Nothing Special   »   [go: up one dir, main page]

Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Human organs-on-chips for disease modelling, drug development and personalized medicine

Abstract

The failure of animal models to predict therapeutic responses in humans is a major problem that also brings into question their use for basic research. Organ-on-a-chip (organ chip) microfluidic devices lined with living cells cultured under fluid flow can recapitulate organ-level physiology and pathophysiology with high fidelity. Here, I review how single and multiple human organ chip systems have been used to model complex diseases and rare genetic disorders, to study host–microbiome interactions, to recapitulate whole-body inter-organ physiology and to reproduce human clinical responses to drugs, radiation, toxins and infectious pathogens. I also address the challenges that must be overcome for organ chips to be accepted by the pharmaceutical industry and regulatory agencies, as well as discuss recent advances in the field. It is evident that the use of human organ chips instead of animal models for drug development and as living avatars for personalized medicine is ever closer to realization.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The range of microfluidic organ chip designs.
Fig. 2: Schematics showing different multi-organ human body-on-chips formats.
Fig. 3: Modelling drug pharmacokinetics and pharmacodynamics in human body-on-chips.
Fig. 4: Human organ chip applications for personalized medicine.

Similar content being viewed by others

References

  1. Fabre, K. et al. Introduction to a manuscript series on the characterization and use of microphysiological systems (MPS) in pharmaceutical safety and ADME applications. Lab Chip 20, 1049–1057 (2020).

    Article  PubMed  Google Scholar 

  2. Golding, H., Khurana, S. & Zaitseva, M. What is the predictive value of animal models for vaccine efficacy in humans? The importance of bridging studies and species-independent correlates of protection. Cold Spring Harb. Persp. Biol. 10, a028902 (2018).

    Article  CAS  Google Scholar 

  3. Barrile, R. et al. Organ-on-chip recapitulates thrombosis induced by an anti-CD154 monoclonal antibody: translational potential of advanced microengineered systems. Clin. Pharmacol. Ther. 104, 1240–1248 (2018).

    Article  CAS  PubMed  Google Scholar 

  4. Seok, J. et al. Genomic responses in mouse models poorly mimic human inflammatory diseases. Proc. Natl Acad. Sci. USA 110, 3507–3512 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Franco, R. & Cedazo-Minguez, A. Successful therapies for Alzheimer’s disease: why so many in animal models and none in humans? Front. Pharmacol. 5, 146 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Zhang, B. et al. Advances in organ-on-a-chip engineering. Nat. Rev. Mater. 3, 257–278 (2018).

    Article  Google Scholar 

  7. Chen, Y. et al. Advances in engineered three-dimensional (3D) body articulation unit models. Drug Des. Dev. Ther. 16, 213–235 (2022).

    Article  Google Scholar 

  8. Victor, I. A., Andem, A. B., Archibong, I. A. & Iwok, E. O. Interplay between cell proliferation and cellular differentiation: a mutually exclusive paradigm. Glob. Sci. J. 8, 1328–1338 (2020).

    Google Scholar 

  9. Ghallab, A. In vitro test systems and their limitations. EXCLI J. 12, 1024–1026 (2013).

    PubMed  PubMed Central  Google Scholar 

  10. Clevers, H. Modeling development and disease with organoids. Cell 165, 1586–1597 (2016).

    Article  CAS  PubMed  Google Scholar 

  11. Huh, D. et al. Reconstituting organ-level lung functions on a chip. Science 328, 1662–1668 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Huh, D. et al. Acoustically detectable cellular-level lung injury induced by fluid mechanical stresses in microfluidic airway systems. Proc. Natl Acad. Sci. USA 104, 18886–18891 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Novak, R. et al. Robotic fluidic coupling and interrogation of multiple vascularized organ chips. Nat. Biomed. Eng. 4, 407–420 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Varone, A. et al. A novel organ-chip system emulates three-dimensional architecture of the human epithelia and the mechanical forces acting on it. Biomaterials 275, 120957 (2021).

    Article  CAS  PubMed  Google Scholar 

  15. Nguyen, D. H. et al. Biomimetic model to reconstitute angiogenic sprouting morphogenesis in vitro. Proc. Natl Acad. Sci. USA 110, 6712–6717 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Trietsch, S. J., Israëls, G. D., Joore, J., Hankemeier, T. & Vulto, P. Microfluidic titer plate for stratified 3D cell culture. Lab Chip 13, 3548–3554 (2013).

    Article  CAS  PubMed  Google Scholar 

  17. Phan, D. T. T. et al. A vascularized and perfused organ-on-a-chip platform for large-scale drug screening applications. Lab Chip 17, 511–520 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Miller, C. P., Tsuchida, C., Zheng, Y., Himmelfarb, J. & Akilesh, S. A 3D human renal cell carcinoma-on-a-chip for the study of tumor angiogenesis. Neoplasia 20, 610–620 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Cho, Y. et al. Three-dimensional in vitro lymphangiogenesis model in tumor microenvironment. Front. Bioeng. Biotechnol. 9, 697657 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Domansky, K. et al. Perfused multiwell plate for 3D liver tissue engineering. Lab Chip 10, 51–58 (2010).

    Article  CAS  PubMed  Google Scholar 

  21. Gard, A. L. et al. High-throughput human primary cell-based airway model for evaluating influenza, coronavirus, or other respiratory viruses in vitro. Sci. Rep. 11, 14961 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Homan, K. A. et al. Bioprinting of 3D convoluted renal proximal tubules on perfusable chips. Sci. Rep. 6, 34845 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lin, N. Y. C. et al. Renal reabsorption in 3D vascularized proximal tubule models. Proc. Natl Acad. Sci. USA 116, 5399–5404 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhang, Y. S. et al. Bioprinting 3D microfibrous scaffolds for engineering endothelialized myocardium and heart-on-a-chip. Biomaterials 110, 45–59 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Xiao, S. et al. A microfluidic culture model of the human reproductive tract and 28-day menstrual cycle. Nat. Commun. 8, 14584 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Tsamandouras, N. et al. Integrated gut and liver microphysiological systems for quantitative in vitro pharmacokinetic studies. AAPS J. 19, 1499–1512 (2017).

    Article  CAS  PubMed  Google Scholar 

  27. Edington, C. D. et al. Interconnected microphysiological systems for quantitative biology and pharmacology studies. Sci. Rep. 8, 4530 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Chen, W. L. K. et al. Integrated gut/liver microphysiological systems elucidates inflammatory inter-tissue crosstalk. Biotechnol. Bioeng. 114, 2648–2659 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wagner, I. et al. A dynamic multi-organ-chip for long-term cultivation and substance testing proven by 3D human liver and skin tissue co-culture. Lab Chip 13, 3538–3547 (2013).

    Article  CAS  PubMed  Google Scholar 

  30. Bauer, S. et al. Functional coupling of human pancreatic islets and liver spheroids on-a-chip: towards a novel human ex vivo type 2 diabetes model. Sci. Rep. 7, 14620 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Baert, Y. et al. A multi-organ-chip co-culture of liver and testis equivalents: a first step toward a systemic male reprotoxicity model. Hum. Reprod. 35, 1029–1044 (2020).

    Article  CAS  PubMed  Google Scholar 

  32. Maschmeyer, I. et al. Chip-based human liver-intestine and liver-skin co-cultures — a first step toward systemic repeated dose substance testing in vitro. Eur. J. Pharm. Biopharm. 95, 77–87 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Shuler, M. L., Ghanem, A., Quick, D., Wong, M. C. & Miller, P. A self-regulating cell culture analog device to mimic animal and human toxicological responses. Biotechnol. Bioeng. 52, 45–60 (1996).

    Article  CAS  PubMed  Google Scholar 

  34. Maoz, B. M. et al. A linked organ-on-chip model of the human neurovascular unit reveals the metabolic coupling of endothelial and neuronal cells. Nat. Biotechnol. 36, 865–874 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Herland, A. et al. Quantitative prediction of human pharmacokinetic responses to drugs via fluidically coupled vascularized organ chips. Nat. Biomed. Eng. 4, 421–436 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kasendra, M. et al. Development of a primary human small intestine-on-a-chip using biopsy-derived organoids. Sci. Rep. 8, 2871 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Kerns, S. J. et al. Human immunocompetent organ-on-chip platforms allow safety profiling of tumor-targeted T-cell bispecific antibodies. eLife 10, e67106 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Mondadori, C. et al. Recapitulating monocyte extravasation to the synovium in an organotypic microfluidic model of the articular joint. Biofabrication 13, 115–128 (2021).

    Article  CAS  Google Scholar 

  39. Benam, K. H. et al. Small airway-on-a-chip enables analysis of human lung inflammation and drug responses in vitro. Nat. Methods 13, 151–157 (2016).

    Article  CAS  PubMed  Google Scholar 

  40. Plebani R. et al. Modeling pulmonary cystic fibrosis in a human lung airway-on-a-chip: cystic fibrosis airway chip. J. Cyst. Fibrosis https://doi.org/10.1016/j.jcf.2021.10.004 (2021).

    Article  Google Scholar 

  41. Zhang, M. et al. Biomimetic human disease model of SARS-CoV-2 induced lung injury and immune responses on organ chip system. Adv. Sci. 8, 2002928 (2020).

    Article  CAS  Google Scholar 

  42. Si, L. et al. A human-airway-on-a-chip for the rapid identification of candidate antiviral therapeutics and prophylactics. Nat. Biomed. Eng. 5, 815–829 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kim, H. J., Li, H., Collins, J. J. & Ingber, D. E. Contributions of microbiome and mechanical deformation to intestinal bacterial overgrowth and inflammation in a human gut-on-a-chip. Proc. Natl Acad. Sci. USA 113, E7–E15 (2016).

    CAS  PubMed  Google Scholar 

  44. Goyal, G. et al. Ectopic lymphoid follicle formation and human seasonal influenza vaccination responses recapitulated in an organ-on-a-chip. Adv. Sci. https://doi.org/10.1002/advs.202103241 (2022).

    Article  Google Scholar 

  45. Chou, D. B. et al. On-chip recapitulation of clinical bone marrow toxicities and patient-specific pathophysiology. Nat. Biomed. Eng. 4, 394–406 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Schoon, J. et al. Metal-specific biomaterial accumulation in human peri-implant bone and bone marrow. Adv. Sci. 7, 2000412 (2020).

    Article  CAS  Google Scholar 

  47. Jalili-Firoozinezhad, S. et al. A complex human gut microbiome cultured in an anaerobic intestine-on-a-chip. Nat. Biomed. Eng. 3, 520–531 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kim, R. et al. An in vitro intestinal platform with a self-sustaining oxygen gradient to study the human gut/microbiome interface. Biofabrication 12, 015006 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Odijk, M. et al. Measuring direct current trans-epithelial electrical resistance in organ-on-a-chip microsystems. Lab Chip 15, 745–752 (2015).

    Article  CAS  PubMed  Google Scholar 

  50. van der Helm, M. W. et al. Non-invasive sensing of transepithelial barrier function and tissue differentiation in organs-on-chips using impedance spectroscopy. Lab Chip 19, 452–463 (2019).

    Article  PubMed  Google Scholar 

  51. Kujala, V. J., Pasqualini, F. S., Goss, J. A., Nawroth, J. C. & Parker, K. K. Laminar ventricular myocardium on a microelectrode array-based chip. J. Mater. Chem. B. 4, 3534–3543 (2016).

    Article  CAS  PubMed  Google Scholar 

  52. Huh, D. et al. A human disease model of drug toxicity-induced pulmonary edema in a lung-on-a-chip microdevice. Sci. Transl Med. 4, 159ra147 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Arathi, A., Joseph, X., Akhil, V. & Mohanan, P. V. l-Cysteine capped zinc oxide nanoparticles induced cellular response on adenocarcinomic human alveolar basal epithelial cells using a conventional and organ-on-a-chip approach. Colloids Surf. B 211, 112300 (2021).

    Google Scholar 

  54. Jain, A. et al. Primary human lung alveolus on a chip model of intravascular thrombosis for assessment of therapeutics. Clin. Pharmacol. Ther. 103, 332–340 (2018).

    Article  CAS  PubMed  Google Scholar 

  55. Benam, K. H. et al. Matched-comparative modeling of normal and diseased human airway responses using a microengineered breathing lung chip. Cell Syst. 3, 456–466.e4 (2016).

    Article  CAS  PubMed  Google Scholar 

  56. Nawroth, J. C. et al. A microengineered airway lung chip models key features of viral-induced exacerbation of asthma. Am. J. Respir. Cell Mol. Biol. 63, 591–600 (2020).

    Article  CAS  PubMed  Google Scholar 

  57. Hassell, B. et al. Human organ chip models recapitulate orthotopic lung cancer growth, therapeutic responses and tumor dormancy in vitro. Cell Rep. 21, 508–516 (2017).

    Article  CAS  PubMed  Google Scholar 

  58. Paek, J. et al. Microphysiological engineering of self-assembled and perfusable microvascular beds for the production of vascularized three-dimensional human microtissues. ACS Nano 13, 7627–7643 (2019).

    Article  CAS  PubMed  Google Scholar 

  59. Bai, H. et al. Mechanical control of innate immune responses against viral infection revealed in a human lung alveolus chip. Preprint at bioRxiv https://doi.org/10.1101/2021.04.26.441498 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Si, L. et al. Self-assembling short immunostimulatory duplex RNAs with broad spectrum antiviral activity. Preprint at bioRxiv https://doi.org/10.1101/2021.11.19.469183 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Si, L. et al. Clinically relevant influenza virus evolution reconstituted in a human lung airway-on-a-chip. Microbiol. Spectr. 9, e0025721 (2021).

    Article  PubMed  Google Scholar 

  62. Sarkar, U. et al. Metabolite profiling and pharmacokinetic evaluation of hydrocortisone in a perfused three-dimensional human liver bioreactor. Drug Metab. Dispos. 43, 1091–1099 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Long, T. J. et al. Modeling therapeutic antibody-small molecule drug–drug interactions using a three-dimensional perfusable human liver coculture platform. Drug Metab. Dispos. 44, 1940–1948 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Tsamandouras, N. et al. Quantitative assessment of population variability in hepatic drug metabolism using a perfused three-dimensional human liver microphysiological system. J. Pharmacol. Exp. Ther. 360, 95–105 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Lee, P. J., Hung, P. J. & Lee, L. P. An artificial liver sinusoid with a microfluidic endothelial-like barrier for primary hepatocyte culture. Biotechnol. Bioeng. 97, 1340–1346 (2007).

    Article  CAS  PubMed  Google Scholar 

  66. Jang, K.-J. et al. Reproducing human and cross-species toxicities using a liver-chip. Sci. Transl Med. 11, eaax5516 (2019).

    Article  CAS  PubMed  Google Scholar 

  67. Ortega-Prieto, A. M. et al. 3D microfluidic liver cultures as a physiological preclinical tool for hepatitis B virus infection. Nat. Commun. 9, 682 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Kim, H. J. & Ingber, D. E. Gut-on-a-chip microenvironment induces human intestinal cells to undergo villus differentiation. Integr. Biol. 5, 1130–1140 (2013).

    Article  CAS  Google Scholar 

  69. Sontheimer-Phelps, A. et al. Human colon-on-a-chip enables continuous in vitro analysis of colon mucus layer accumulation and physiology. Cell Mol. Gastroenterol. Hepatol. 9, 507–526 (2020).

    Article  PubMed  Google Scholar 

  70. Bein, A. et al. Enteric coronavirus infection and treatment modeled with an immunocompetent human intestine-on-a-chip. Front. Pharmacol. 12, 718484 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Guo, Y. et al. SARS-CoV-2 induced intestinal responses with a biomimetic human gut-on-chip. Sci. Bull. 66, 783–793 (2021).

    Article  CAS  Google Scholar 

  72. Shah, P. et al. A microfluidics-based in vitro model of the gastrointestinal human-microbe interface. Nat. Commun. 7, 11535 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Tovaglieri, A. et al. Species-specific enhancement of enterohemorrhagic E. coli pathogenesis mediated by microbiome metabolites. BMC Microbiome 7, 43 (2019).

    Article  Google Scholar 

  74. Grassart, A. et al. Bioengineered human organ-on-chip reveals intestinal microenvironment and mechanical forces impacting Shigella infection. Cell Host Microbe 26, 435–444.e4 (2019).

    Article  CAS  PubMed  Google Scholar 

  75. Jalili-Firoozinezhad, S. et al. Modeling radiation injury and countermeasure drug responses in a human gut-on-a-chip. Cell Death Dis. 9, 223 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Bein, A. et al. Nutritional deficiency recapitulates intestinal injury associated with environmental enteric dysfunction in patient-derived Organ Chips. Preprint at medRxiv https://doi.org/10.1101/2021.10.11.21264722 (2021).

    Article  Google Scholar 

  77. Jang, K. J. et al. Human kidney proximal tubule-on-a-chip for drug transport and nephrotoxicity assessment. Integr. Biol. 5, 1119–1129 (2013).

    Article  CAS  Google Scholar 

  78. Wang, J. et al. A virus-induced kidney disease model based on organ-on-a-chip: pathogenesis exploration of virus-related renal dysfunctions. Biomaterials 219, 119367 (2019).

    Article  CAS  PubMed  Google Scholar 

  79. Naik, S. et al. A 3D renal proximal tubule on chip model phenocopies lowe syndrome and Dent II disease tubulopathy. Int. J. Mol. Sci. 22, 5361 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Zhou, M. et al. Development of a functional glomerulus at the organ level on a chip to mimic hypertensive nephropathy. Sci. Rep. 6, 31771 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Musah, S. et al. Mature induced-pluripotent-stem-cell-derived human podocytes reconstitute kidney glomerular-capillary-wall function on a chip. Nat. Biomed. Eng. 1, 0069 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Roye, Y. et al. A personalized glomerulus chip engineered from stem cell-derived epithelium and vascular endothelium. Micromachines 12, 967 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Petrosyan, A. et al. A glomerulus-on-a-chip to recapitulate the human glomerular filtration barrier. Nat. Commun. 10, 3656 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Pediaditakis, I. et al. Modeling α-synuclein pathology in a human brain-chip to assess blood–brain barrier disruption. Nat. Commun. 12, 5907 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Park, T.-E. et al. Hypoxia-enhanced blood–brain barrier chip recapitulates human barrier function and shuttling of drugs and antibodies. Nat. Commun. 10, 2621 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Vatine, G. D. et al. Human iPSC-derived blood–brain barrier chips enable disease modeling and personalized medicine applications. Cell Stem Cell 24, 995–1005.e6 (2019).

    Article  CAS  PubMed  Google Scholar 

  87. Brown, J. A. et al. Metabolic consequences of inflammatory disruption of the blood–brain barrier in an organ-on-chip model of the human neurovascular unit. J. Neuroinflammation 13, 306 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Sahtoe, D. D. et al. Transferrin receptor targeting by de novo sheet extension. Proc. Natl Acad. Sci. USA 118, e2021569118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Lee, S. W. L. et al. Modeling nanocarrier transport across a 3D in vitro human blood–brain-barrier microvasculature. Adv. Health. Mater. 9, e1901486 (2020).

    Article  CAS  Google Scholar 

  90. Morad, G. et al. Tumor-derived extracellular vesicles breach the intact blood–brain barrier via transcytosis. ACS Nano. 13, 13853–13865 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Kim, J. et al. Fungal brain infection modelled in a human-neurovascular-unit-on-a-chip with a functional blood–brain barrier. Nat. Biomed. Eng. 5, 830–846 (2021).

    Article  PubMed  Google Scholar 

  92. Chung, M. et al. Wet-AMD on a chip: modeling outer blood-retinal barrier in vitro. Adv. Health. Mater. 7, 1700028 (2018).

    Article  CAS  Google Scholar 

  93. Achberger, K. et al. Merging organoid and organ-on-a-chip technology to generate complex multi-layer tissue models in a human retina-on-a-chip platform. eLife 8, e46188 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Kutys, M. L. et al. Uncovering mutation-specific morphogenic phenotypes and paracrine-mediated vessel dysfunction in a biomimetic vascularized mammary duct platform. Nat. Commun. 11, 3377 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Blundell, C. et al. Placental drug transport-on-a-chip: a microengineered in vitro model of transporter-mediated drug efflux in the human placental barrier. Adv. Health. Mater. 7, 1700786 (2018).

    Article  CAS  Google Scholar 

  96. Ribas, J. et al. Biomechanical strain exacerbates inflammation on a progeria-on-a-chip model. Small 13, 1603737 (2017).

    Article  CAS  Google Scholar 

  97. Abudupataer, M. et al. Aorta smooth muscle-on-a-chip reveals impaired mitochondrial dynamics as a therapeutic target for aortic aneurysm in bicuspid aortic valve disease. eLife 10, e69310 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Hachey, S. J. et al. An in vitro vascularized micro-tumor model of human colorectal cancer recapitulates in vivo responses to standard-of-care therapy. Lab Chip 21, 1333–1351 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Deng, J. et al. CDK4/6 inhibition augments antitumor immunity by enhancing T-cell activation. Cancer Discov. 8, 216–233 (2018).

    Article  CAS  PubMed  Google Scholar 

  100. Pavesi, A. et al. A 3D microfluidic model for preclinical evaluation of TCR-engineered T cells against solid tumors. JCI Insight 2, e89762 (2017).

    Article  PubMed Central  Google Scholar 

  101. Beckwith, A. L., Velásquez-García, L. F. & Borenstein, J. T. Microfluidic model for evaluation of immune checkpoint inhibitors in human tumors. Adv. Health. Mater. 8, e1900289 (2019).

    Article  CAS  Google Scholar 

  102. Tao, T. et al. Microengineered multi-organoid system from hiPSCs to recapitulate human liver-islet axis in normal and type 2 diabetes. Adv. Sci. 9, 2103495 (2021).

    Article  Google Scholar 

  103. Skardal, A., Devarasetty, M., Forsythe, S., Atala, A. & Soker, S. A reductionist metastasis-on-a-chip platform for in vitro tumor progression modeling and drug screening. Biotechnol. Bioeng. 113, 2020–2032 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Sasserath, T. et al. Differential monocyte actuation in a three-organ functional innate immune system-on-a-chip. Adv. Sci. 7, 2000323 (2020).

    Article  CAS  Google Scholar 

  105. Chang, S. Y. et al. Human liver–kidney model elucidates the mechanisms of aristolochic acid nephrotoxicity. JCI Insight 2, e95978 (2017).

    Article  PubMed Central  Google Scholar 

  106. Oleaga, C. et al. Multi-organ toxicity demonstration in a functional human in vitro system composed of four organs. Sci. Rep. 6, 20030 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Skardal, A. et al. Multi-tissue interactions in an integrated three-tissue organ-on-a-chip platform. Sci. Rep. 7, 8837 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. McAleer, C. W. et al. Multi-organ system for the evaluation of efficacy and off-target toxicity of anticancer therapeutics. Sci. Transl Med. 11, eaav1386 (2019).

    Article  CAS  PubMed  Google Scholar 

  109. Chramiec, A. et al. Integrated human organ-on-a-chip model for predictive studies of anti-tumor drug efficacy and cardiac safety. Lab Chip 20, 4357–4372 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Hübner, J. et al. Simultaneous evaluation of anti-EGFR-induced tumour and adverse skin effects in a microfluidic human 3D co-culture model. Sci. Rep. 8, 15010 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Lee-Montiel, F. T. et al. Integrated isogenic human induced pluripotent stem cell-based liver and heart microphysiological systems predict unsafe drug–drug interaction. Front. Pharmacol. 12, 667010 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Vernetti, L. et al. Functional coupling of human microphysiology systems: intestine, liver, kidney proximal tubule, blood–brain barrier and skeletal muscle. Sci. Rep. 7, 42296 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Ramme, A. P. et al. Autologous induced pluripotent stem cell-derived four-organ-chip. Future Sci. OA 5, FSO413 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Hargrove-Grimes, P., Low, L. A. & Tagle D. A. Microphysiological systems: stakeholder challenges to adoption in drug development. Cells Tissues Organs 211, 1–13 (2022).

    Article  CAS  Google Scholar 

  115. Baran, S. W. et al. Perspectives on the evaluation and adoption of complex in vitro models in drug development: workshop with the FDA and the pharmaceutical industry (IQ MPS Affiliate). ALTEX https://doi.org/10.14573/altex.2112203 (2022).

    Article  PubMed  Google Scholar 

  116. Zhang, B. & Radisic, M. Organ-on-a-chip devices advance to market. Lab Chip 17, 2395–2420 (2017).

    Article  CAS  PubMed  Google Scholar 

  117. Franzen, N. et al. Impact of organ-on-a-chip technology on pharmaceutical R&D costs. Drug Discov. Today 24, 1720–1724 (2019).

    Article  PubMed  Google Scholar 

  118. Ewart, L. et al. Qualifying a human liver-chip for predictive toxicology: performance assessment and economic implications. Preprint at bioRxiv https://doi.org/10.1101/2021.12.14.472674 (2021).

    Article  Google Scholar 

  119. Baudy, A. R. et al. Liver microphysiological systems development guidelines for safety risk assessment in the pharmaceutical industry. Lab Chip 20, 215–225 (2020).

    Article  CAS  PubMed  Google Scholar 

  120. Bircsak, K. M. et al. A 3D microfluidic liver model for high throughput compound toxicity screening in the OrganoPlate®. Toxicology 450, 152667 (2021).

    Article  CAS  PubMed  Google Scholar 

  121. Toepke, M. W. & Beebe, D. J. PDMS absorption of small molecules and consequences in microfluidic applications. Lab Chip 6, 1484–1486 (2006).

    Article  CAS  PubMed  Google Scholar 

  122. van Meer, B. J. et al. Small molecule absorption by PDMS in the context of drug response bioassays. Biochem. Biophys. Res. Commun. 482, 323–328 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  123. Domansky, K. et al. Clear castable polyurethane elastomer for fabrication of microfluidic devices. Lab Chip 13, 3956–3964 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Domansky, K. et al. SEBS elastomers for fabrication of microfluidic devices with reduced drug absorption by injection molding and extrusion. Microfluid. Nanofluid. 21, 107 (2017).

    Article  CAS  Google Scholar 

  125. Schneider, S., Brás, E. J. S., Schneider, O., Schlünder, K. & Loskill, P. Facile patterning of thermoplastic elastomers and robust bonding to glass and thermoplastics for microfluidic cell culture and organ-on-chip. Micromachines 12, 575 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  126. Bagley, A. F. et al. Endothelial thermotolerance impairs nanoparticle transport in tumors. Cancer Res. 75, 3255–3267 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Cho, M. & Park, J. K. Modular 3D in vitro artery-mimicking multichannel system for recapitulating vascular stenosis and inflammation. Micromachines 12, 1528 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  128. Achberger, K. et al. Human stem cell-based retina on chip as new translational model for validation of AAV retinal gene therapy vectors. Stem Cell Rep. 16, 2242–2256 (2021).

    Article  CAS  Google Scholar 

  129. Rogal, J. et al. WAT-on-a-chip integrating human mature white adipocytes for mechanistic research and pharmaceutical applications. Sci. Rep. 10, 6666 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Villenave, R. et al. Human gut-on-a-chip supports polarized infection of coxsackie B1 virus in vitro. PLoS ONE 12, e0169412 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  131. Beaurivage, C. et al. Development of a human primary gut-on-a-chip to model inflammatory processes. Sci. Rep. 10, 21475 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Šuligoj, T. et al. Effects of human milk oligosaccharides on the adult gut microbiota and barrier function. Nutrients 12, 2808 (2020).

    Article  PubMed Central  CAS  Google Scholar 

  133. Apostolou, A. et al. A novel microphysiological colon platform to decipher mechanisms driving human intestinal permeability. Cell Mol. Gastroenterol. Hepatol. 12, 1719–1741 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Vormann, M. K. et al. Implementation of a human renal proximal tubule on a chip for nephrotoxicity and drug interaction studies. J. Pharm. Sci. 110, 1601–1614 (2021).

    Article  CAS  PubMed  Google Scholar 

  135. Ehrlich, A. et al. Microphysiological flux balance platform unravels the dynamics of drug induced steatosis. Lab Chip 18, 2510–2522 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Rowe, C. et al. Perfused human hepatocyte microtissues identify reactive metabolite-forming and mitochondria-perturbing hepatotoxins. Toxicol. Vitr. 46, 29–38 (2018).

    Article  CAS  Google Scholar 

  137. Freag, M. S. et al. Human nonalcoholic steatohepatitis on a chip. Hepatol. Commun. 5, 217–233 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  138. Li, J. et al. AAV-mediated gene therapy targeting TRPV4 mechanotransduction for treatment of pulmonary vascular leakage. APL Bioeng. 3, 046103 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  139. Rivera-Burgos, D. et al. Glucocorticoid clearance and metabolite profiling in an in vitro human airway epithelium lung model. Drug Metab. Dispos. 44, 220–226 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Sances, S. et al. Human iPSC-derived endothelial cells and microengineered organ-chip enhance neuronal development. Stem Cell Rep. 10, 1222–1236 (2018).

    Article  CAS  Google Scholar 

  141. Spijkers, X. M. et al. A directional 3D neurite outgrowth model for studying motor axon biology and disease. Sci. Rep. 11, 2080 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Glieberman, A. L. et al. Synchronized stimulation and continuous insulin sensing in a microfluidic human islet on a chip designed for scalable manufacturing. Lab Chip 19, 2993–3010 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Zhang, J. et al. Construction of a high fidelity epidermis-on-a-chip for scalable in vitro irritation evaluation. Lab Chip 21, 3804–3818 (2021).

    Article  CAS  PubMed  Google Scholar 

  144. França, C. M. et al. The tooth on-a-chip: a microphysiologic model system mimicking the biologic interface of the tooth with biomaterials. Lab Chip 20, 405–413 (2020).

    Article  PubMed  Google Scholar 

  145. Rodrigues et al. Biomaterial and biofilm interactions with the pulp-dentin complex-on-a-chip. J. Dent. Res. 100, 1136–1143 (2021).

    Article  CAS  PubMed  Google Scholar 

  146. Gnecco, J. S. et al. Compartmentalized culture of perivascular stroma and endothelial cells in a microfluidic model of the human endometrium. Ann. Biomed. Eng. 45, 1758–1769 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  147. Ahn, J. et al. Three-dimensional microengineered vascularised endometrium-on-a-chip. Hum. Reprod. 36, 2720–2731 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Prantil-Baun, R. et al. Physiologically based pharmacokinetic and pharmacodynamic analysis enabled by microfluidically linked organs-on-chips. Annu. Rev. Pharmacol. Toxicol. 58, 37–64 (2018).

    Article  CAS  PubMed  Google Scholar 

  149. Bjornson-Hooper, Z. B. et al. A comprehensive atlas of immunological differences between humans, mice and non-human primates. Preprint at bioRxiv https://doi.org/10.1101/574160 (2019).

    Article  Google Scholar 

  150. Cho, H. W. & Eom, Y. B. Forensic analysis of human microbiome in skin and body fluids based on geographic location. Front. Cell Infect. Microbiol. 11, 695191 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Fogel, D. B. Factors associated with clinical trials that fail and opportunities for improving the likelihood of success: a review. Contemp. Clin. Trials Commun. 11, 156–164 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The author thanks all of the research team members, trainees, collaborators and other members of the scientific community for contributing to the development of the organ chip field. The author’s work discussed here was funded by grants from DARPA, FDA, NIH, BARDA, Cancer Research United Kingdom and the Gates Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donald E. Ingber.

Ethics declarations

Competing interests

D.E.I. holds equity in Emulate, chairs its scientific advisory board and is a member of its board of directors.

Peer review

Peer review information

Nature Reviews Genetics thanks Jeffrey T. Borenstein, YongTae Kim and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Aracari Biosciences: https://aracaribio.com

CN Bio Innovations: https://cn-bio.com

Emulate: https://emulatebio.com

Mimetas: https://www.mimetas.com

Nortis: https://nortisbio.com

TissUse: https://www.tissuse.com

Glossary

Microfluidic

A miniaturized device containing one or more channels or chambers through which fluids flow.

Organoids

Self-assembled hollow clusters of cells derived from stem cells that exhibit tissue-specific structures and functions when placed in 3D cultures.

Clinical mimicry

Recapitulation of physiological, pathophysiological or therapeutic responses detected in the human body.

Personalized medicine

A practice of medicine that uses data obtained from an individual patient’s cells to guide decisions regarding prevention, diagnosis or treatment of disease.

Extracellular matrix

(ECM). A structural scaffold composed of multiple macromolecules that orients and supports cells in living tissues.

Soft lithography

A technique for fabricating microstructures or micropatterning materials using flexible stamps moulded on surfaces etched using photolithography.

Minibioreactor

A small-volume (<10 ml) cell chamber in which cells are cultured to carry out a biological reaction or process.

Cilia

Moving microscopic hair-like projections found on the surfaces of cells, such as lung airway epithelial cells, that cause motions in overlying fluids or mucus.

One Health

A public health approach that recognizes the importance of animal health as a key component of global disease prevention, surveillance, control and mitigation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ingber, D.E. Human organs-on-chips for disease modelling, drug development and personalized medicine. Nat Rev Genet 23, 467–491 (2022). https://doi.org/10.1038/s41576-022-00466-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41576-022-00466-9

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research