Abstract
The dynamic translocation of a metal catalyst along an alkyl side chain — often coined as ‘chain-walking’ — has opened new retrosynthetic possibilities that enable functionalization at unactivated C(sp3)–H sites. The use of nickel complexes in chain-walking strategies has recently gained considerable momentum owing to their versatility for forging sp3 architectures and their redox promiscuity that facilitates both one-electron or two-electron reaction manifolds. This Review discusses the relevance and impact that these processes might have in synthetic endeavours, including mechanistic considerations when appropriate. Particular emphasis is given to the latest discoveries that leverage the potential of Ni-catalysed chain-walking scenarios for tackling transformations that would otherwise be difficult to accomplish, including the merger of chain-walking with other new approaches such as photoredox catalysis or electrochemical activation.
Key points
-
Iterative β-hydride elimination and migratory insertion (‘chain-walking’) can be an enabling vehicle for promoting functionalization at remote C(sp3)–H sites.
-
Site-selective C(sp3)–H functionalization can be performed through the exploitation of native molecular features (the binding ability of a functional group, thermodynamic stability, or kinetic availability of reaction intermediates).
-
Regiodivergent C(sp3)–H manipulation can be realized by fine-tuning of ligand structure, reaction conditions, or by the nature of an appended functional group.
-
Ni-catalysed chain-walking represents a novel, contemporary strategy to forge new C(sp3)–C(sp2) and C(sp3)–C(sp2) bonds.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Luo, Y.-R. Comprehensive Handbook of Chemical Bond Energies (CRC Press, 2007).
Docherty, J. H. et al. Transition-metal-catalyzed C–H bond activation for the formation of C–C bonds in complex molecules. Chem. Rev. 123, 7692–7760 (2023).
Bellotti, P., Huang, H.-M., Faber, T. & Glorius, F. Photocatalytic late-stage C–H functionalization. Chem. Rev. 123, 4237–4352 (2023).
Guillemard, L., Kaplaneris, N., Ackermann, L. & Johansson, M. J. Late-stage C–H functionalization offers new opportunities in drug discovery. Nat. Rev. Chem. 5, 522–545 (2021).
Bergman, R. G. C–H activation. Nature 446, 391–393 (2007).
Lovering, F., Bikker, J. & Humblet, C. Escape from flatland: increasing saturation as an approach to improving clinical success. J. Med. Chem. 52, 6752–6756 (2009).
Davies, H. M. L. & Morton, D. Recent advances in C–H functionalization. J. Org. Chem. 81, 343–350 (2016).
Huang, Z., Lim, H. N., Mo, F., Young, M. C. & Dong, G. Transition metal-catalyzed ketone-directed or mediated C–H functionalization. Chem. Soc. Rev. 44, 7764–7786 (2015).
He, J., Wasa, M., Chan, K. S. L., Shao, Q. & Yu, J.-Q. Palladium-catalyzed transformations of alkyl C–H bonds. Chem. Rev. 117, 8754–8786 (2017).
Xu, Y. & Dong, G. sp3 C–H activation via exo-type directing groups. Chem. Sci. 9, 1424–1432 (2018).
Rej, S., Ano, Y. & Chatani, N. Bidentate directing groups: an efficient tool in C–H bond functionalization chemistry for the expedient construction of C–C bonds. Chem. Rev. 120, 1788–1887 (2020).
Mingo, M. M., Rodríguez, N., Arrayás, R. G. & Carretero, J. C. Remote C(sp3)–H functionalization via catalytic cyclometallation: beyond five-membered ring metallacycle intermediates. Org. Chem. Front. 8, 4914–4946 (2021).
He, Y. et al. Recent advances in transition-metal-catalyzed carbene insertion to C–H bonds. Chem. Soc. Rev. 51, 2759–2852 (2022).
Yi, H. et al. Recent advances in radical C–H activation/radical cross-coupling. Chem. Rev. 117, 9016–9085 (2017).
Sarkar, S., Cheung, K. P. S. & Gevorgyan, V. C–H functionalization reactions enabled by hydrogen atom transfer to carbon-centered radicals. Chem. Sci. 11, 12974–12993 (2020).
Lewis, J. C., Coelho, P. S. & Arnold, F. H. Enzymatic functionalization of carbon–hydrogen bonds. Chem. Soc. Rev. 40, 2003–2021 (2011).
Dunham, N. P. & Arnold, F. H. Nature’s machinery, repurposed: expanding the repertoire of iron-dependent oxygenases. ACS Catal. 10, 12239–12255 (2020).
Golden, D. L., Suh, S.-E. & Stahl, S. S. Radical C(sp3)–H functionalization and cross-coupling reactions. Nat. Rev. Chem. 6, 405–427 (2022).
Ittel, S. D., Johnson, L. K. & Brookhart, M. Late-metal catalysts for ethylene homo- and copolymerization. Chem. Rev. 100, 1169–1204 (2000). This seminal work represents one of the pillars in the field of alkene isomerization and furnished initial mechanistic hypothesis that has influenced subsequent works.
Vasseur, A., Bruffaerts, J. & Marek, I. Remote functionalization through alkene isomerization. Nat. Chem. 8, 209–219 (2016).
Sommer, H., Juliá-Hernández, F., Martin, R. & Marek, I. Walking metals for remote functionalization. ACS Cent. Sci. 4, 153–165 (2018). This review gathers the main achievements in the transition metal-catalysed chain-walking arena, providing an extensive overview also on other metals than nickel.
Rodrigalvarez, J., Haut, F.-L. & Martin, R. Regiodivergent sp3 C–H functionalization via Ni-catalyzed chain-walking reactions. J. Am. Chem. Soc. Au 3, 3270–3282 (2023).
Ghosh, S., Patel, S. & Chatterjee, I. Chain-walking reactions of transition metals for remote C–H bond functionalization of olefinic substrates. Chem. Commun. 57, 11110–11130 (2021).
Fiorito, D., Scaringi, S. & Mazet, C. Transition metal-catalyzed alkene isomerization as an enabling technology in tandem, sequential and domino processes. Chem. Soc. Rev. 50, 1391–1406 (2021).
Li, Y. & Yin, G. Nickel chain-walking catalysis: a journey to migratory carboboration of alkenes. Acc. Chem. Res. 56, 3246–3259 (2023).
Dhungana, R. K., Sapkota, R. R., Niroula, D. & Giri, R. Walking metals: catalytic difunctionalization of alkenes at nonclassical sites. Chem. Sci. 11, 9757–9774 (2020).
Kapat, A., Sperger, T., Guven, S. & Schoenebeck, F. E-Olefins through intramolecular radical relocation. Science 363, 391–396 (2019).
Brookhart, M., Green, M. L. H. & Parkin, G. Agostic interactions in transition metal compounds. Proc. Natl Acad. Sci. USA 104, 6908–6914 (2007).
Somerville, R. J. et al. Ni(I)–alkyl complexes bearing phenanthroline ligands: experimental evidence for CO2 insertion at Ni(I) centers. J. Am. Chem. Soc. 142, 10936–10941 (2020). This paper represents one of the rare examples of isolation and study of Ni(I)–alkyl complexes.
Day, C. S., Ton, S. J., McGuire, R. T., Foroutan-Nejad, C. & Martin, R. Reductive elimination from sterically encumbered Ni–polypyridine complexes. Organometallics 41, 2662–2667 (2022).
Lin, Q., Spielvogel, E. H. & Diao, T. Carbon-centered radical capture at nickel(II) complexes: spectroscopic evidence, rates, and selectivity. Chem 9, 1295–1308 (2023).
Karimzadeh-Younjali, M. & Wendt, O. F. α- and β-eliminations in transition metal complexes: strategies to cleave unstrained C−C and C−F bonds. Helv. Chim. Acta 104, e2100114 (2021).
Léonard, N. G. et al. Synthesis of cationic, dimeric α-diimine nickel hydride complexes and relevance to the polymerization of olefins. Organometallics 39, 2630–2635 (2020).
Singh, K., Kundu, A. & Adhikari, D. Ligand-based redox: catalytic applications and mechanistic aspects. ACS Catal. 12, 13075–13107 (2022). This review gives a general overview on the role of redox-active ligands to stabilize catalytic intermediates and to trigger otherwise challenging steps, also relevant to chain-walking scenarios.
Day, C. S. et al. Elucidating electron-transfer events in polypyridine nickel complexes for reductive coupling reactions. Nat. Catal. 6, 244–253 (2023).
Day, C. S. & Martin, R. Comproportionation and disproportionation in nickel and copper complexes. Chem. Soc. Rev. 52, 6601–6616 (2023).
He, Y., Cai, Y. & Zhu, S. Mild and regioselective benzylic C–H functionalization: Ni-catalyzed reductive arylation of remote and proximal olefins. J. Am. Chem. Soc. 139, 1061–1064 (2017).
Li, Y. et al. Reaction scope and mechanistic insights of nickel-catalyzed migratory Suzuki–Miyaura cross-coupling. Nat. Commun. 11, 417 (2020).
He, Y., Liu, C., Yu, L. & Zhu, S. Ligand-enabled nickel-catalyzed redox-relay migratory hydroarylation of alkenes with arylborons. Angew. Chem. Int. Ed. 59, 9186–9191 (2020). This paper showcases the first example of Ni-catalysed chain-walking devoid of a redox-active ligand.
Juliá-Hernández, F., Moragas, T., Cornella, J. & Martin, R. Remote carboxylation of halogenated aliphatic hydrocarbons with carbon dioxide. Nature 545, 84–88 (2017). This paper represents, to our knowledge, the first report of regiodivergent and regioconvergent Ni-catalysed chain-walking transformations.
Kumar, G. S. et al. Nickel-catalyzed chain-walking cross-electrophile coupling of alkyl and aryl halides and olefin hydroarylation enabled by electrochemical reduction. Angew. Chem. Int. Ed. 59, 6513–6519 (2020).
Wang, W. et al. Migratory arylboration of unactivated alkenes enabled by nickel catalysis. Angew. Chem. Int. Ed. 58, 4612–4616 (2019).
Fyfe, J. W. B. & Watson, A. J. B. Recent developments in organoboron chemistry: old dogs, new tricks. Chem 3, 31–55 (2017).
El-Maiss, J. et al. Recent advances in metal-catalyzed alkyl–boron (C(sp3)–C(sp2)) Suzuki–Miyaura cross-couplings. Catalysts 10, 296 (2020).
Zhang, Y. et al. A relay catalysis strategy for enantioselective nickel-catalyzed migratory hydroarylation forming chiral α-aryl alkylboronates. Chem 7, 3171–3188 (2021). This paper discloses the first application of a different approach towards asymmetric catalysis in the realm of chain-walking strategies.
He, Y. et al. Regio- and enantioselective remote hydroarylation using a ligand-relay strategy. Nat. Commun. 13, 2471 (2022).
Sun, Y., Wang, B. & Lu, Z. Ligand relay catalysis: a newly emerged synthetic strategy. Org. Chem. Front. 10, 4146–4160 (2023).
Zhou, L., Zhu, C., Bi, P. & Feng, C. Ni-catalyzed migratory fluoro-alkenylation of unactivated alkyl bromides with gem-difluoroalkenes. Chem. Sci. 10, 1144–1149 (2019).
Liu, J., Gong, H. & Zhu, S. Nickel-catalyzed, regio- and enantioselective benzylic alkenylation of olefins with alkenyl bromide. Angew. Chem. Int. Ed. 60, 4060–4064 (2021).
He, J., Song, P., Xu, X., Zhu, S. & Wang, Y. Migratory reductive acylation between alkyl halides or alkenes and alkyl carboxylic acids by nickel catalysis. ACS Catal. 9, 3253–3259 (2019).
Wang, X., Nakajima, M., Serrano, E. & Martin, R. Alkyl bromides as mild hydride sources in Ni-catalyzed hydroamidation of alkynes with isocyanates. J. Am. Chem. Soc. 138, 15531–15534 (2016).
Jiang, X., Sheng, F.-T., Zhang, Y., Deng, G. & Zhu, S. Ligand relay catalysis enables asymmetric migratory reductive acylation of olefins or alkyl halides. J. Am. Chem. Soc. 144, 21448–21456 (2022).
Yu, R., Rajasekar, S. & Fang, X. Enantioselective nickel-catalyzed migratory hydrocyanation of nonconjugated dienes. Angew. Chem. Int. Ed. 59, 21436–21441 (2020).
Zhang, Y., Xu, X. & Zhu, S. Nickel-catalysed selective migratory hydrothiolation of alkenes and alkynes with thiols. Nat. Commun. 10, 1752 (2019).
Liu, B. et al. Nickel-catalyzed remote and proximal Wacker-type oxidation. Commun. Chem. 2, 5 (2019).
Zhang, Y., He, J., Song, P., Wang, Y. & Zhu, S. Ligand-enabled NiH-catalyzed migratory hydroamination: chain walking as a strategy for regiodivergent/regioconvergent remote sp3 C–H amination. CCS Chem. 3, 2259–2268 (2021).
Sahoo, B. et al. Site-selective, remote sp3 C−H carboxylation enabled by the merger of photoredox and nickel catalysis. Chem. Eur. J. 25, 9001–9005 (2019).
Davies, J. et al. Kinetically-controlled Ni-catalyzed direct carboxylation of unactivated secondary alkyl bromides without chain walking. J. Am. Chem. Soc. 146, 1753–1759 (2024).
Tortajada, A. et al. Ligand-controlled regiodivergent catalytic amidation of unactivated secondary alkyl bromides. ACS Catal. 11, 10223–10227 (2021).
He, Y., Han, B. & Zhu, S. Terminal-selective C(sp3)–H arylation: NiH-catalyzed remote hydroarylation of unactivated internal olefins. Organometallics 40, 2253–2264 (2021).
Zheng, S., Hu, Y. & Yuan, W. Recent advances in C(sp3)–C(sp3) cross-coupling via metallaphotoredox strategies. Synthesis 53, 1719–1733 (2021).
Sun, S.-Z., Börjesson, M., Martin-Montero, R. & Martin, R. Site-selective Ni-catalyzed reductive coupling of α-haloboranes with unactivated olefins. J. Am. Chem. Soc. 140, 12765–12769 (2018).
Sun, S.-Z., Romano, C. & Martin, R. Site-selective catalytic deaminative alkylation of unactivated olefins. J. Am. Chem. Soc. 141, 16197–16201 (2019).
Sun, S.-Z. et al. Enantioselective deaminative alkylation of amino acid derivatives with unactivated olefins. J. Am. Chem. Soc. 144, 1130–1137 (2022).
Yue, W.-J. & Martin, R. Ni-catalyzed site-selective hydrofluoroalkylation of terminal and internal olefins. ACS Catal. 12, 12132–12137 (2022).
Zhang, Y., Han, B. & Zhu, S. Rapid access to highly functionalized alkyl boronates by NiH-catalyzed remote hydroarylation of boron-containing alkenes. Angew. Chem. Int. Ed. 58, 13860–13864 (2019).
Sun, S.-Z., Talavera, L., Spieß, P., Day, C. S. & Martin, R. sp3 bis-organometallic reagents via catalytic 1,1-difunctionalization of unactivated olefins. Angew. Chem. Int. Ed. 60, 11740–11744 (2021).
Talavera, L. et al. Nickel-catalyzed 1,1-aminoborylation of unactivated terminal alkenes. ACS Catal. 13, 5538–5543 (2023).
Velasco-Rubio, Á. & Martin, R. Recent advances in Ni-catalyzed 1,1-difunctionalization of unactivated olefins. Adv. Synth. Catal. 366, 593–602 (2024).
Bera, S., Mao, R. & Hu, X. Enantioselective C(sp3)–C(sp3) cross-coupling of non-activated alkyl electrophiles via nickel hydride catalysis. Nat. Chem. 13, 270–277 (2021).
Wang, J.-W. et al. Nickel-catalyzed remote asymmetric hydroalkylation of alkenyl ethers to access ethers of chiral dialkyl carbinols. J. Am. Chem. Soc. 145, 10411–10421 (2023).
Sun, X.-Y., Yao, B.-Y., Xuan, B., Xiao, L.-J. & Zhou, Q.-L. Recent advances in nickel-catalyzed asymmetric hydrofunctionalization of alkenes. Chem. Catal. 2, 3140–3162 (2022).
He, Y., Chen, J., Jiang, X. & Zhu, S. Enantioselective NiH-catalyzed reductive hydrofunctionalization of alkenes. Chin. J. Chem. 40, 651–661 (2022).
Guo, W., Cheng, L., Ma, G., Tong, W. & Wu, F. Diverse synthesis of chiral trifluoromethylated alkanes via nickel-catalyzed enantioconvergent reductive hydroalkylation of unactivated olefins. Org. Lett. 24, 1796–1801 (2022).
He, Y. et al. Ligand-promoted, enantioconvergent synthesis of aliphatic alkanes bearing trifluoromethylated stereocenters via hydrotrifluoroalkylation of unactivated alkenes. Chin. J. Chem. 40, 1531–1536 (2022).
Wang, Z.-C. et al. Enantioselective C–C cross-coupling of unactivated alkenes. Nat. Catal. 6, 1087–1097 (2023).
Liang, K., Zhang, Q. & Guo, C. Enantioselective nickel-catalysed electrochemical cross-dehydrogenative amination. Nat. Synth. 2, 1184–1193 (2023).
Chen, X., Rao, W., Yang, T. & Koh, M. J. Alkyl halides as both hydride and alkyl sources in catalytic regioselective reductive olefin hydroalkylation. Nat. Commun. 11, 5857 (2020).
Wang, X.-X., Xu, Y.-T., Zhang, Z.-L., Lu, X. & Fu, Y. NiH-catalysed proximal-selective hydroalkylation of unactivated alkenes and the ligand effects on regioselectivity. Nat. Commun. 13, 1890 (2022).
Basnet, P. et al. Ni-catalyzed regioselective β,δ-diarylation of unactivated olefins in ketimines via ligand-enabled contraction of transient nickellacycles: rapid access to remotely diarylated ketones. J. Am. Chem. Soc. 140, 7782–7786 (2018).
Lee, C., Seo, H., Jeon, J. & Hong, S. γ-Selective C(sp3)–H amination via controlled migratory hydroamination. Nat. Commun. 12, 5657 (2021).
Du, B., Ouyang, Y., Chen, Q. & Yu, W.-Y. Thioether-directed NiH-catalyzed remote γ-C(sp3)–H hydroamidation of alkenes by 1,4,2-dioxazol-5-ones. J. Am. Chem. Soc. 143, 14962–14968 (2021).
Nájera, C., Beletskaya, I. P. & Yus, M. Metal-catalyzed regiodivergent organic reactions. Chem. Soc. Rev. 48, 4515–4618 (2019).
Beletskaya, I. P., Nájera, C. & Yus, M. Chemodivergent reactions. Chem. Soc. Rev. 49, 7101–7166 (2020).
Wang, J.-W. et al. Nickel-catalyzed switchable site-selective alkene hydroalkylation by temperature regulation. Angew. Chem. Int. Ed. 61, e202205537 (2022).
Zhao, L. et al. Ligand-controlled NiH-catalyzed regiodivergent chain-walking hydroalkylation of alkenes. Angew. Chem. Int. Ed. 61, e202204716 (2022).
Yang, P.-F. & Shu, W. Orthogonal access to α-/β-branched/linear aliphatic amines by catalyst-tuned regiodivergent hydroalkylations. Angew. Chem. Int. Ed. 61, e202208018 (2022).
Zhao, W.-T., Meng, H., Lin, J.-N. & Shu, W. Ligand-controlled nickel-catalyzed regiodivergent cross-electrophile alkyl-alkyl couplings of alkyl halides. Angew. Chem. Int. Ed. 62, e202215779 (2023).
Rodrigalvarez, J., Wang, H. & Martin, R. Native amides as enabling vehicles for forging sp3–sp3 architectures via interrupted deaminative Ni-catalyzed chain-walking. J. Am. Chem. Soc. 145, 3869–3874 (2023).
Xie, L. et al. Ligand-controlled NiH-catalyzed regiodivergent and enantioselective hydroamination of alkenyl amides. ACS Catal. 13, 10041–10047 (2023).
Qian, D. & Hu, X. Ligand-controlled regiodivergent hydroalkylation of pyrrolines. Angew. Chem. Int. Ed. 58, 18519–18523 (2019).
Wang, W. et al. Nickel/photoredox dual-catalyzed regiodivergent aminoalkylation of unactivated alkyl halides. J. Am. Chem. Soc. 145, 23385–23394 (2023).
He, H.-D. et al. Diphosphine ligand-enabled nickel-catalyzed chelate-assisted inner-selective migratory hydroarylation of alkenes. Angew. Chem. Int. Ed. 63, e202313336 (2024).
Imran, S., Jin, W.-H., Li, R.-P., Ismaeel, N. & Sun, H.-M. Ligand-controlled nickel-catalyzed tandem isomerization/regiodivergent hydroheteroarylation of α-alkenes with heteroarenes. Org. Lett. 24, 8875–8879 (2022).
Ding, C., Ren, Y., Yu, Y. & Yin, G. Ligand-modulated nickel-catalyzed regioselective silylalkylation of alkenes. Nat. Commun. 14, 7670 (2023).
Li, Y., Wei, H. & Yin, G. Nickel-catalyzed migratory benzylboration of allylbenzenes. Tetrahedron Lett. 100, 153889 (2022).
Acknowledgements
The authors thank the Institute of Chemical Research of Catalonia (ICIQ) and FEDER (Fondo Europeo de Desarrollo Regional)/MCI (Ministerio Ciencia e Innovación) PID2021-123801NB-I00 for the financial support. The authors also sincerely thank all co-workers from the Martin laboratory at ICIQ, particularly those involved in Ni-catalysed reactions, for their invaluable intellectual and experimental contributions in the past years.
Author information
Authors and Affiliations
Contributions
The authors contributed equally to all aspects of the article.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Reviews Chemistry thanks Shaolin Zhu and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Glossary
- Metallacycle
-
A cyclic organometallic species containing a metal. In some cases, the specific metal may be named — as in nickelacycle.
- Multivariate linear regression
-
(MLR). A statistical technique used to model the linear relationship between variables and predict the outcome when changing one of them.
- Photoredox
-
A branch of photochemistry capable of converting visible light into chemical energy for enabling a series of chemical reactions under exceptionally mild conditions.
- Redox-active ligands
-
Also frequently termed ‘redox non-innocent ligands’, these are molecules able to coordinate a transition metal and change its oxidation state by accepting (donating) one electron from (to) the metal.
- Site-selectivity
-
Selectivity towards specific positions within the molecular structure.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Romano, C., Martin, R. Ni-catalysed remote C(sp3)–H functionalization using chain-walking strategies. Nat Rev Chem 8, 833–850 (2024). https://doi.org/10.1038/s41570-024-00649-4
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41570-024-00649-4