Nothing Special   »   [go: up one dir, main page]

Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Ni-catalysed remote C(sp3)–H functionalization using chain-walking strategies

Abstract

The dynamic translocation of a metal catalyst along an alkyl side chain — often coined as ‘chain-walking’ — has opened new retrosynthetic possibilities that enable functionalization at unactivated C(sp3)–H sites. The use of nickel complexes in chain-walking strategies has recently gained considerable momentum owing to their versatility for forging sp3 architectures and their redox promiscuity that facilitates both one-electron or two-electron reaction manifolds. This Review discusses the relevance and impact that these processes might have in synthetic endeavours, including mechanistic considerations when appropriate. Particular emphasis is given to the latest discoveries that leverage the potential of Ni-catalysed chain-walking scenarios for tackling transformations that would otherwise be difficult to accomplish, including the merger of chain-walking with other new approaches such as photoredox catalysis or electrochemical activation.

Key points

  • Iterative β-hydride elimination and migratory insertion (‘chain-walking’) can be an enabling vehicle for promoting functionalization at remote C(sp3)–H sites.

  • Site-selective C(sp3)–H functionalization can be performed through the exploitation of native molecular features (the binding ability of a functional group, thermodynamic stability, or kinetic availability of reaction intermediates).

  • Regiodivergent C(sp3)–H manipulation can be realized by fine-tuning of ligand structure, reaction conditions, or by the nature of an appended functional group.

  • Ni-catalysed chain-walking represents a novel, contemporary strategy to forge new C(sp3)–C(sp2) and C(sp3)–C(sp2) bonds.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Importance and challenges of C–H bond functionalization.
Fig. 2: Remote benzylic arylation.
Fig. 3: C–C and C–heteroatom bond formation at remote benzylic-allylic C(sp3)–H bonds.
Fig. 4: Remote functionalization at terminal C(sp3)–H sites.
Fig. 5: Remote functionalization adjacent to functional groups.
Fig. 6: Remote β-selective and γ-selective functionalization.
Fig. 7: Regiodivergent carboxylation and hydroalkylation.
Fig. 8: Miscellaneous regiodivergent functionalizations.
Fig. 9: Other miscellaneous regiodivergent functionalizations.

Similar content being viewed by others

References

  1. Luo, Y.-R. Comprehensive Handbook of Chemical Bond Energies (CRC Press, 2007).

  2. Docherty, J. H. et al. Transition-metal-catalyzed C–H bond activation for the formation of C–C bonds in complex molecules. Chem. Rev. 123, 7692–7760 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Bellotti, P., Huang, H.-M., Faber, T. & Glorius, F. Photocatalytic late-stage C–H functionalization. Chem. Rev. 123, 4237–4352 (2023).

    Article  PubMed  CAS  Google Scholar 

  4. Guillemard, L., Kaplaneris, N., Ackermann, L. & Johansson, M. J. Late-stage C–H functionalization offers new opportunities in drug discovery. Nat. Rev. Chem. 5, 522–545 (2021).

    Article  PubMed  CAS  Google Scholar 

  5. Bergman, R. G. C–H activation. Nature 446, 391–393 (2007).

    Article  PubMed  CAS  Google Scholar 

  6. Lovering, F., Bikker, J. & Humblet, C. Escape from flatland: increasing saturation as an approach to improving clinical success. J. Med. Chem. 52, 6752–6756 (2009).

    Article  PubMed  CAS  Google Scholar 

  7. Davies, H. M. L. & Morton, D. Recent advances in C–H functionalization. J. Org. Chem. 81, 343–350 (2016).

    Article  PubMed  CAS  Google Scholar 

  8. Huang, Z., Lim, H. N., Mo, F., Young, M. C. & Dong, G. Transition metal-catalyzed ketone-directed or mediated C–H functionalization. Chem. Soc. Rev. 44, 7764–7786 (2015).

    Article  PubMed  CAS  Google Scholar 

  9. He, J., Wasa, M., Chan, K. S. L., Shao, Q. & Yu, J.-Q. Palladium-catalyzed transformations of alkyl C–H bonds. Chem. Rev. 117, 8754–8786 (2017).

    Article  PubMed  CAS  Google Scholar 

  10. Xu, Y. & Dong, G. sp3 C–H activation via exo-type directing groups. Chem. Sci. 9, 1424–1432 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Rej, S., Ano, Y. & Chatani, N. Bidentate directing groups: an efficient tool in C–H bond functionalization chemistry for the expedient construction of C–C bonds. Chem. Rev. 120, 1788–1887 (2020).

    Article  PubMed  CAS  Google Scholar 

  12. Mingo, M. M., Rodríguez, N., Arrayás, R. G. & Carretero, J. C. Remote C(sp3)–H functionalization via catalytic cyclometallation: beyond five-membered ring metallacycle intermediates. Org. Chem. Front. 8, 4914–4946 (2021).

    Article  CAS  Google Scholar 

  13. He, Y. et al. Recent advances in transition-metal-catalyzed carbene insertion to C–H bonds. Chem. Soc. Rev. 51, 2759–2852 (2022).

    Article  PubMed  CAS  Google Scholar 

  14. Yi, H. et al. Recent advances in radical C–H activation/radical cross-coupling. Chem. Rev. 117, 9016–9085 (2017).

    Article  PubMed  CAS  Google Scholar 

  15. Sarkar, S., Cheung, K. P. S. & Gevorgyan, V. C–H functionalization reactions enabled by hydrogen atom transfer to carbon-centered radicals. Chem. Sci. 11, 12974–12993 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Lewis, J. C., Coelho, P. S. & Arnold, F. H. Enzymatic functionalization of carbon–hydrogen bonds. Chem. Soc. Rev. 40, 2003–2021 (2011).

    Article  PubMed  CAS  Google Scholar 

  17. Dunham, N. P. & Arnold, F. H. Nature’s machinery, repurposed: expanding the repertoire of iron-dependent oxygenases. ACS Catal. 10, 12239–12255 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Golden, D. L., Suh, S.-E. & Stahl, S. S. Radical C(sp3)–H functionalization and cross-coupling reactions. Nat. Rev. Chem. 6, 405–427 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Ittel, S. D., Johnson, L. K. & Brookhart, M. Late-metal catalysts for ethylene homo- and copolymerization. Chem. Rev. 100, 1169–1204 (2000). This seminal work represents one of the pillars in the field of alkene isomerization and furnished initial mechanistic hypothesis that has influenced subsequent works.

    Article  PubMed  CAS  Google Scholar 

  20. Vasseur, A., Bruffaerts, J. & Marek, I. Remote functionalization through alkene isomerization. Nat. Chem. 8, 209–219 (2016).

    Article  PubMed  CAS  Google Scholar 

  21. Sommer, H., Juliá-Hernández, F., Martin, R. & Marek, I. Walking metals for remote functionalization. ACS Cent. Sci. 4, 153–165 (2018). This review gathers the main achievements in the transition metal-catalysed chain-walking arena, providing an extensive overview also on other metals than nickel.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Rodrigalvarez, J., Haut, F.-L. & Martin, R. Regiodivergent sp3 C–H functionalization via Ni-catalyzed chain-walking reactions. J. Am. Chem. Soc. Au 3, 3270–3282 (2023).

    CAS  Google Scholar 

  23. Ghosh, S., Patel, S. & Chatterjee, I. Chain-walking reactions of transition metals for remote C–H bond functionalization of olefinic substrates. Chem. Commun. 57, 11110–11130 (2021).

    Article  CAS  Google Scholar 

  24. Fiorito, D., Scaringi, S. & Mazet, C. Transition metal-catalyzed alkene isomerization as an enabling technology in tandem, sequential and domino processes. Chem. Soc. Rev. 50, 1391–1406 (2021).

    Article  PubMed  CAS  Google Scholar 

  25. Li, Y. & Yin, G. Nickel chain-walking catalysis: a journey to migratory carboboration of alkenes. Acc. Chem. Res. 56, 3246–3259 (2023).

    Article  PubMed  CAS  Google Scholar 

  26. Dhungana, R. K., Sapkota, R. R., Niroula, D. & Giri, R. Walking metals: catalytic difunctionalization of alkenes at nonclassical sites. Chem. Sci. 11, 9757–9774 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Kapat, A., Sperger, T., Guven, S. & Schoenebeck, F. E-Olefins through intramolecular radical relocation. Science 363, 391–396 (2019).

    Article  PubMed  CAS  Google Scholar 

  28. Brookhart, M., Green, M. L. H. & Parkin, G. Agostic interactions in transition metal compounds. Proc. Natl Acad. Sci. USA 104, 6908–6914 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Somerville, R. J. et al. Ni(I)–alkyl complexes bearing phenanthroline ligands: experimental evidence for CO2 insertion at Ni(I) centers. J. Am. Chem. Soc. 142, 10936–10941 (2020). This paper represents one of the rare examples of isolation and study of Ni(I)–alkyl complexes.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Day, C. S., Ton, S. J., McGuire, R. T., Foroutan-Nejad, C. & Martin, R. Reductive elimination from sterically encumbered Ni–polypyridine complexes. Organometallics 41, 2662–2667 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Lin, Q., Spielvogel, E. H. & Diao, T. Carbon-centered radical capture at nickel(II) complexes: spectroscopic evidence, rates, and selectivity. Chem 9, 1295–1308 (2023).

    Article  CAS  Google Scholar 

  32. Karimzadeh-Younjali, M. & Wendt, O. F. α- and β-eliminations in transition metal complexes: strategies to cleave unstrained C−C and C−F bonds. Helv. Chim. Acta 104, e2100114 (2021).

    Article  CAS  Google Scholar 

  33. Léonard, N. G. et al. Synthesis of cationic, dimeric α-diimine nickel hydride complexes and relevance to the polymerization of olefins. Organometallics 39, 2630–2635 (2020).

    Article  Google Scholar 

  34. Singh, K., Kundu, A. & Adhikari, D. Ligand-based redox: catalytic applications and mechanistic aspects. ACS Catal. 12, 13075–13107 (2022). This review gives a general overview on the role of redox-active ligands to stabilize catalytic intermediates and to trigger otherwise challenging steps, also relevant to chain-walking scenarios.

    Article  CAS  Google Scholar 

  35. Day, C. S. et al. Elucidating electron-transfer events in polypyridine nickel complexes for reductive coupling reactions. Nat. Catal. 6, 244–253 (2023).

    Article  CAS  Google Scholar 

  36. Day, C. S. & Martin, R. Comproportionation and disproportionation in nickel and copper complexes. Chem. Soc. Rev. 52, 6601–6616 (2023).

    Article  PubMed  CAS  Google Scholar 

  37. He, Y., Cai, Y. & Zhu, S. Mild and regioselective benzylic C–H functionalization: Ni-catalyzed reductive arylation of remote and proximal olefins. J. Am. Chem. Soc. 139, 1061–1064 (2017).

    Article  PubMed  CAS  Google Scholar 

  38. Li, Y. et al. Reaction scope and mechanistic insights of nickel-catalyzed migratory Suzuki–Miyaura cross-coupling. Nat. Commun. 11, 417 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. He, Y., Liu, C., Yu, L. & Zhu, S. Ligand-enabled nickel-catalyzed redox-relay migratory hydroarylation of alkenes with arylborons. Angew. Chem. Int. Ed. 59, 9186–9191 (2020). This paper showcases the first example of Ni-catalysed chain-walking devoid of a redox-active ligand.

    Article  CAS  Google Scholar 

  40. Juliá-Hernández, F., Moragas, T., Cornella, J. & Martin, R. Remote carboxylation of halogenated aliphatic hydrocarbons with carbon dioxide. Nature 545, 84–88 (2017). This paper represents, to our knowledge, the first report of regiodivergent and regioconvergent Ni-catalysed chain-walking transformations.

    Article  PubMed  Google Scholar 

  41. Kumar, G. S. et al. Nickel-catalyzed chain-walking cross-electrophile coupling of alkyl and aryl halides and olefin hydroarylation enabled by electrochemical reduction. Angew. Chem. Int. Ed. 59, 6513–6519 (2020).

    Article  CAS  Google Scholar 

  42. Wang, W. et al. Migratory arylboration of unactivated alkenes enabled by nickel catalysis. Angew. Chem. Int. Ed. 58, 4612–4616 (2019).

    Article  CAS  Google Scholar 

  43. Fyfe, J. W. B. & Watson, A. J. B. Recent developments in organoboron chemistry: old dogs, new tricks. Chem 3, 31–55 (2017).

    Article  CAS  Google Scholar 

  44. El-Maiss, J. et al. Recent advances in metal-catalyzed alkyl–boron (C(sp3)–C(sp2)) Suzuki–Miyaura cross-couplings. Catalysts 10, 296 (2020).

    Article  CAS  Google Scholar 

  45. Zhang, Y. et al. A relay catalysis strategy for enantioselective nickel-catalyzed migratory hydroarylation forming chiral α-aryl alkylboronates. Chem 7, 3171–3188 (2021). This paper discloses the first application of a different approach towards asymmetric catalysis in the realm of chain-walking strategies.

    Article  CAS  Google Scholar 

  46. He, Y. et al. Regio- and enantioselective remote hydroarylation using a ligand-relay strategy. Nat. Commun. 13, 2471 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Sun, Y., Wang, B. & Lu, Z. Ligand relay catalysis: a newly emerged synthetic strategy. Org. Chem. Front. 10, 4146–4160 (2023).

    Article  CAS  Google Scholar 

  48. Zhou, L., Zhu, C., Bi, P. & Feng, C. Ni-catalyzed migratory fluoro-alkenylation of unactivated alkyl bromides with gem-difluoroalkenes. Chem. Sci. 10, 1144–1149 (2019).

    Article  PubMed  CAS  Google Scholar 

  49. Liu, J., Gong, H. & Zhu, S. Nickel-catalyzed, regio- and enantioselective benzylic alkenylation of olefins with alkenyl bromide. Angew. Chem. Int. Ed. 60, 4060–4064 (2021).

    Article  CAS  Google Scholar 

  50. He, J., Song, P., Xu, X., Zhu, S. & Wang, Y. Migratory reductive acylation between alkyl halides or alkenes and alkyl carboxylic acids by nickel catalysis. ACS Catal. 9, 3253–3259 (2019).

    Article  CAS  Google Scholar 

  51. Wang, X., Nakajima, M., Serrano, E. & Martin, R. Alkyl bromides as mild hydride sources in Ni-catalyzed hydroamidation of alkynes with isocyanates. J. Am. Chem. Soc. 138, 15531–15534 (2016).

    Article  PubMed  CAS  Google Scholar 

  52. Jiang, X., Sheng, F.-T., Zhang, Y., Deng, G. & Zhu, S. Ligand relay catalysis enables asymmetric migratory reductive acylation of olefins or alkyl halides. J. Am. Chem. Soc. 144, 21448–21456 (2022).

    Article  PubMed  CAS  Google Scholar 

  53. Yu, R., Rajasekar, S. & Fang, X. Enantioselective nickel-catalyzed migratory hydrocyanation of nonconjugated dienes. Angew. Chem. Int. Ed. 59, 21436–21441 (2020).

    Article  CAS  Google Scholar 

  54. Zhang, Y., Xu, X. & Zhu, S. Nickel-catalysed selective migratory hydrothiolation of alkenes and alkynes with thiols. Nat. Commun. 10, 1752 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Liu, B. et al. Nickel-catalyzed remote and proximal Wacker-type oxidation. Commun. Chem. 2, 5 (2019).

    Article  Google Scholar 

  56. Zhang, Y., He, J., Song, P., Wang, Y. & Zhu, S. Ligand-enabled NiH-catalyzed migratory hydroamination: chain walking as a strategy for regiodivergent/regioconvergent remote sp3 C–H amination. CCS Chem. 3, 2259–2268 (2021).

    Article  CAS  Google Scholar 

  57. Sahoo, B. et al. Site-selective, remote sp3 C−H carboxylation enabled by the merger of photoredox and nickel catalysis. Chem. Eur. J. 25, 9001–9005 (2019).

    Article  PubMed  CAS  Google Scholar 

  58. Davies, J. et al. Kinetically-controlled Ni-catalyzed direct carboxylation of unactivated secondary alkyl bromides without chain walking. J. Am. Chem. Soc. 146, 1753–1759 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Tortajada, A. et al. Ligand-controlled regiodivergent catalytic amidation of unactivated secondary alkyl bromides. ACS Catal. 11, 10223–10227 (2021).

    Article  CAS  Google Scholar 

  60. He, Y., Han, B. & Zhu, S. Terminal-selective C(sp3)–H arylation: NiH-catalyzed remote hydroarylation of unactivated internal olefins. Organometallics 40, 2253–2264 (2021).

    Article  CAS  Google Scholar 

  61. Zheng, S., Hu, Y. & Yuan, W. Recent advances in C(sp3)–C(sp3) cross-coupling via metallaphotoredox strategies. Synthesis 53, 1719–1733 (2021).

    Article  CAS  Google Scholar 

  62. Sun, S.-Z., Börjesson, M., Martin-Montero, R. & Martin, R. Site-selective Ni-catalyzed reductive coupling of α-haloboranes with unactivated olefins. J. Am. Chem. Soc. 140, 12765–12769 (2018).

    Article  PubMed  CAS  Google Scholar 

  63. Sun, S.-Z., Romano, C. & Martin, R. Site-selective catalytic deaminative alkylation of unactivated olefins. J. Am. Chem. Soc. 141, 16197–16201 (2019).

    Article  PubMed  CAS  Google Scholar 

  64. Sun, S.-Z. et al. Enantioselective deaminative alkylation of amino acid derivatives with unactivated olefins. J. Am. Chem. Soc. 144, 1130–1137 (2022).

    Article  PubMed  CAS  Google Scholar 

  65. Yue, W.-J. & Martin, R. Ni-catalyzed site-selective hydrofluoroalkylation of terminal and internal olefins. ACS Catal. 12, 12132–12137 (2022).

    Article  CAS  Google Scholar 

  66. Zhang, Y., Han, B. & Zhu, S. Rapid access to highly functionalized alkyl boronates by NiH-catalyzed remote hydroarylation of boron-containing alkenes. Angew. Chem. Int. Ed. 58, 13860–13864 (2019).

    Article  CAS  Google Scholar 

  67. Sun, S.-Z., Talavera, L., Spieß, P., Day, C. S. & Martin, R. sp3 bis-organometallic reagents via catalytic 1,1-difunctionalization of unactivated olefins. Angew. Chem. Int. Ed. 60, 11740–11744 (2021).

    Article  CAS  Google Scholar 

  68. Talavera, L. et al. Nickel-catalyzed 1,1-aminoborylation of unactivated terminal alkenes. ACS Catal. 13, 5538–5543 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Velasco-Rubio, Á. & Martin, R. Recent advances in Ni-catalyzed 1,1-difunctionalization of unactivated olefins. Adv. Synth. Catal. 366, 593–602 (2024).

    Article  CAS  Google Scholar 

  70. Bera, S., Mao, R. & Hu, X. Enantioselective C(sp3)–C(sp3) cross-coupling of non-activated alkyl electrophiles via nickel hydride catalysis. Nat. Chem. 13, 270–277 (2021).

    Article  PubMed  CAS  Google Scholar 

  71. Wang, J.-W. et al. Nickel-catalyzed remote asymmetric hydroalkylation of alkenyl ethers to access ethers of chiral dialkyl carbinols. J. Am. Chem. Soc. 145, 10411–10421 (2023).

    Article  PubMed  CAS  Google Scholar 

  72. Sun, X.-Y., Yao, B.-Y., Xuan, B., Xiao, L.-J. & Zhou, Q.-L. Recent advances in nickel-catalyzed asymmetric hydrofunctionalization of alkenes. Chem. Catal. 2, 3140–3162 (2022).

    Article  CAS  Google Scholar 

  73. He, Y., Chen, J., Jiang, X. & Zhu, S. Enantioselective NiH-catalyzed reductive hydrofunctionalization of alkenes. Chin. J. Chem. 40, 651–661 (2022).

    Article  CAS  Google Scholar 

  74. Guo, W., Cheng, L., Ma, G., Tong, W. & Wu, F. Diverse synthesis of chiral trifluoromethylated alkanes via nickel-catalyzed enantioconvergent reductive hydroalkylation of unactivated olefins. Org. Lett. 24, 1796–1801 (2022).

    Article  PubMed  CAS  Google Scholar 

  75. He, Y. et al. Ligand-promoted, enantioconvergent synthesis of aliphatic alkanes bearing trifluoromethylated stereocenters via hydrotrifluoroalkylation of unactivated alkenes. Chin. J. Chem. 40, 1531–1536 (2022).

    Article  CAS  Google Scholar 

  76. Wang, Z.-C. et al. Enantioselective C–C cross-coupling of unactivated alkenes. Nat. Catal. 6, 1087–1097 (2023).

    Article  CAS  Google Scholar 

  77. Liang, K., Zhang, Q. & Guo, C. Enantioselective nickel-catalysed electrochemical cross-dehydrogenative amination. Nat. Synth. 2, 1184–1193 (2023).

    Article  Google Scholar 

  78. Chen, X., Rao, W., Yang, T. & Koh, M. J. Alkyl halides as both hydride and alkyl sources in catalytic regioselective reductive olefin hydroalkylation. Nat. Commun. 11, 5857 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Wang, X.-X., Xu, Y.-T., Zhang, Z.-L., Lu, X. & Fu, Y. NiH-catalysed proximal-selective hydroalkylation of unactivated alkenes and the ligand effects on regioselectivity. Nat. Commun. 13, 1890 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Basnet, P. et al. Ni-catalyzed regioselective β,δ-diarylation of unactivated olefins in ketimines via ligand-enabled contraction of transient nickellacycles: rapid access to remotely diarylated ketones. J. Am. Chem. Soc. 140, 7782–7786 (2018).

    Article  PubMed  CAS  Google Scholar 

  81. Lee, C., Seo, H., Jeon, J. & Hong, S. γ-Selective C(sp3)–H amination via controlled migratory hydroamination. Nat. Commun. 12, 5657 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Du, B., Ouyang, Y., Chen, Q. & Yu, W.-Y. Thioether-directed NiH-catalyzed remote γ-C(sp3)–H hydroamidation of alkenes by 1,4,2-dioxazol-5-ones. J. Am. Chem. Soc. 143, 14962–14968 (2021).

    Article  PubMed  CAS  Google Scholar 

  83. Nájera, C., Beletskaya, I. P. & Yus, M. Metal-catalyzed regiodivergent organic reactions. Chem. Soc. Rev. 48, 4515–4618 (2019).

    Article  PubMed  Google Scholar 

  84. Beletskaya, I. P., Nájera, C. & Yus, M. Chemodivergent reactions. Chem. Soc. Rev. 49, 7101–7166 (2020).

    Article  PubMed  CAS  Google Scholar 

  85. Wang, J.-W. et al. Nickel-catalyzed switchable site-selective alkene hydroalkylation by temperature regulation. Angew. Chem. Int. Ed. 61, e202205537 (2022).

    Article  CAS  Google Scholar 

  86. Zhao, L. et al. Ligand-controlled NiH-catalyzed regiodivergent chain-walking hydroalkylation of alkenes. Angew. Chem. Int. Ed. 61, e202204716 (2022).

    Article  CAS  Google Scholar 

  87. Yang, P.-F. & Shu, W. Orthogonal access to α-/β-branched/linear aliphatic amines by catalyst-tuned regiodivergent hydroalkylations. Angew. Chem. Int. Ed. 61, e202208018 (2022).

    Article  CAS  Google Scholar 

  88. Zhao, W.-T., Meng, H., Lin, J.-N. & Shu, W. Ligand-controlled nickel-catalyzed regiodivergent cross-electrophile alkyl-alkyl couplings of alkyl halides. Angew. Chem. Int. Ed. 62, e202215779 (2023).

    Article  CAS  Google Scholar 

  89. Rodrigalvarez, J., Wang, H. & Martin, R. Native amides as enabling vehicles for forging sp3–sp3 architectures via interrupted deaminative Ni-catalyzed chain-walking. J. Am. Chem. Soc. 145, 3869–3874 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Xie, L. et al. Ligand-controlled NiH-catalyzed regiodivergent and enantioselective hydroamination of alkenyl amides. ACS Catal. 13, 10041–10047 (2023).

    Article  CAS  Google Scholar 

  91. Qian, D. & Hu, X. Ligand-controlled regiodivergent hydroalkylation of pyrrolines. Angew. Chem. Int. Ed. 58, 18519–18523 (2019).

    Article  CAS  Google Scholar 

  92. Wang, W. et al. Nickel/photoredox dual-catalyzed regiodivergent aminoalkylation of unactivated alkyl halides. J. Am. Chem. Soc. 145, 23385–23394 (2023).

    Article  PubMed  CAS  Google Scholar 

  93. He, H.-D. et al. Diphosphine ligand-enabled nickel-catalyzed chelate-assisted inner-selective migratory hydroarylation of alkenes. Angew. Chem. Int. Ed. 63, e202313336 (2024).

    Article  CAS  Google Scholar 

  94. Imran, S., Jin, W.-H., Li, R.-P., Ismaeel, N. & Sun, H.-M. Ligand-controlled nickel-catalyzed tandem isomerization/regiodivergent hydroheteroarylation of α-alkenes with heteroarenes. Org. Lett. 24, 8875–8879 (2022).

    Article  PubMed  CAS  Google Scholar 

  95. Ding, C., Ren, Y., Yu, Y. & Yin, G. Ligand-modulated nickel-catalyzed regioselective silylalkylation of alkenes. Nat. Commun. 14, 7670 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Li, Y., Wei, H. & Yin, G. Nickel-catalyzed migratory benzylboration of allylbenzenes. Tetrahedron Lett. 100, 153889 (2022).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the Institute of Chemical Research of Catalonia (ICIQ) and FEDER (Fondo Europeo de Desarrollo Regional)/MCI (Ministerio Ciencia e Innovación) PID2021-123801NB-I00 for the financial support. The authors also sincerely thank all co-workers from the Martin laboratory at ICIQ, particularly those involved in Ni-catalysed reactions, for their invaluable intellectual and experimental contributions in the past years.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding authors

Correspondence to Ciro Romano or Ruben Martin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Chemistry thanks Shaolin Zhu and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Metallacycle

A cyclic organometallic species containing a metal. In some cases, the specific metal may be named — as in nickelacycle.

Multivariate linear regression

(MLR). A statistical technique used to model the linear relationship between variables and predict the outcome when changing one of them.

Photoredox

A branch of photochemistry capable of converting visible light into chemical energy for enabling a series of chemical reactions under exceptionally mild conditions.

Redox-active ligands

Also frequently termed ‘redox non-innocent ligands’, these are molecules able to coordinate a transition metal and change its oxidation state by accepting (donating) one electron from (to) the metal.

Site-selectivity

Selectivity towards specific positions within the molecular structure.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Romano, C., Martin, R. Ni-catalysed remote C(sp3)–H functionalization using chain-walking strategies. Nat Rev Chem 8, 833–850 (2024). https://doi.org/10.1038/s41570-024-00649-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41570-024-00649-4

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing