdm scheme
(Fig. 4a, Extended Data Fig. 9 and Supplementary Table 4), which
showed increased power in distinguishing models when restricted
to recent coalescences with Twigstats (more than 80% of accepted
one-source models in Twigstats were also accepted one-source models
using all SNPs, compared with less than17% for the inverse).

We investigated regional differences in non-local ancestry across
Scandinavia.In Denmark, 25 out of 53 Viking Age individuals had detect-
able (z-score >1) central European-related ancestry (CentralEurope.
IronRoman or Portugal.IronRoman) in their best accepted qpAdm
models. In Sweden 20 out of 62 individuals had detectable central
European-related ancestry, concentrated almost entirely in southern
regions (Fig. 4a,d). By contrast, in Norway, this ancestry was observed
in only 2 out of 24 individuals, indicating a wide-ranging impact of
incoming ancestry in southern Scandinavia and suggesting more
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Fig.4|Ancestryinthe Viking world. a, Map showing ancestry carried by
Scandinavian Viking Age individuals as inferred using the best-fitting qpAdm
model. These are chosen by either choosing the one-source model with largest
Pvalueand P> 0.01or the two-source model with the largest Pvalue and P> 0.01.
Extended DataFig. 7 shows the same map with allaccepted models. b, Stable
isotope dataindicating the geology of childhood origin. The histogram shows
theratio of strontiumisotopes 87 to 86 measured in 109 individuals in Oland®’.
Forindividualsincludedin our ancestry modelling, we plot Iron Age central
European-related ancestry against their stable isotope values (grey circles,
r=-0.39,P=0.075).Shared area corresponds to the 95% confidence band

continuity from the EIAin Norway and northern Sweden (Fig. 4a). When
considered collectively, the individuals who show evidence of central
European-related ancestry are mostly observed in regions histori-
cally within the Danish sphere of influence and rule. Currently, nosuch
individuals, for example, are noted in eastern central Sweden, which
was a focus of regional power of the Svear (Fig. 4a). The difference in
distribution could suggest that the central European-related ancestry
was more common in regions dominated by the historical Gétar and
groups inhabiting the lands on the borders of the Danish kingdom.
To test the extent to which the variation in ancestry was consistent
with mobility during the lifetime of the individuals or, alternatively,
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around theregressionline. ¢, The ancestry shift observed in Viking Age Danish
groups using qpAdm on all SNPs or Twigstats. We show the best one-source and
alltwo-source models with P> 0.05. For models with P< 0.05, the -log,,[Pvalue]
isshown under the plot. Sample sizes for each group are shownin brackets.

d, The ancestry proportionacross Viking Age individualsin Denmark, Sweden
and Norway grouped by latitude. e, Viking Age genetic variation (grey circles)
visualized onthe same MDS asin Fig.2a,b. f, The best-fitting qpAdmancestry
modelfor far-flung Viking individuals. Detailed models for allindividuals are
shownin Extended Data Figs.9 and 10.In cand f, we show one s.e. Rotating
gqpAdmsources are markedin boldin the key.

that of established groups, we focused on the island of Oland in south-
east Sweden, where 23 individuals for whom we could reconstruct
ancestry portraits also had associated strontium stable isotope data®®.
Strontiumisotope data from dental enamel reflect the geology of the
regionwhere anindividual grew to maturity, and there are considerable
differences in expectations between Oland and many other regions
innorthern Europe. The full range of strontium isotope ratios in 109
individuals show two modes, a majority group with low ratios and a
second minority group with high ratios falling outside the expected
range of local fauna (Fig. 4b). Among 23 individuals with genomes in
ourdata, all 5individuals with 100% ancestry relating to central Europe



(including one with ancestry related to Britain) are part of the majority
strontium values, consistent with them having grown up locally. By
contrast, the six most clearly non-local individuals based on the sta-
bleisotopes all have 50% or more EIA Scandinavian Peninsula-related
ancestry, although three individuals with wholly EIA Scandinavian
Peninsula-related ancestry also had local values. This suggests that
the presence of central European-related ancestry was not a transient
phenomenon, but an ancestry shift that occurred at some point after
about 500 CE, the period to which individuals from the massacre site
atSandby Borg ringfort on Oland were dated; these individuals all have
strictly EIA Scandinavian-related ancestry. Indeed, one hypothesis is
that the massacre at Sandby Borg could represent conflict associated
with movements of people that contributed to later ancestry change,
although other scenarios are possible and further synthesis of biomo-
lecular and archaeological data is necessary to test this hypothesis.

Viking Age mobility into Scandinavia

Previous studies had suggested a major influx of ancestry related to
Britaininto Viking Age Scandinavia®’. Although we detect this ances-
try in some individuals (7 individuals in Norway, 14 in Denmark and
14 inSweden), including some individuals whose ancestry appears to
be entirely derived from Iron Age Britain, its overall impact appears
reduced compared with previous reports. Our analysisindicates a pro-
portionally larger impact of ancestry from Iron Age Britainin northern
Norway, with southern Scandinavia predominantly influenced by
continental central European ancestries (Fig. 4d). We hypothesize
that our estimates of ancestry from Britain are reduced relative to
previous studies because ancestry related to Britain and continen-
tal central Europe may have been indistinguishable. This could be
due to alack of statistical power to distinguish these closely related
sources with standard methods, as well as through potential biases
introduced by using modern surrogate populations that have since
been influenced by later gene flow (such as gene flow into Britain).
We illustrate this by replicating the analyses previously described®”
(Extended Data Fig. 8).

Similarly, a previous study has suggested thatindividuals at sites such
asKirdainsouthernSweden carried ancestry fromsouthern Europe®.
Inour models, two Kirdaindividuals fit with central European-related
ancestry, but none of the individuals has a substantial proportion of
ancestry related to southern European sources (Extended Data Fig. 9).
Instead, we detect ancestry from southern European sources in only
three individuals from Scandinavia, and in relatively small propor-
tions (Fig. 4a).

Interestingly, we detect ancestry from Bronze and Iron Age sources
from Eastern Europe (present-day Lithuania and Poland), concentrated
in southeastern parts of Sweden, particularly the island of Gotland
(14 individuals; Fig. 4a). This is consistent with previous genetic
studies®’”. We find that this ancestry is enriched in male individuals
(Extended Data Fig. 7d), suggesting male-biased mobility and/or burial.
The closest match tends to be Roman Iron Age Lithuanian genomes
associated with Balts, which would be consistent with mobility across
the Baltic Sea, but we caution that the geographical representation of
available genomes is still limited.

Viking Age expansion from Scandinavia
Traditionally, historical perspectives on what is now often referred
to as the Viking diaspora placed an emphasis on the movements and
settlements of population groups fromvarious parts of Scandinavia®’.
Our explorative MDS analysis again indicates mixed ancestries related
totheScandinavian EIA, with regional differences that point to varied
local admixture (Fig. 4e and Extended Data Fig. 10).

InBritain, most of the individuals recovered from the two late Viking
Age mass graves identified at Ridgeway Hill, Dorset, and St John’s

College, Oxford®, show ancestries typical of those seen in Viking Age
southern Scandinavia (Fig. 4f). Further west, North Atlantic Viking Age
individualsinthe FaroelIslands, Iceland and Greenland carry ancestry
fromthe Scandinavian Peninsula, with several individuals showing the
continental central Europe-related ancestry signal found in south-
ern Scandinavia (Fig. 4f) and others who share substantial ancestry
with Iron Age Britain. In contrast to previous hypotheses®, we found
amarginal enrichment of ancestry related to Britain and Ireland in
men (15out of 17 men and 3 out of 6 women with at least one accepted
modelinvolving Iron or Roman Age Britain as source; Fisher’s exact
test P=0.089) (Extended Data Fig. 7c,e). However, sampling of addi-
tional individuals to improve distinction between early English- and
Norse-related ancestries would be required to fully test this hypothesis.

Ineastern Europe, we observe EIA Scandinavian ancestriesina Viking
Age burial from Ukraine, and these ancestries are overrepresented
in Viking Age burials from present-day Russia. At Staraya Ladoga in
western Russia, we observe several individuals with EIA Scandinavian
Peninsula-related ancestry and at least one individual dated to the
eleventh century with apparent ancestry related to Iron Age Britain.
Therelative absence of Iron Age central European ancestry, whichwas
largely restricted to southern Scandinavia during the Viking Age, is thus
indicative that these individuals may have originated in the central/
northern parts of Sweden or Norway, where Viking Age individuals
show the most similar ancestry profiles to them.

Conclusions

Our approach, Twigstats, transfers the power advantage of haplotype-
based approaches to a fully temporal framework, which is applica-
ble to f-statistics and enables previously unavailable unbiased and
time-stratified analyses of admixture. We demonstrated that Twigstats
enables fine-scale quantitative modelling of ancestry proportions,
revealing wide-ranging ancestry changes that affect northern and
central Europe during the Iron, Roman and Viking ages. We reveal evi-
dence of the southward and/or eastward expansion of individuals who
probably spoke Germanic languages and who had Scandinavian-related
ancestry in the first half of the first millennium CE. We note that
‘Scandinavian-related’ in this context relates to the ancient genomes
available, and soitis entirely possible that these processes were driven,
for example, from regions in northern-central Europe. This could be
consistent with the attraction of the greater wealth, which tended to
build up among Rome’s immediate neighbours and may have played
amajorroleinvectors of migrationinternal to communitiesin Europe
who lived beyond the Roman frontier®. Later, patterns of gene flow
seem to have turned northwards, with the spread of Iron Age Central
Europe-related ancestry into Scandinavia. Overall, our approach can
beused for the reconstruction of new high-resolution genetic histories
around the world.
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Methods

Twigstats

Twigstats takes the Relate® output format as input and allows the
computation of f-statistics directly on genealogies, by using the
inferred expected number of mutations on each branch as input,
which is computed as the product of a prespecified average muta-
tion rate per base per generation, the branch length and the num-
ber of bases each tree persists*. Importantly, Twigstats computes
f>-statistics ascertained by an upper date threshold, such that only
branches younger than this threshold are used. If a branch crosses
the threshold, we use only the proportion of the branch under-
neath the threshold. Twigstats additionally enables us to specify a
minimum derived allele frequency and lower date threshold. Twig-
stats can also compute f,-statistics on age-ascertained mutations,
which is particularly convenient for individuals not built into the
genealogies.

The computed f,-statistics are fed into ADMIXTOOLS2” to com-
pute derived statistics. ADMIXTOOLS2 implements computation of
genome-wide f5-, f;- and f,-statistics, as well as qpgraph and qpAdm
models. Weimplement the sample size correctionas detailed inref. 21.
Thef,-statistics are computed in blocks, typically of prespecified cen-
timorgan size or of prespecified physical distance. These blocks are
used downstream in ADMIXTOOLS2 to compute standard errors using
ablock-jackknife approach. By default, we compute f-statistics only
oninternal branches and exclude singleton tip branches to increase
robustness against sample age.

The optimal Twigstats time cut-offis a priori unknown; however, we
develop atheory that predicts the optimal choice in asimple two-way
admixture as a function of the admixture date, source split time and
admixture proportion (Supplementary Note). In this case, the optimal
cut-offequals approximately 1.4 times the split time between admixing
source groups, depending on exact parameters in the model (Fig.1b,c
and Extended Data Fig. 2).

Non-negative least squares ancestry modelling. We implement
an approach that uses genealogies to emulate the chromosome
painting technique of identifying closest genetic relatives along the
genome'? to fit admixture weights. When applied to true genea-
logies insimulations, thisapproach represents anidealized version of
thisidea.

Weimplement this functionin Twigstats, which, given known assign-
ment of each sample to a population, identifies, at each position in
the genome, the population with which a sample coalesces first. Our
implementation takes a list of reference populations as input, such
thatany coalescences that do notinvolve these reference populations
areignored when traversing back in time through genealogical trees.
If the first coalescence involves multiple different reference popula-
tions, this coalescence event will be assigned to each population with
aweight proportional to the number of samples in each population
involved in that event.

We thenimplement a second function in Twigstats to compute, for
each target population and putative source populations, the propor-
tion of the genome ‘painted’ by each of the reference populations.
Given k reference populations, we denote by a, the vector of length k
storing these proportions for population i. We fitted our target popu-
lation as amixture of putative source populations using anon-negative
least squares approach that finds a solution to the optimization prob-
lemmingsp, <1llaggec ~ ABIl;, where A is a matrix storing a, for puta-
tive source populations as its column vectors with # indexing source
populations and B are non-negative mixture weights.

Admixture simulations. We use msprime” to simulate genetic vari-
ation data to test our approach. All simulation scripts are available at
https://github.com/leospeidel/twigstats_paper.

f,-ratio admixture simulation. Our simulationin Fig.1b and Extended
Data Fig. 3b simulates five populations named PI, PO, P1, P2 and PX,
where PO splits from all other populations 10,000 generations ago, P1
and P2 represent two proxy source groups that split from each other at
250 generations or 500 generations ago, Pl splits from P1100 genera-
tions ago and PX emerges from a pulse admixture between P1 and P2
50 generations ago. All populations have a constant diploid population
size 0f 5,000, a variable human-like recombination map, in which our
simulation only covers chromosome 1, and ahuman-like mutation rate
of1.25 x 10" mutations per base per generation. We additionally have
amodified simulation with alower mutation rate of 4 x 10~ mutation
per base per generation, emulating a transversions-only dataset,and a
simulationinwhich P2 hasadiploid populationsize of 1,000 in the last
50 generations, emulating a recent bottleneck in this population. We
sample 20 haploid sequences from all populations. The ‘large sample
size’ simulation samples100 haploid sequences fromall populations.

f,-ratio admixture simulation with genotype and phasing errors.
We emulate the data quality we expect inimputed ancient genomes
(Extended Data Fig. 3b). Weimplement a simple error model in which
every haploid genotype at any segregating site can switch with a certain
error probability. We can theoretically compute the predicted squared
correlation coefficient (r?) between the true simulated genotypes and
the genotypes thatinclude error, stratified by minor allele frequency,
togeneratea plot similar to those used for evaluating imputationaccu-
racy using downsampled high-coverage ancient genomes’ (Extended
DataFig.3a). Asimputationaccuracy varies for each individual in real
settings, werandomly sample the error probability for each individual
uniformly between1x10*and1x 107 (errors per SNP per haplotype).
Thisyields r* curves that are comparable to those observed in real data.
We additionally simulate a high error case, for which we sample error
probabilities between1x102and1x 1072,

In real settings, we are additionally required to computationally
phase genomes. We emulate this by combining two haploid sequences
to construct a diploid individual. We then computationally rephase
these diploid individuals without a reference panel. This approach is
expectedtoresultinsuboptimal phasing and should therefore be well
suited to test robustness to phase-switch errors.

dpAdm simulation. Our simulation in Extended Data Fig. 3c uses the
simulation model and script provided withref. 23, although we changed
thisscript to use the human hotspot recombination map. We simulate
only chromosome. Inthe original simulation model, admixing sources
split1,200 generations ago, with admixture occurring 40 generations
ago. We additionally simulate a version in which all population split
times and admixture times are reduced by a factor of 5. We sample 20
haploid sequences per population.

Stepping-stone separation by distance simulation. We adapt the
simulation model provided previously?® to simulate a stepping-stone
model of nine populations organized on a 1D grid, in which individu-
als are able to migrate between adjacent populations (Extended Data
Fig.3d). We changed this script to use the human hotspot recombina-
tion map and simulate only chromosome 1. We simulate under migra-
tion rates of 0.001and 0.005, corresponding to average Fg; values of
0.01and 0.002, respectively?’. We sample 20 haploid sequences per
population. We then fitted population 4 using pairs of other popu-
lations as sources in a rotational qpAdm scheme such that unused
populations are assigned to the reference set.

We expect that this simulation model violates qpAdm assumptions
of no (or limited) gene flow after admixture between sources and ref-
erence groups. Consistent with this idea, qpAdm models are rejected
(P=4x107**for migrationrates of 0.001and P=5 x 1078 for migration
rates of 0.005) when using Twigstats with a cut-off of 1,000 genera-
tions. However, these are not rejected using regular qpAdm, including
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when migration rates are high (and, therefore, F¢; is low), indicating
that Twigstatsis better powered to detect such scenarios of continued
migration. Encouragingly, amodel thatinvolves the twoimmediately
adjacent populations is selected in all replicates as the ‘best’ model
(highest gpAdm P value) using Twigstats, whereas this is the case in
only 80% (migration rate of 0.001) and 30% (migration rate of 0.005)
of all replicates using regular qgpAdm.

Neanderthal admixture and deep structure simulation. OQur simula-
tionin Extended Data Fig. 5d emulates Neanderthal admixture,inwhich
Neanderthals and ancestors of modern humans split 25,000 genera-
tions ago and admixture occurs 2,000 generations ago. The resulting
admixed non-African-like population coexists with the non-admixed
African-like population until the present day. Furthermore, two
Neanderthal populations split fromeach other 7,000 generations ago,
which canbeinterpreted as emulating the Altai and Vindija Neanderthal
populations, with Vindija being closer to the admixing source.

We simulate an alternative model with two subgroups emulating
ancestral modern humans in Africa that have a non-zero symmetric
migrationrate, ranging from4 x 10°to 2 x 10" per generation, up until
3,000 generations before present. One of these subgroups gives rise
to a present-day African-like population, while the other gives rise to
a present-day non-African-like population. We further sample two
Neanderthal populations that split 7,000 generations ago and merge
25,000 generations ago with the same ancestral modern human sub-
group that will eventually give rise to a non-African-like population.

We simulate whole genomes with human-like recombination rates
and a mutation rate of 1.25 x 10~ mutations per base per generation.
Diploid effective population sizes are set to 10,000 except on the
Neanderthal lineage, in which it is set to 3,000. We sample 2 haploid
sequences for each Neanderthal population and 20 haploid sequences
forthetargetadmixed populationand Africannon-admixed population.

Fine-scale structure simulation. Our simulation in Extended Data
Fig. 5a emulates the emergence of a fine-scale population structure
and is adapted from ref. 39. In this simulation, populations split 100
generations ago into 25 subpopulations followed by a period in which
individuals are allowed to migrate at a rate of 0.01 between adjacent
populationsina5 x 5grid. The diploid effective population sizeis 500
ineach ofthe 25 populations,and 10,000 in the ancestral population.
We simulate tenreplicates of chromosome 10, with a human-like muta-
tionrate of 1.25 x 10~ and hotspot recombination map. We sample two
diploid individuals fromeach population. Furthermore, we sample 100
individuals from an ancestral population that splits from the 25 target
populations 100 generations ago, before the emergence of structure
inthese 25 populations. Relate trees are inferred assuming true muta-
tion rates, recombination rates and average coalescence rates across
all samples.

Ancient sample selection. A full list of ancient genomes can be found
in Supplementary Table 1. Published ancient shotgun genomes pro-
vided by refs. 7,8 were only available aligned against the GRCh38 refer-
encesequence. These datawererealigned to the GRCh37dS reference
sequence using bwaaln (v. 0.7.17-r1188).

We select genomes with average autosomal coverage above 0.5x%,
except for VK518, which has previously been suggested to be of Saami
ancestry® and which had a coverage of 0.438. We included VK518 in
our panel to capture this ancestry. Genomes above a coverage cut-off
of 0.5x have previously been shown to result in reliable imputation
results”2. We exclude samples with evidence of contamination. We
remove any duplicate individuals, such as individuals who were rese-
quenced, choosing the file with the highest coverage. We then filter
outany relatives annotated in the Allen Ancient DNA Resourcev. 54.17,
retaining the individual with the highest coverage in each family clade.

Our final dataset includes 1,556 ancient genomes.

Imputation of ancient genomes. We follow the recommended pipeline
of GLIMPSE” and first call genotype likelihoods for each genome in
the1000GP, segregating sites using bcftools mpileup with filter-q 20,
-Q20and-C50. We subsequently impute eachgenome separately using
GLIMPSE v.1.1.1using the 1000GP phase 3 reference panel™ downloaded
from https://ftp.1000genomes.ebi.ac.uk/voll/ftp/release/20130502/.
These imputed genomes are merged into a single VCF (variant call
format) for further downstream processing.

Wefilter any site for which more than 2% of sites have animputation
posterior of less than 0.8 and retain all remaining sites so asnot to have
any missing genotypes at individual SNPs.

Relate-inferred genealogies. We merge imputed ancient genomes
with a subset of the 1000GP dataset, including all European popula-
tions (CEU, Utah residents with northern and western European ances-
try; CHB, Han Chinese in Bejing, China; FIN, Finnish in Finland; GBR,
Britishin England and Scotland; BS, Iberian populations in Spain; TSI,
Toscani in Italy, YRI, Yoruba in Ibadan, Nigeria). We create a second
datasetinwhichwe merge imputed genomes with the Simons Genome
Diversity Project” (SGDP) downloaded from https://sharehost.hms.
harvard.edu/genetics/reich_lab/sgdp/phased_data2021/. These two
datasets contain, respectively, a total of 2,270 and 1,834 modern and
ancientindividuals.

Wetheninfer genealogies for the joint dataset of ancient and modern
genomes using Relate v.1.2.1. We restrict our analysis to transversions
only and assume amutation rate of 4 x 10~ mutations per base per gen-
erationand input sample dates asshownin Supplementary Table 1. We
use coalescencesrates pre-inferred for the 1000GP and SGDP datasets.

MDS analysis. We compute f,-statistics using the Twigstats function
f2_blocks_from_Relate between all pairs of individuals and between all
individuals and an outgroup (Han Chinese people in SGDP) using the
Relate genealogies of SGDP modern and imputed ancient genomes.
We set the argument ¢ to specify a time cut-off and set the argument
use_muts to FALSE to compute these f-statistics on branches of the
genealogy and to TRUE to compute these only on the mutations. We
use these to computef;(outgroup, indivl, indiv2) = 0.5 x (f,(outgroup,
indivl) + f,(outgroup, indiv2) - f,(indivl, indiv2)) for every pair of indi-
viduals, and store 1 - f;(outgroup, indivl, indiv2) ina symmetric N x N
matrix (where N is the number of individuals) for which we then
compute an MDS using the R function cmdscale.

qpAdm modelling. In brief, qpAdm models are a generalization of
firatios, for which one-, two- and three-source models can be tested as
hypotheses and admixture components and their s.e. obtained witha
block jackknife®. AgpAadm modelis fully specified by aset of putative
source groups and additional ‘outgroups’ that are used to distinguish
source ancestries. We used a rotating approach in which we itera-
tively selected a subset of source groups and used all remaining puta-
tive sources as outgroups. This approach penalizes models where true
contributing sources are used as outgroups. With sufficient statistical
power, gpAdm models will be statistically rejected if true contributing
sources are used as outgroups. If statistical power is more limited,
several models will fit the data, but the correct model is expected to
be preferred over wrong models. Throughout, we use the Relate gene-
alogies of SGDP modernandimputed ancient genomesin our qpAdm
modelling and first computef,-statistics using the Twigstats function
f2_blocks_from_Relate between all populations involved, which we then
feed to the ADMIXTOOLS2 package’.

Clustering using gpwave. To overcome challenges with hand-curating
source groups used in qpAdm modelling, we follow ref. 5 and run
gpwave using Twigstats between pairs of ancient individuals. We use
Han Chinese individuals from Beijing and five European populations
fromthe1000GP as reference groups. This approach tests whether two
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individuals form a clade with respect to reference groups. The reason
why thisis a principled approach despite the 1000GP groups post-dating
theancientindividualsis thatifagroup of ancientindividuals are truly
homogeneous, they will be so also with respect to later individuals.

We then define clusters by running UPGMA (unweighted pair group
method with arithmetic mean) on -log,,[P values] obtained from
gpwave between all pairs of individuals and cut the resulting dendro-
gram at a height corresponding to a P value of 0.01. We then further
subdivide clusters by requiring all samples to be within 500 years of
the mean cluster age.

To choose the source groups shown in Fig. 2a and Extended Data
Fig. 1d, we run this algorithm on samples from Iron and Roman Age
Europe (Supplementary Table 1). We retain groups that have at least
three individuals and, therefore, exclude clusters of size one or two.

This approach results in two clusters in the Scandinavian Penin-
sula, approximately separating northern fromsouthern Scandinavia,
three clusters in Poland and Ukraine that separate samples tempo-
rally between the early and later Bronze Age, a cluster combining the
Hungarian Scythian and Slovakian La Téne-associated individuals,
and a cluster each for Iron and Roman Age Portugal, Italy and Lithu-
ania. In present-day Austria, Germany and France, this approach
identifies three clusters, with each cluster spanning multiple archae-
ologicalssites in different countries, indicating genetic diversity in
this region in the first millennium CE. Encouragingly, these clusters
separate in our non-parametric MDS analysis (Fig. 2a), indicating that
we are capturing real genetic differences between groups using this
approach.

Fine-scale structure in Neolithic Europe. To quantify fine-scale struc-
ture in Neolithic Europe (Extended Data Fig. 5b), we aimed to select
individuals in Neolithic Europe who have not yet been affected by the
arrival of Steppe ancestry and do not show excess hunter-gatherer
ancestry. We infer distal ancestry sources using Balkan_N, Yamnaya and
Western Hunter-gatherers as source groups and reference groups
according to a previously proposed qpAdm setup*® (Supplementary
Table 1). For this analysis, we infer ancestry using qpAdm applied to
1.2 million SNP sites of imputed genomes. We retain only Neolithic
individuals with P> 0.01, z< 2 for Yamnaya ancestry, and z<2 or
proportion <0.25 for Western Hunter-gatherer ancestry.

Reporting summary
Furtherinformation onresearch designisavailablein the Nature Port-
folio Reporting Summary linked to this article.

Data availability

AllaDNA dataused in this study were publicly available, and accession
codesare listed in Supplementary Table 1.

Code availability

Twigstats is freely available under an MIT licence through GitHub
(https://github.com/leospeidel/twigstats), and detailed documenta-
tion, as well as example data, is available at https://leospeidel.github.
io/twigstats/. The code has also been deposited at Zenodo (https://
zenodo.org/records/13833120)7. All scripts to reproduce simulations,
and to run Relate on imputed ancient genomes, and downstream
analyses, including computation of f-statistics and running qpAdm
models, are available through GitHub (https://github.com/leospeidel/
twigstats_paper).
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gpAdm modelling of Metal Age and early Medieval Europe (Figs.2,3and 4),
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Extended DataFig. 3 |Simulations. a, Theoretically computed rstratified

by minor allele frequency between true genotypes and genotypes with
randomlyintroduced errors (Methods), emulatingimputation accuracy plots.
b, Admixture simulation where sources P1and P2 split250 or 500 generations
agoand apulseadmixture event gives rise toatarget population PX50
generations ago. We vary demographic history, error rates, and sample sizes
andsimulate 20 replicates for each scenario (see Methods for simulation
details). Admixture proportions are computed using an f,-ratio statistic and the
Twigstats cutoffis set to twice the source splittime and the rare variant cutoff
is5%. We plot two standard errors around the mean. ¢, qpAdm simulation taken
from??, as well as an adapted version where all population split times and
theadmixture date are divided by 5. The Twigstats cutofftimeis chosento be

1200 generations (top) and 600 generations (bottom). We simulate 10 replicates
and plot two standard errors around the mean. d, Simulation adapted from? of
astepping stonemodel with 9 populations organised ona1-dimensional grid as
shown, whereindividuals are able to migrate between adjacent fields. Weruna
rotational qpAdm to fit population 4 using other pairs of populations to the left
andrightassources. Werun 50 replicates and set the p-value of models with
inferred proportions outside of [0,1] to 0. We then compute the proportion
where agiven pair achieves the best p-value (top) and show the median p-value
acrossthesereplicates (bottom). In all simulationsinb, ¢, d, we sample N=20
haploid sequences per population, except for one simulationinb, where we
sample N =100sequences.
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We place mutations at the samerelative height between the lower and upper
endsofabranchasinthetruetreestoremove the uncertaintyinwhenonthe
branch the mutation occurred, so that we would recover the true allele age
fromacorrectlyinferred genealogy. ¢, Pearson correlationbetween MAF, true
mutation age, and Relate mutation ages, as well as the same comparisons when
restricting to mutations of MAF less than 0.1.

b,Sameasabutusing mutationages determined by Relate-inferred genealogies.
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Extended DataFig. 5| Three examples of applying Twigstats. aFine-scale
populationstructure simulation emulating ref. 39 (see Methods for simulation

details). First two principal components are computed from pairwise outgroup

f;statistics onthe genotypes directly and on Relate trees inferred from the

50targetindividuals. Labelsin plots show the average coordinates of members

ofthat population. For each panel, we calculate aseparationindex (SI) asin®,
which we define as the proportion ofindividuals for which the closest
individual (by the Euclidean distance in PC space) is in the same population.
b, Fine-scale geneticstructure in Neolithic Europe quantified usingan MDS
calculated on asymmetric matrix that contains all pairwise outgroup f;
statistics (outgroup: YRI) betweenindividuals. These are either calculated
directly ongenotypesor calculated using Twigstats on Relate genealogies
with acutoffof1000 generations. Individuals were selected by filtering based
onSteppe and Western Hunter-gatherer ancestry (Methods). ¢, Admixture
proportionsinferred using qpAdm with three distal sources of Western

cutoff (gens)

Hunter-gatherers, early European farmers, and Yamnaya Steppe people*.

We show results for Twigstats-5000. Biasis measured as the difference in
admixture proportions obtained from Twigstats-5000 and all SNPs, and

we show standard errors of the latter. We plot two standard errors around
themean. The standard errorimprovement shown is one minus the ratio of
standard errors obtained from Twigstats-5000 and using all SNPs.d, Neanderthal
admixture proportioninferred using anf,-ratio of the formf,(outgroup, Altai,
target, Mbuti)/f,(outgroup, Altai, Vindija, Mbuti). We compute these on genetic
variation data from the Simon’s Genome Diversity Project (SGDP)” and use the
high-coverage Altai and VindijaNeanderthals’®”°. We also compute equivalent
fi-ratiostatisticsin asimulation emulating Neanderthaladmixture 50,000 years
agoandasecond simulationinvolving no Neanderthaladmixture but deep
structure thatleads toasimilarinference unless deep coalescences are ignored
by Twigstats. We plot two standard errors around the mean.
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Extended DataFig.7|Ancestry estimates stratified by genetic sex.a, Map
showingancestry carried by each Scandinavian Viking age individual. b, Ancestry
proportionsacrossindividuals grouped by Latitude and genetic sex. ¢, Odds
ratio and p-values calculated using atwo-sided Fisher’s exact test on the number
of males and females carrying each ancestry in Viking Age Denmark, Sweden,
Norway, Iceland, and Gotland. d, F,values of the form f,(Scandinavian_Peninsula_
EIA(]), alternative source group, males in Viking group, females in Viking group)
computed using all SNPs and Twigstats. A significantly positive valueis

CentralEastEurasia

evidence of attraction of females with pop2 or males with Scandinavian_
Peninsula_EIA(I). Number of males and females is shownin each facet title and
werestrict to groups with at least four males and females. We plot one standard
error. e, Map showing ‘farflung’ Viking individuals grouped by ancestry and
geneticsex.Incontrastto Fig.4aand d where we showed results for the ‘best’
gqpAdmmodel, herein panelsa,b, c,and e, anindividualis assigned an ancestry
group, ifit hasany accepted model (p > 0.01) where that ancestry features.
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Extended DataFig. 8| Replication previous Viking Age ancestry modelling.
a, P-values of 1-source qpAdm models with target groups shown as rows and
source groups shown as columns, replicating Extended Data Fig. 5a of ref. 6
Left column uses p-values obtained fromref. 6. Middle and right column
correspond to newly computed p-valuesinagpAdm using, respectively, all
SNPs and Twigstats-2000. Outgroups are YRI, CHB, DevilsCave_N.SG, WHG,
EHG, Anatolia_N, Yamnaya, Estonia_CordedWare.SG (Supplementary Table1).
Weexcluded Denmark_IA.SG and England_Roman.SG from the rotational
scheme as these groups overlap inancestry with England_IA.SGand Norway _IA,
respectively. Only samples with coverage exceeding 0.5 are used. For each target
group, the source group with the largest p-valueis shown with ablackcircle.

b, gpAdm models of ref. 7where modern populations are used as sources.
Asinref.7, weshowancestry proportions averaged over individualsin each
group, where for each individual the model with the smallest number of
sources and largest p-valueis chosen. ¢, Replication using the same target
samples asinb. We fit amaximum of two sources and choose the model with
the smallest number of sources and largest p-value, requiring p > 0.01 for
1sourceand p >0.001for2source models. The set of individualsusedinband ¢
areidenticaland arecomprised of targets withanaccepted modelinall SNPs
and Twigstats-1000, removing 15 of 167 individuals. We additionally remove 17
individuals that did not have afeasible modelinref.7.
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Our web collection on statistics for biologists contains articles on many of the points above.
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Data analysis We used bcftools 1.19, samtools 1.3.1, bwa aln 0.7.17-r1188, GLIMPSEv1.1.1, Relate v1.2.1, and R packages stats (v3.6.2), admixtools2
(v2.0.4). Code for twigstats (v1.0.1) is available through https://github.com/leospeidel/twigstats and https://zenodo.org/records/13833120.
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All ancient DNA data used in this study was publically available and is listed in Extended Data Table 1. The corresponding accession codes are: ERS2540893,
PRJEB11004, PRIEB11364, PRIEB11848, PRJEB11995, PRIEB13123, PRIEB14180, PRIEB14675, PRIEB14737, PRIEB18067, PRIEB20614, PRIEB20658, PRJIEB21037,
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Population characteristics We have included samples from Western and Central Eurasia spanning the last 10,000 years.

Recruitment We used publicly available ancient DNA samples. These are subject to sampling bias, that may arise for instance due to burial
context. In particular, current technologies are unable to extract DNA from cremation burials which have been frequent in
some cultural contexts.

Ethics oversight N/A

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Life sciences study design

All studies must disclose on these points even when the disclosure is negative.
Sample size We aimed to compile a close to exhaustive list of ancient genomes with Western and Central Eurasian ancestries and then filtered by
sequencing technology (shotgun sequencing), sequencing coverage (>0.5x), and excluded close relatives. Our final dataset comprised 1,151
genomes in total.

Data exclusions  We only used samples that were sequenced genome-wide to an average sequencing coverage of 0.5x. We excluded close relatives.

Replication We conducted two replication analyses of previous work (Extended Data Figure 8) to make sure our findings are consistent with current
knowledge. We conducted non-parametric and parametric modeling to confirm that our findings are robust to some modeling assumptions.

Randomization  We ran ancestry models both on a per individual basis, as well as grouping individuals according to archaeological context provided by the
reference and as detailed in Sl Table 1. To select source groups in our ancestry modelling, we used a clustering approach described in the

Methods section.

Blinding We used existing data and so blinding was not possible.
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Novel plant genotypes Describe the methods by which all novel plant genotypes were produced. This includes those generated by transgenic approaches,
gene editing, chemical/radiation-based mutagenesis and hybridization. For transgenic lines, describe the transformation method, the
number of independent lines analyzed and the generation upon which experiments were performed. For gene-edited lines, describe
the editor used, the endogenous sequence targeted for editing, the targeting guide RNA sequence (if applicable) and how the editor

was applied-
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assess the effect of a mutation and, where applicable, how potential secondary effects (e.g. second site T-DNA insertions, mosiacism,
off-target gene editing) were examined.
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