Nothing Special   »   [go: up one dir, main page]

Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

IL-9-producing T cells: potential players in allergy and cancer

Abstract

IL-9-producing CD4+ T cells have been considered to represent a distinct T helper cell (TH cell) subset owing to their unique developmental programme in vitro, their expression of distinct transcription factors (including PU.1) and their copious production of IL-9. It remains debatable whether these cells represent a truly unique TH cell subset in vivo, but they are closely related to the T helper 2 (TH2) cells that are detected in allergic diseases. In recent years, increasing evidence has also indicated that IL-9-producing T cells may have potent abilities in eradicating advanced tumours, particularly melanomas. Here, we review the latest literature on the development of IL-9-producing T cells and their functions in disease settings, with a particular focus on allergy and cancer. We also discuss recent ideas concerning the therapeutic targeting of these cells in patients with chronic allergic diseases and their potential use in cancer immunotherapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Expanding views of IL-9-producing cells.
Fig. 2: Regulation and function of IL-9-producing cells in allergic diseases.
Fig. 3: Dual function of TH9 cells in cancer.
Fig. 4: Therapeutic strategies for targeting TH9 cells in allergy and cancer.

Similar content being viewed by others

References

  1. Veldhoen, M. et al. Transforming growth factor-beta ‘reprograms’ the differentiation of T helper 2 cells and promotes an interleukin 9-producing subset. Nat. Immunol. 9, 1341–1346 (2008). Along with Dardalhon et al. (2008), this article first describes a distinct population of TH9 cells generated in vitro in the presence of TGFβ and IL-4.

    CAS  PubMed  Google Scholar 

  2. Dardalhon, V. et al. IL-4 inhibits TGF-beta-induced Foxp3+ T cells and, together with TGF-beta, generates IL-9+ IL-10+ Foxp3- effector T cells. Nat. Immunol. 9, 1347–1355 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Chang, H. C. et al. The transcription factor PU.1 is required for the development of IL-9-producing T cells and allergic inflammation. Nat. Immunol. 11, 527–534 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Staudt, V. et al. Interferon-regulatory factor 4 is essential for the developmental program of T helper 9 cells. Immunity 33, 192–202 (2010).

    CAS  PubMed  Google Scholar 

  5. Goswami, R. et al. STAT6-dependent regulation of Th9 development. J. Immunol. 188, 968–975 (2012).

    CAS  PubMed  Google Scholar 

  6. Xiao, X. et al. OX40 signaling favors the induction of TH9 cells and airway inflammation. Nat. Immunol. 13, 981–990 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Jabeen, R. et al. Th9 cell development requires a BATF-regulated transcriptional network. J. Clin. Invest. 123, 4641–4653 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Kim, I. K. et al. Glucocorticoid-induced tumor necrosis factor receptor-related protein co-stimulation facilitates tumor regression by inducing IL-9-producing helper T cells. Nat. Med. 21, 1010–1017 (2015).

    CAS  PubMed  Google Scholar 

  9. Humblin, E. et al. IRF8-dependent molecular complexes control the Th9 transcriptional program. Nat. Commun. 8, 2085 (2017).

    PubMed  PubMed Central  Google Scholar 

  10. Benevides, L. et al. B lymphocyte-induced maturation protein 1 controls TH9 cell development, IL-9 production, and allergic inflammation. J. Allergy Clin. Immunol. 143, 1119–1130 (2019).

    CAS  PubMed  Google Scholar 

  11. Chen, C. Y. et al. Induction of interleukin-9-producing mucosal mast cells promotes susceptibility to IgE-mediated experimental food allergy. Immunity 43, 788–802 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Turner, J. E. et al. IL-9-mediated survival of type 2 innate lymphoid cells promotes damage control in helminth-induced lung inflammation. J. Exp. Med. 210, 2951–2965 (2013). Along with Wilhelm et al. (2011), this study demonstrates that IL-9 is produced by innate lymphoid cells and acts as an autocrine factor to promote their function and survival.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Micosse, C. et al. Human “TH9” cells are a subpopulation of PPAR-γ+ TH2 cells. Sci. Immunol. 4, eaat5943 (2019). This recent report shows that human TH9 cells are a phenotypically and functionally distinct subpopulation of TH2 cells.

    CAS  PubMed  Google Scholar 

  14. Eller, K. et al. IL-9 production by regulatory T cells recruits mast cells that are essential for regulatory T cell-induced immune suppression. J. Immunol. 186, 83–91 (2011).

    CAS  PubMed  Google Scholar 

  15. Wang, Y. et al. Germinal-center development of memory B cells driven by IL-9 from follicular helper T cells. Nat. Immunol. 18, 921–930 (2017).

    CAS  PubMed  Google Scholar 

  16. Takatsuka, S. et al. IL-9 receptor signaling in memory B cells regulates humoral recall responses. Nat. Immunol. 19, 1025–1034 (2018).

    CAS  PubMed  Google Scholar 

  17. Grencis, R. K., Hultner, L. & Else, K. J. Host protective immunity to Trichinella spiralis in mice: activation of Th cell subsets and lymphokine secretion in mice expressing different response phenotypes. Immunology 74, 329–332 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Behnke, J. M. et al. Immunological relationships during primary infection with Heligmosomoides polygyrus (Nematospiroides dubius): downregulation of specific cytokine secretion (IL-9 and IL-10) correlates with poor mastocytosis and chronic survival of adult worms. Parasite Immunol. 15, 415–421 (1993).

    CAS  PubMed  Google Scholar 

  19. Faulkner, H., Humphreys, N., Renauld, J. C., Van Snick, J. & Grencis, R. Interleukin-9 is involved in host protective immunity to intestinal nematode infection. Eur. J. Immunol. 27, 2536–2540 (1997).

    CAS  PubMed  Google Scholar 

  20. Nicolaides, N. C. et al. Interleukin 9: a candidate gene for asthma. Proc. Natl Acad. Sci. USA 94, 13175–13180 (1997).

    CAS  PubMed  Google Scholar 

  21. Temann, U. A., Geba, G. P., Rankin, J. A. & Flavell, R. A. Expression of interleukin 9 in the lungs of transgenic mice causes airway inflammation, mast cell hyperplasia, and bronchial hyperresponsiveness. J. Exp. Med. 188, 1307–1320 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Shimbara, A. et al. IL-9 and its receptor in allergic and nonallergic lung disease: increased expression in asthma. J. Allergy Clin. Immunol. 105, 108–115 (2000).

    CAS  PubMed  Google Scholar 

  23. Kung, T. T. et al. Effect of anti-mIL-9 antibody on the development of pulmonary inflammation and airway hyperresponsiveness in allergic mice. Am. J. Respir. Cell Mol. Biol. 25, 600–605 (2001).

    CAS  PubMed  Google Scholar 

  24. Cheng, G. et al. Anti-interleukin-9 antibody treatment inhibits airway inflammation and hyperreactivity in mouse asthma model. Am. J. Respir. Crit. Care Med. 166, 409–416 (2002).

    PubMed  Google Scholar 

  25. McMillan, S. J., Bishop, B., Townsend, M. J., McKenzie, A. N. & Lloyd, C. M. The absence of interleukin 9 does not affect the development of allergen-induced pulmonary inflammation nor airway hyperreactivity. J. Exp. Med. 195, 51–57 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Xiao, X. et al. Guidance of super-enhancers in regulation of IL-9 induction and airway inflammation. J. Exp. Med. 215, 559–574 (2018). Along with Schwartz et al. (2019), this study demonstrates that the repression of the Il9 locus in TH9 cells may control the pathology in TH9-associated allergic lung disease.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Lloyd, C. M. & Harker, J. A. Epigenetic control of interleukin-9 in asthma. N. Engl. J. Med. 379, 87–89 (2018).

    PubMed  Google Scholar 

  28. Schwartz, D. M. et al. Retinoic acid receptor alpha represses a Th9 transcriptional and epigenomic program to reduce allergic pathology. Immunity 50, 106–120 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Purwar, R. et al. Robust tumor immunity to melanoma mediated by interleukin-9-producing T cells. Nat. Med. 18, 1248–1253 (2012). This is the first study showing an antitumour effect of TH9 cells on a solid tumour.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Vegran, F. et al. The transcription factor IRF1 dictates the IL-21-dependent anticancer functions of TH9 cells. Nat. Immunol. 15, 758–766 (2014).

    CAS  PubMed  Google Scholar 

  31. Lu, Y. et al. Th9 cells represent a unique subset of CD4+ T cells endowed with the ability to eradicate advanced tumors. Cancer Cell 33, 1048–1060 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Uyttenhove, C., Simpson, R. J. & Van Snick, J. Functional and structural characterization of P40, a mouse glycoprotein with T-cell growth factor activity. Proc. Natl Acad. Sci. USA 85, 6934–6938 (1988).

    CAS  PubMed  Google Scholar 

  33. Hultner, L. et al. Mast cell growth-enhancing activity (MEA) is structurally related and functionally identical to the novel mouse T cell growth factor P40/TCGFIII (interleukin 9). Eur. J. Immunol. 20, 1413–1416 (1990).

    CAS  PubMed  Google Scholar 

  34. Schmitt, E., Van Brandwijk, R., Van Snick, J., Siebold, B. & Rude, E. TCGF III/P40 is produced by naive murine CD4+ T cells but is not a general T cell growth factor. Eur. J. Immunol. 19, 2167–2170 (1989).

    CAS  PubMed  Google Scholar 

  35. Gessner, A., Blum, H. & Rollinghoff, M. Differential regulation of IL-9-expression after infection with Leishmania major in susceptible and resistant mice. Immunobiology 189, 419–435 (1993).

    CAS  PubMed  Google Scholar 

  36. Van Snick, J. et al. Cloning and characterization of a cDNA for a new mouse T cell growth factor (P40). J. Exp. Med. 169, 363–368 (1989).

    PubMed  Google Scholar 

  37. Wilhelm, C. et al. An IL-9 fate reporter demonstrates the induction of an innate IL-9 response in lung inflammation. Nat. Immunol. 12, 1071–1077 (2011). This study reports induction of IL-9 from innate lymphoid cells and a potential involvement of IL-9 in allergic lung diseases via the promotion of IL-5 and IL-13 production in innate lymphoid cells.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Licona-Limon, P. et al. Th9 cells drive host immunity against gastrointestinal worm infection. Immunity 39, 744–757 (2013).

    CAS  PubMed  Google Scholar 

  39. Tan, C. et al. Antigen-specific Th9 cells exhibit uniqueness in their kinetics of cytokine production and short retention at the inflammatory site. J. Immunol. 185, 6795–6801 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Jones, C. P. et al. Activin A and TGF-β promote TH9 cell-mediated pulmonary allergic pathology. J. Allergy Clin. Immunol. 129, 1000–1010 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Schlapbach, C. et al. Human TH9 cells are skin-tropic and have autocrine and paracrine proinflammatory capacity. Sci. Transl Med. 6, 219ra8 (2014). This study reports the existence of human TH9 cells as a discrete T cell subset independent of TGFβ and IL-2 and tropic for the skin.

    PubMed  PubMed Central  Google Scholar 

  42. Wambre, E. et al. A phenotypically and functionally distinct human TH2 cell subpopulation is associated with allergic disorders. Sci. Transl Med. 9, eaam9171 (2017).

    PubMed  PubMed Central  Google Scholar 

  43. Elyaman, W. et al. IL-9 induces differentiation of TH17 cells and enhances function of FoxP3+ natural regulatory T cells. Proc. Natl Acad. Sci. USA 106, 12885–12890 (2009).

    CAS  PubMed  Google Scholar 

  44. Nowak, E. C. et al. IL-9 as a mediator of Th17-driven inflammatory disease. J. Exp. Med. 206, 1653–1660 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Beriou, G. et al. TGF-beta induces IL-9 production from human Th17 cells. J. Immunol. 185, 46–54 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Wong, M. T. et al. Regulation of human Th9 differentiation by type I interferons and IL-21. Immunol. Cell Biol. 88, 624–631 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Lu, L. F. et al. Mast cells are essential intermediaries in regulatory T-cell tolerance. Nature 442, 997–1002 (2006).

    CAS  PubMed  Google Scholar 

  48. Malik, S. et al. Transcription factor Foxo1 is essential for IL-9 induction in T helper cells. Nat. Commun. 8, 815 (2017).

    PubMed  PubMed Central  Google Scholar 

  49. Stanko, K. et al. CD96 expression determines the inflammatory potential of IL-9-producing Th9 cells. Proc. Natl Acad. Sci. USA 115, E2940–E2949 (2018).

    CAS  PubMed  Google Scholar 

  50. Moro, K. et al. Innate production of TH2 cytokines by adipose tissue-associated c-Kit+Sca-1+ lymphoid cells. Nature 463, 540–544 (2010).

    CAS  PubMed  Google Scholar 

  51. Neill, D. R. et al. Nuocytes represent a new innate effector leukocyte that mediates type-2 immunity. Nature 464, 1367–1370 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Price, A. E. et al. Systemically dispersed innate IL-13-expressing cells in type 2 immunity. Proc. Natl Acad. Sci. USA 107, 11489–11494 (2010).

    CAS  PubMed  Google Scholar 

  53. Mjosberg, J. et al. The transcription factor GATA3 is essential for the function of human type 2 innate lymphoid cells. Immunity 37, 649–659 (2012).

    PubMed  Google Scholar 

  54. Stassen, M. et al. Murine bone marrow-derived mast cells as potent producers of IL-9: costimulatory function of IL-10 and kit ligand in the presence of IL-1. J. Immunol. 164, 5549–5555 (2000).

    CAS  PubMed  Google Scholar 

  55. Nagato, T. et al. Expression of interleukin-9 in nasal natural killer/T-cell lymphoma cell lines and patients. Clin. Cancer Res. 11, 8250–8257 (2005).

    CAS  PubMed  Google Scholar 

  56. Visekruna, A. et al. Tc9 cells, a new subset of CD8+ T cells, support Th2-mediated airway inflammation. Eur. J. Immunol. 43, 606–618 (2013).

    CAS  PubMed  Google Scholar 

  57. Lu, Y. et al. Tumor-specific IL-9-producing CD8+ Tc9 cells are superior effector than type-I cytotoxic Tc1 cells for adoptive immunotherapy of cancers. Proc. Natl Acad. Sci. USA 111, 2265–2270 (2014).

    CAS  PubMed  Google Scholar 

  58. Peters, C., Hasler, R., Wesch, D. & Kabelitz, D. Human Vdelta2 T cells are a major source of interleukin-9. Proc. Natl Acad. Sci. USA 113, 12520–12525 (2016).

    CAS  PubMed  Google Scholar 

  59. Russell, S. M. et al. Interaction of IL-2R beta and gamma c chains with Jak1 and Jak3: implications for XSCID and XCID. Science 266, 1042–1045 (1994).

    CAS  PubMed  Google Scholar 

  60. Kimura, Y. et al. Sharing of the IL-2 receptor gamma chain with the functional IL-9 receptor complex. Int. Immunol. 7, 115–120 (1995).

    CAS  PubMed  Google Scholar 

  61. Renauld, J. C. et al. Expression cloning of the murine and human interleukin 9 receptor cDNAs. Proc. Natl Acad. Sci. USA 89, 5690–5694 (1992).

    CAS  PubMed  Google Scholar 

  62. Townsend, J. M. et al. IL-9-deficient mice establish fundamental roles for IL-9 in pulmonary mastocytosis and goblet cell hyperplasia but not T cell development. Immunity 13, 573–583 (2000).

    CAS  PubMed  Google Scholar 

  63. Kearley, J. et al. IL-9 governs allergen-induced mast cell numbers in the lung and chronic remodeling of the airways. Am. J. Respir. Crit. Care Med. 183, 865–875 (2011).

    CAS  PubMed  Google Scholar 

  64. Sehra, S. et al. TH9 cells are required for tissue mast cell accumulation during allergic inflammation. J. Allergy Clin. Immunol. 136, 433–440 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Forbes, E. E. et al. IL-9- and mast cell-mediated intestinal permeability predisposes to oral antigen hypersensitivity. J. Exp. Med. 205, 897–913 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Vink, A., Warnier, G., Brombacher, F. & Renauld, J. C. Interleukin 9-induced in vivo expansion of the B-1 lymphocyte population. J. Exp. Med. 189, 1413–1423 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Temann, U. A., Ray, P. & Flavell, R. A. Pulmonary overexpression of IL-9 induces Th2 cytokine expression, leading to immune pathology. J. Clin. Invest. 109, 29–39 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Longphre, M. et al. Allergen-induced IL-9 directly stimulates mucin transcription in respiratory epithelial cells. J. Clin. Invest. 104, 1375–1382 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Louahed, J. et al. Interleukin-9 upregulates mucus expression in the airways. Am. J. Respir. Cell Mol. Biol. 22, 649–656 (2000).

    CAS  PubMed  Google Scholar 

  70. Gounni, A. S. et al. IL-9-mediated induction of eotaxin1/CCL11 in human airway smooth muscle cells. J. Immunol. 173, 2771–2779 (2004).

    CAS  PubMed  Google Scholar 

  71. Gerlach, K. et al. TH9 cells that express the transcription factor PU.1 drive T cell-mediated colitis via IL-9 receptor signaling in intestinal epithelial cells. Nat. Immunol. 15, 676–686 (2014).

    CAS  PubMed  Google Scholar 

  72. Schmitt, E. et al. IL-9 production of naive CD4+ T cells depends on IL-2, is synergistically enhanced by a combination of TGF-beta and IL-4, and is inhibited by IFN-gamma. J. Immunol. 153, 3989–3996 (1994). This early report is the first to demonstrate the effect of TGFβ and IL-4 in enhancing IL-9 production from activated T cells.

    CAS  PubMed  Google Scholar 

  73. Chang, H. C. et al. PU.1 expression delineates heterogeneity in primary Th2 cells. Immunity 22, 693–703 (2005).

    CAS  PubMed  Google Scholar 

  74. Kara, E. E. et al. Distinct chemokine receptor axes regulate Th9 cell trafficking to allergic and autoimmune inflammatory sites. J. Immunol. 191, 1110–1117 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Wang, A. et al. Cutting edge: Smad2 and Smad4 regulate TGF-β-mediated Il9 gene expression via EZH2 displacement. J. Immunol. 191, 4908–4912 (2013).

    CAS  PubMed  Google Scholar 

  76. Yang, X. O. et al. The signaling suppressor CIS controls proallergic T cell development and allergic airway inflammation. Nat. Immunol. 14, 732–740 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Olson, M. R., Verdan, F. F., Hufford, M. M., Dent, A. L. & Kaplan, M. H. STAT3 impairs STAT5 activation in the development of IL-9-secreting T cells. J. Immunol. 196, 3297–3304 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Ulrich, B. J., Verdan, F. F., McKenzie, A. N., Kaplan, M. H. & Olson, M. R. STAT3 activation impairs the stability of Th9 cells. J. Immunol. 198, 2302–2309 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Becker, K. L. et al. Th2 and Th9 responses in patients with chronic mucocutaneous candidiasis and hyper-IgE syndrome. Clin. Exp. Allergy 46, 1564–1574 (2016).

    CAS  PubMed  Google Scholar 

  80. Zhang, Y. et al. Human TH9 differentiation is dependent on signal transducer and activator of transcription (STAT) 3 to restrain STAT1-mediated inhibition. J. Allergy Clin. Immunol. 143, 1108–1118 (2019).

    CAS  PubMed  Google Scholar 

  81. Liao, W. et al. Opposing actions of IL-2 and IL-21 on Th9 differentiation correlate with their differential regulation of BCL6 expression. Proc. Natl Acad. Sci. USA 111, 3508–3513 (2014).

    CAS  PubMed  Google Scholar 

  82. Gomez-Rodriguez, J. et al. Itk is required for Th9 differentiation via TCR-mediated induction of IL-2 and IRF4. Nat. Commun. 7, 10857 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Angkasekwinai, P., Chang, S. H., Thapa, M., Watarai, H. & Dong, C. Regulation of IL-9 expression by IL-25 signaling. Nat. Immunol. 11, 250–256 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Ramadan, A. et al. Specifically differentiated T cell subset promotes tumor immunity over fatal immunity. J. Exp. Med. 214, 3577–3596 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Yao, W. et al. Interleukin-9 is required for allergic airway inflammation mediated by the cytokine TSLP. Immunity 38, 360–372 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Angkasekwinai, P. et al. Interleukin-25 (IL-25) promotes efficient protective immunity against Trichinella spiralis infection by enhancing the antigen-specific IL-9 response. Infect. Immun. 81, 3731–3741 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Schmitt, E. et al. IL-1 serves as a secondary signal for IL-9 expression. J. Immunol. 147, 3848–3854 (1991).

    CAS  PubMed  Google Scholar 

  88. Xue, G., Jin, G., Fang, J. & Lu, Y. IL-4 together with IL-1beta induces antitumor Th9 cell differentiation in the absence of TGF-beta signaling. Nat. Commun. 10, 1376 (2019).

    PubMed  PubMed Central  Google Scholar 

  89. Jash, A. et al. Nuclear factor of activated T cells 1 (NFAT1)-induced permissive chromatin modification facilitates nuclear factor-kappaB (NF-kappaB)-mediated interleukin-9 (IL-9) transactivation. J. Biol. Chem. 287, 15445–15457 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Tsuda, M. et al. A role for BATF3 in TH9 differentiation and T-cell-driven mucosal pathologies. Mucosal Immunol. 12, 644–655 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Postma, D. S. et al. Genetic susceptibility to asthma–bronchial hyperresponsiveness coinherited with a major gene for atopy. N. Engl. J. Med. 333, 894–900 (1995).

    CAS  PubMed  Google Scholar 

  92. Doull, I. J. et al. Allelic association of gene markers on chromosomes 5q and 11q with atopy and bronchial hyperresponsiveness. Am. J. Respir. Crit. Care Med. 153, 1280–1284 (1996).

    CAS  PubMed  Google Scholar 

  93. Ulbrecht, M. et al. High serum IgE concentrations: association with HLA-DR and markers on chromosome 5q31 and chromosome 11q13. J. Allergy Clin. Immunol. 99, 828–836 (1997).

    CAS  PubMed  Google Scholar 

  94. Mock, B. A. et al. IL9 maps to mouse chromosome 13 and human chromosome 5. Immunogenetics 31, 265–270 (1990).

    CAS  PubMed  Google Scholar 

  95. Kelleher, K. et al. Human interleukin-9: genomic sequence, chromosomal location, and sequences essential for its expression in human T-cell leukemia virus (HTLV)-I-transformed human T cells. Blood 77, 1436–1441 (1991).

    CAS  PubMed  Google Scholar 

  96. McLane, M. P. et al. Interleukin-9 promotes allergen-induced eosinophilic inflammation and airway hyperresponsiveness in transgenic mice. Am. J. Respir. Cell Mol. Biol. 19, 713–720 (1998).

    CAS  PubMed  Google Scholar 

  97. Levitt, R. C. et al. IL-9 pathway in asthma: new therapeutic targets for allergic inflammatory disorders. J. Allergy Clin. Immunol. 103, S485–S491 (1999).

    CAS  PubMed  Google Scholar 

  98. Dong, Q. et al. IL-9 induces chemokine expression in lung epithelial cells and baseline airway eosinophilia in transgenic mice. Eur. J. Immunol. 29, 2130–2139 (1999).

    CAS  PubMed  Google Scholar 

  99. Angkasekwinai, P. TH9 cells in allergic disease. Curr. Allergy Asthma Rep. 19, 29 (2019).

    PubMed  Google Scholar 

  100. Tsicopoulos, A. et al. Involvement of IL-9 in the bronchial phenotype of patients with nasal polyposis. J. Allergy Clin. Immunol. 113, 462–469 (2004).

    CAS  PubMed  Google Scholar 

  101. Ma, L. et al. Possible pathogenic role of T helper type 9 cells and interleukin (IL)-9 in atopic dermatitis. Clin. Exp. Immunol. 175, 25–31 (2014).

    CAS  PubMed  Google Scholar 

  102. Brough, H. A. et al. IL-9 is a key component of memory TH cell peanut-specific responses from children with peanut allergy. J. Allergy Clin. Immunol. 134, 1329–1338 (2014).

    CAS  PubMed  Google Scholar 

  103. Osterfeld, H. et al. Differential roles for the IL-9/IL-9 receptor alpha-chain pathway in systemic and oral antigen-induced anaphylaxis. J. Allergy Clin. Immunol. 125, 469–476 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Steenwinckel, V. et al. IL-13 mediates in vivo IL-9 activities on lung epithelial cells but not on hematopoietic cells. J. Immunol. 178, 3244–3251 (2007).

    CAS  PubMed  Google Scholar 

  105. Jones, T. G. et al. Antigen-induced increases in pulmonary mast cell progenitor numbers depend on IL-9 and CD1d-restricted NKT cells. J. Immunol. 183, 5251–5260 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Uyttenhove, C. et al. Autonomous growth and tumorigenicity induced by P40/interleukin 9 cDNA transfection of a mouse P40-dependent T cell line. J. Exp. Med. 173, 519–522 (1991).

    CAS  PubMed  Google Scholar 

  107. Merz, H. et al. Interleukin-9 expression in human malignant lymphomas: unique association with Hodgkin’s disease and large cell anaplastic lymphoma. Blood 78, 1311–1317 (1991).

    CAS  PubMed  Google Scholar 

  108. Gruss, H. J., Brach, M. A., Drexler, H. G., Bross, K. J. & Herrmann, F. Interleukin 9 is expressed by primary and cultured Hodgkin and Reed-Sternberg cells. Cancer Res. 52, 1026–1031 (1992).

    CAS  PubMed  Google Scholar 

  109. Renauld, J. C. et al. Thymic lymphomas in interleukin 9 transgenic mice. Oncogene 9, 1327–1332 (1994).

    CAS  PubMed  Google Scholar 

  110. Vink, A., Renauld, J. C., Warnier, G. & Van Snick, J. Interleukin-9 stimulates in vitro growth of mouse thymic lymphomas. Eur. J. Immunol. 23, 1134–1138 (1993).

    CAS  PubMed  Google Scholar 

  111. Fischer, M. et al. Increased serum levels of interleukin-9 correlate to negative prognostic factors in Hodgkin’s lymphoma. Leukemia 17, 2513–2516 (2003).

    CAS  PubMed  Google Scholar 

  112. Qiu, L. et al. Autocrine release of interleukin-9 promotes Jak3-dependent survival of ALK+ anaplastic large-cell lymphoma cells. Blood 108, 2407–2415 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Feng, L. L., Gao, J. M., Li, P. P. & Wang, X. IL-9 contributes to immunosuppression mediated by regulatory T cells and mast cells in B-cell non-Hodgkin’s lymphoma. J. Clin. Immunol. 31, 1084–1094 (2011).

    CAS  PubMed  Google Scholar 

  114. Lv, X., Feng, L., Ge, X., Lu, K. & Wang, X. Interleukin-9 promotes cell survival and drug resistance in diffuse large B-cell lymphoma. J. Exp. Clin. Cancer Res. 35, 106 (2016).

    PubMed  PubMed Central  Google Scholar 

  115. Chen, J. et al. Induction of the IL-9 gene by HTLV-I Tax stimulates the spontaneous proliferation of primary adult T-cell leukemia cells by a paracrine mechanism. Blood 111, 5163–5172 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Demoulin, J. B. et al. STAT5 activation is required for interleukin-9-dependent growth and transformation of lymphoid cells. Cancer Res. 60, 3971–3977 (2000).

    CAS  PubMed  Google Scholar 

  117. Demoulin, J. B., Van Snick, J. & Renauld, J. C. Interleukin-9 (IL-9) induces cell growth arrest associated with sustained signal transducer and activator of transcription activation in lymphoma cells overexpressing the IL-9 receptor. Cell Growth Differ. 12, 169–174 (2001).

    CAS  PubMed  Google Scholar 

  118. Carlsson, A. et al. Molecular serum portraits in patients with primary breast cancer predict the development of distant metastases. Proc. Natl Acad. Sci. USA 108, 14252–14257 (2011).

    CAS  PubMed  Google Scholar 

  119. Ye, Z. J. et al. Differentiation and immune regulation of IL-9-producing CD4+ T cells in malignant pleural effusion. Am. J. Respir. Crit. Care Med. 186, 1168–1179 (2012).

    CAS  PubMed  Google Scholar 

  120. Hoelzinger, D. B., Dominguez, A. L., Cohen, P. A. & Gendler, S. J. Inhibition of adaptive immunity by IL9 can be disrupted to achieve rapid T-cell sensitization and rejection of progressive tumor challenges. Cancer Res. 74, 6845–6855 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Tan, H., Wang, S. & Zhao, L. A tumour-promoting role of Th9 cells in hepatocellular carcinoma through CCL20 and STAT3 pathways. Clin. Exp. Pharmacol. Physiol. 44, 213–221 (2017).

    CAS  PubMed  Google Scholar 

  122. Lu, Y. et al. Th9 cells promote antitumor immune responses in vivo. J. Clin. Invest. 122, 4160–4171 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Abdul-Wahid, A. et al. Induction of antigen-specific TH 9 immunity accompanied by mast cell activation blocks tumor cell engraftment. Int. J. Cancer 139, 841–853 (2016).

    CAS  PubMed  Google Scholar 

  124. Zhao, Y. et al. Dectin-1-activated dendritic cells trigger potent antitumour immunity through the induction of Th9 cells. Nat. Commun. 7, 12368 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Bu, X. N. et al. Recruitment and phenotypic characteristics of interleukin 9-producing CD4+ T cells in malignant pleural effusion. Lung 191, 385–389 (2013).

    CAS  PubMed  Google Scholar 

  126. Parrot, T. et al. IL-9 promotes the survival and function of human melanoma-infiltrating CD4+ CD8+ double-positive T cells. Eur. J. Immunol. 46, 1770–1782 (2016).

    CAS  PubMed  Google Scholar 

  127. Kim, M. S., Cho, K. A., Cho, Y. J. & Woo, S. Y. Effects of interleukin-9 blockade on chronic airway inflammation in murine asthma models. Allergy Asthma Immunol. Res. 5, 197–206 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. White, B., Leon, F., White, W. & Robbie, G. Two first-in-human, open-label, phase I dose-escalation safety trials of MEDI-528, a monoclonal antibody against interleukin-9, in healthy adult volunteers. Clin. Ther. 31, 728–740 (2009).

    CAS  PubMed  Google Scholar 

  129. Parker, J. M. et al. Safety profile and clinical activity of multiple subcutaneous doses of MEDI-528, a humanized anti-interleukin-9 monoclonal antibody, in two randomized phase 2a studies in subjects with asthma. BMC Pulm. Med. 11, 14 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Oh, C. K. et al. A randomized, controlled trial to evaluate the effect of an anti-interleukin-9 monoclonal antibody in adults with uncontrolled asthma. Respir. Res. 14, 93 (2013).

    PubMed  PubMed Central  Google Scholar 

  131. Nonomura, Y. et al. Peripheral blood Th9 cells are a possible pharmacodynamic biomarker of nivolumab treatment efficacy in metastatic melanoma patients. Oncoimmunology 5, e1248327 (2016).

    PubMed  PubMed Central  Google Scholar 

  132. Anuradha, R. et al. IL-10- and TGFβ-mediated Th9 responses in a human helminth infection. PLoS Negl. Trop. Dis. 10, e0004317 (2016).

    PubMed  PubMed Central  Google Scholar 

  133. Moretti, S. et al. A mast cell-ILC2-Th9 pathway promotes lung inflammation in cystic fibrosis. Nat. Commun. 8, 14017 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank their colleagues for scientific insights. C.D.’s research is supported, in part, by grants from the National Key Research and Development Program of China (2016YFC0906200), the National Natural Science Foundation of China (31630022, 31991173, 31821003 and 91642201) and Beijing Municipal Science and Technology (Z181100001318007, Z181100006318015 and Z171100000417005). P.A.’s research is supported by a grant from the Thai Government Research Fund (630000050161). The authors acknowledge and apologize to those whose important contributions could not be cited owing to space limitations.

Author information

Authors and Affiliations

Authors

Contributions

P.A. and C.D. developed the article together. P.A. drafted the article and C.D. revised it.

Corresponding author

Correspondence to Chen Dong.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Immunology thanks C. Schlapbach, S. Tangye and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Papain

A cysteine protease allergen that has been commonly used as a model of exposure to natural allergen sources to induce allergic airway inflammation in mice. On airway papain challenge, it can trigger type 2 T helper cell-type cytokine production, induce eosinophilia and enhance IgE production.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Angkasekwinai, P., Dong, C. IL-9-producing T cells: potential players in allergy and cancer. Nat Rev Immunol 21, 37–48 (2021). https://doi.org/10.1038/s41577-020-0396-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41577-020-0396-0

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer