Nothing Special   »   [go: up one dir, main page]

Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Brain cancer stem cells: resilience through adaptive plasticity and hierarchical heterogeneity

Abstract

Malignant brain tumours are complex ecosystems containing neoplastic and stromal components that generate adaptive and evolutionarily driven aberrant tissues in the central nervous system. Brain cancers are cultivated by a dynamic population of stem-like cells that enforce intratumoural heterogeneity and respond to intrinsic microenvironment or therapeutically guided insults through proliferation, plasticity and restructuring of neoplastic and stromal components. Far from a rigid hierarchy, heterogeneous neoplastic populations transition between cellular states with differential self-renewal capacities, endowing them with powerful resilience. Here we review the biological machinery used by brain tumour stem cells to commandeer tissues in the intracranial space, evade immune responses and resist chemoradiotherapy. Through recent advances in single-cell sequencing, improved models to investigate the role of the tumour microenvironment and a deeper understanding of the fundamental role of the immune system in cancer biology, we are now better equipped to explore mechanisms by which these processes can be exploited for therapeutic benefit.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Conceptual framework and molecular circuitry of glioblastoma stem cells.
Fig. 2: Glioblastoma stem cell hierarchical plasticity, developmental origin, classification methods and evolution.
Fig. 3: Brain cancer stem cells in context: tumour microenvironmental inputs.

Similar content being viewed by others

References

  1. Ostrom, Q. T. et al. CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2013–2017. Neuro Oncol. 22, iv1–iv96 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Ostrom, Q. T., Wright, C. H. & Barnholtz-Sloan, J. S. Brain metastases: epidemiology. Handb. Clin. Neurol. 149, 27–42 (2018).

    Article  PubMed  Google Scholar 

  3. Sacks, P. & Rahman, M. Epidemiology of brain metastases. Neurosurg. Clin. N. Am. 31, 481–488 (2020).

    Article  PubMed  Google Scholar 

  4. Desai, A., Yan, Y. & Gerson, S. L. Concise reviews: cancer stem cell targeted therapies: toward clinical success. Stem Cell Transl. Med. 8, 75–81 (2019).

    Article  Google Scholar 

  5. Louveau, A. et al. Structural and functional features of central nervous system lymphatic vessels. Nature 523, 337–341 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ahn, J. H. et al. Meningeal lymphatic vessels at the skull base drain cerebrospinal fluid. Nature 572, 62–66 (2019).

    Article  CAS  PubMed  Google Scholar 

  7. Quail, D. F. & Joyce, J. A. The microenvironmental landscape of brain tumors. Cancer Cell 31, 326–341 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wolf, K. J., Chen, J., Coombes, J., Aghi, M. K. & Kumar, S. Dissecting and rebuilding the glioblastoma microenvironment with engineered materials. Nat. Rev. Mater. 4, 651–668 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Tykocki, T. & Eltayeb, M. Ten-year survival in glioblastoma. A systematic review. J. Clin. Neurosci. 54, 7–13 (2018).

    Article  PubMed  Google Scholar 

  10. Louis, D. N. et al. The 2021 WHO classification of tumors of the central nervous system: a summary. Neuro Oncol. 23, 1231–1251 (2021). This article provides the most updated and authoritative review of the World Health Organization classification of brain tumours, including an expanded role for molecular testing in diagnosis and classification.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wang, L. B. et al. Proteogenomic and metabolomic characterization of human glioblastoma. Cancer Cell https://doi.org/10.1016/j.ccell.2021.01.006 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Cabrera, M. C., Hollingsworth, R. E. & Hurt, E. M. Cancer stem cell plasticity and tumor hierarchy. World J. Stem Cell 7, 27–36 (2015).

    Article  Google Scholar 

  13. Lauko, A., Lo, A., Ahluwalia, M. S. & Lathia, J. D. Cancer cell heterogeneity & plasticity in glioblastoma and brain tumors. Semin Cancer Biol. https://doi.org/10.1016/j.semcancer.2021.02.014 (2021).

    Article  PubMed  Google Scholar 

  14. Gupta, P. B., Pastushenko, I., Skibinski, A., Blanpain, C. & Kuperwasser, C. Phenotypic plasticity: driver of cancer initiation, progression, and therapy resistance. Cell Stem Cell 24, 65–78 (2019).

    Article  CAS  PubMed  Google Scholar 

  15. Mitchell, K., Troike, K., Silver, D. J. & Lathia, J. D. The evolution of the cancer stem cell state in glioblastoma: emerging insights into the next generation of functional interactions. Neuro Oncol. 23, 199–213 (2021).

    Article  CAS  PubMed  Google Scholar 

  16. Chaligne, R. et al. Epigenetic encoding, heritability and plasticity of glioma transcriptional cell states. Nat. Genet. 53, 1469–1479 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Syms, P. Evolution of cancer of the breast. J. Am. Med. Assoc. LXIX, 454–459 (1917).

    Article  Google Scholar 

  18. Windholz, F. Problems of acquired radioresistance of cancer; adaptation of tumor cells. Radiology 48, 398–404 (1947).

    Article  CAS  PubMed  Google Scholar 

  19. Nowell, P. C. The clonal evolution of tumor cell populations. Science 194, 23–28 (1976).

    Article  CAS  PubMed  Google Scholar 

  20. Hansen-Melander, E. Accelerated evolution of cancer stemlines following environmental changes. Hereditas 44, 471–487 (1958).

    Article  Google Scholar 

  21. Bao, S. et al. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 444, 756–760 (2006).

    Article  CAS  PubMed  Google Scholar 

  22. Chen, J. et al. A restricted cell population propagates glioblastoma growth after chemotherapy. Nature 488, 522–526 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Liu, G. et al. Analysis of gene expression and chemoresistance of CD133+ cancer stem cells in glioblastoma. Mol. Cancer 5, 67 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Bao, S. et al. Stem cell-like glioma cells promote tumor angiogenesis through vascular endothelial growth factor. Cancer Res. 66, 7843–7848 (2006).

    Article  CAS  PubMed  Google Scholar 

  25. Cheng, L. et al. Glioblastoma stem cells generate vascular pericytes to support vessel function and tumor growth. Cell 153, 139–152 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wakimoto, H. et al. Human glioblastoma-derived cancer stem cells: establishment of invasive glioma models and treatment with oncolytic herpes simplex virus vectors. Cancer Res. 69, 3472–3481 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wang, R. et al. Glioblastoma stem-like cells give rise to tumour endothelium. Nature 468, 829–833 (2010). Together with Ricci-Vitiani et al. (2010), this article describes a lineage plasticity phenomenon whereby GSC populations promote angiogenesis and generation of tumour vasculature through transdifferentiation into neoplastic endothelial cells, with later work by Cheng et al. (2013) identifying further transdifferentiation into pericyte lineages.

    Article  CAS  PubMed  Google Scholar 

  28. Verhaak, R. G. et al. Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 17, 98–110 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wang, Q. et al. Tumor evolution of glioma-intrinsic gene expression subtypes associates with immunological changes in the microenvironment. Cancer Cell 32, 42–56 e46 (2017). This article describes the most widely accepted cell-intrinsic transcriptional glioblastoma classification scheme, defining proneural, mesenchymal and classical transcriptional subgroups, updating previous work by Verhaak et al. (2010), and further delineating microenvironmental impacts on these states.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Liau, B. B. et al. Adaptive chromatin remodeling drives glioblastoma stem cell plasticity and drug tolerance. Cell Stem Cell 20, 233–246 e237 (2017).

    Article  CAS  PubMed  Google Scholar 

  31. Wang, J. et al. Invasion of white matter tracts by glioma stem cells is regulated by a NOTCH1-SOX2 positive-feedback loop. Nat. Neurosci. 22, 91–105 (2019).

    Article  CAS  PubMed  Google Scholar 

  32. Bayin, N. S. et al. Notch signaling regulates metabolic heterogeneity in glioblastoma stem cells. Oncotarget 8, 64932–64953 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Zhu, T. S. et al. Endothelial cells create a stem cell niche in glioblastoma by providing NOTCH ligands that nurture self-renewal of cancer stem-like cells. Cancer Res. 71, 6061–6072 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Rajakulendran, N. et al. Wnt and Notch signaling govern self-renewal and differentiation in a subset of human glioblastoma stem cells. Genes Dev. 33, 498–510 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zheng, H. et al. PLAGL2 regulates Wnt signaling to impede differentiation in neural stem cells and gliomas. Cancer Cell 17, 497–509 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hu, B. et al. Epigenetic activation of WNT5A drives glioblastoma stem cell differentiation and invasive growth. Cell 167, 1281–1295 e1218 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Binda, E. et al. Wnt5a drives an invasive phenotype in human glioblastoma stem-like cells. Cancer Res. 77, 996–1007 (2017).

    Article  CAS  PubMed  Google Scholar 

  38. Huang, M. et al. Wnt-mediated endothelial transformation into mesenchymal stem cell-like cells induces chemoresistance in glioblastoma. Sci. Transl. Med. 12 https://doi.org/10.1126/scitranslmed.aay7522 (2020).

  39. Rheinbay, E. et al. An aberrant transcription factor network essential for Wnt signaling and stem cell maintenance in glioblastoma. Cell Rep. 3, 1567–1579 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Manoranjan, B. et al. A CD133-AKT-Wnt signaling axis drives glioblastoma brain tumor-initiating cells. Oncogene 39, 1590–1599 (2020).

    Article  CAS  PubMed  Google Scholar 

  41. Guryanova, O. A. et al. Nonreceptor tyrosine kinase BMX maintains self-renewal and tumorigenic potential of glioblastoma stem cells by activating STAT3. Cancer Cell 19, 498–511 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hossain, A. et al. Mesenchymal stem cells isolated from human gliomas increase proliferation and maintain stemness of glioma stem cells through the IL-6/gp130/STAT3 pathway. Stem Cell 33, 2400–2415 (2015).

    Article  CAS  Google Scholar 

  43. Jin, X. et al. The ID1-CULLIN3 axis regulates intracellular SHH and WNT signaling in glioblastoma stem cells. Cell Rep. 16, 1629–1641 (2016).

    Article  CAS  PubMed  Google Scholar 

  44. Clement, V., Sanchez, P., de Tribolet, N., Radovanovic, I. & Ruiz i Altaba, A. HEDGEHOG-GLI1 signaling regulates human glioma growth, cancer stem cell self-renewal, and tumorigenicity. Curr. Biol. 17, 165–172 (2007).

    Article  CAS  PubMed  Google Scholar 

  45. Bleau, A. M. et al. PTEN/PI3K/Akt pathway regulates the side population phenotype and ABCG2 activity in glioma tumor stem-like cells. Cell Stem Cell 4, 226–235 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Anido, J. et al. TGF-beta receptor inhibitors target the CD44high/Id1high glioma-initiating cell population in human glioblastoma. Cancer Cell 18, 655–668 (2010).

    Article  CAS  PubMed  Google Scholar 

  47. Kim, E. et al. Phosphorylation of EZH2 activates STAT3 signaling via STAT3 methylation and promotes tumorigenicity of glioblastoma stem-like cells. Cancer Cell 23, 839–852 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Jin, X. et al. Targeting glioma stem cells through combined BMI1 and EZH2 inhibition. Nat. Med. 23, 1352–1361 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Sachamitr, P. et al. PRMT5 inhibition disrupts splicing and stemness in glioblastoma. Nat. Commun. 12, 979 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Flavahan, W. A. et al. Brain tumor initiating cells adapt to restricted nutrition through preferential glucose uptake. Nat. Neurosci. 16, 1373–1382 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Lathia, J. D., Mack, S. C., Mulkearns-Hubert, E. E., Valentim, C. L. & Rich, J. N. Cancer stem cells in glioblastoma. Genes. Dev. 29, 1203–1217 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Bahmad, H. F. & Poppiti, R. J. Medulloblastoma cancer stem cells: molecular signatures and therapeutic targets. J. Clin. Pathol. 73, 243–249 (2020).

    Article  CAS  PubMed  Google Scholar 

  53. Parker, M. et al. C11orf95-RELA fusions drive oncogenic NF-kappaB signalling in ependymoma. Nature 506, 451–455 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kupp, R. et al. ZFTA translocations constitute ependymoma chromatin remodeling and transcription factors. Cancer Discov. 11, 2216–2229 (2021).

    Article  CAS  PubMed  Google Scholar 

  55. Arabzade, A. et al. ZFTA-RELA dictates oncogenic transcriptional programs to drive aggressive supratentorial ependymoma. Cancer Discov. 11, 2200–2215 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Pajtler, K. W. et al. Molecular classification of ependymal tumors across all CNS compartments, histopathological grades, and age groups. Cancer Cell 27, 728–743 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Mack, S. C. et al. Therapeutic targeting of ependymoma as informed by oncogenic enhancer profiling. Nature 553, 101–105 (2018).

    Article  CAS  PubMed  Google Scholar 

  58. Taylor, M. D. et al. Radial glia cells are candidate stem cells of ependymoma. Cancer Cell 8, 323–335 (2005).

    Article  CAS  PubMed  Google Scholar 

  59. Lan, X. et al. Fate mapping of human glioblastoma reveals an invariant stem cell hierarchy. Nature 549, 227–232 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Dirkse, A. et al. Stem cell-associated heterogeneity in glioblastoma results from intrinsic tumor plasticity shaped by the microenvironment. Nat. Commun. 10, 1787 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Suva, M. L. & Tirosh, I. The glioma stem cell model in the era of single-cell genomics. Cancer Cell 37, 630–636 (2020).

    Article  CAS  PubMed  Google Scholar 

  62. Castellan, M. et al. Single-cell analyses reveal YAP/TAZ as regulators of stemness and cell plasticity in glioblastoma. Nat. Cancer 2, 174–188 (2021).

    Article  CAS  PubMed  Google Scholar 

  63. Lee, J. H. et al. Human glioblastoma arises from subventricular zone cells with low-level driver mutations. Nature 560, 243–247 (2018). Through deep sequencing of primary patient-derived tumour and matched normal tissues along with lineage tracing experiments in mice, this work provides evidence that astrocyte-like neural stem cells in the subventricular zone serve as a developmental origin for glioblastomas.

    Article  CAS  PubMed  Google Scholar 

  64. Bhaduri, A. et al. Outer radial glia-like cancer stem cells contribute to heterogeneity of glioblastoma. Cell Stem Cell 26, 48–63 e46 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Alcantara Llaguno, S. et al. Cell-of-origin susceptibility to glioblastoma formation declines with neural lineage restriction. Nat. Neurosci. 22, 545–555 (2019).

    Article  PubMed  CAS  Google Scholar 

  66. Alcantara Llaguno, S. R. et al. Adult lineage-restricted CNS progenitors specify distinct glioblastoma subtypes. Cancer Cell 28, 429–440 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Wang, Z. et al. Cell lineage-based stratification for glioblastoma. Cancer Cell 38, 366–379 e368 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Bressan, R. B. et al. Regional identity of human neural stem cells determines oncogenic responses to histone H3.3 mutants. Cell Stem Cell 28, 877–893 e879 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Haag, D. et al. H3.3-K27M drives neural stem cell-specific gliomagenesis in a human iPSC-derived model. Cancer Cell 39, 407–422 e413 (2021).

    Article  CAS  PubMed  Google Scholar 

  70. Funato, K., Smith, R. C., Saito, Y. & Tabar, V. Dissecting the impact of regional identity and the oncogenic role of human-specific NOTCH2NL in an hESC model of H3.3G34R-mutant glioma. Cell Stem Cell 28, 894–905 e897 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Couturier, C. P. et al. Single-cell RNA-seq reveals that glioblastoma recapitulates a normal neurodevelopmental hierarchy. Nat. Commun. 11, 3406 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Neftel, C. et al. An integrative model of cellular states, plasticity, and genetics for glioblastoma. Cell 178, 835–849 e821 (2019). This large-scale single-cell sequencing and lineage tracing effort defines four transcriptional states in glioblastoma with a high degree of phenotypic plasticity that is partly informed by underlying genetic factors and developmental lineages as well as microenvironmental inputs.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Wang, L. et al. The phenotypes of proliferating glioblastoma cells reside on a single axis of variation. Cancer Discov. 9, 1708–1719 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Guilhamon, P. et al. Single-cell chromatin accessibility profiling of glioblastoma identifies an invasive cancer stem cell population associated with lower survival. eLife 10 https://doi.org/10.7554/eLife.64090 (2021).

  75. Garofano, L. et al. Pathway-based classification of glioblastoma uncovers a mitochondrial subtype with therapeutic vulnerabilities. Nat. Cancer 2, 141–156 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Schmitt, M. J. et al. Phenotypic mapping of pathologic cross-talk between glioblastoma and innate immune cells by synthetic genetic tracing. Cancer Discov. 11, 754–777 (2021).

    Article  CAS  PubMed  Google Scholar 

  77. Hara, T. et al. Interactions between cancer cells and immune cells drive transitions to mesenchymal-like states in glioblastoma. Cancer Cell 39, 779–792 e711 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Cavalli, F. M. G. et al. Intertumoral heterogeneity within medulloblastoma subgroups. Cancer Cell 31, 737–754 e736 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Northcott, P. A. et al. The whole-genome landscape of medulloblastoma subtypes. Nature 547, 311–317 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Zhang, L. et al. Single-cell transcriptomics in medulloblastoma reveals tumor-initiating progenitors and oncogenic cascades during tumorigenesis and relapse. Cancer Cell 36, 302–318 e307 (2019). Through single-cell sequencing approaches, this work elucidates the role of OLIG2+ stem-like populations in the initiation of medulloblastomas and in tumour repopulation following therapy through activation of stem and proliferative signalling pathways.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Vladoiu, M. C. et al. Childhood cerebellar tumours mirror conserved fetal transcriptional programs. Nature 572, 67–73 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Gojo, J. et al. Single-cell RNA-Seq reveals cellular hierarchies and impaired developmental trajectories in pediatric ependymoma. Cancer Cell 38, 44–59 e49 (2020). This article describes the intratumoural heterogeneity and developmental origins of paediatric ependymomas, defining three main developmental subgroups and highlighting the importance of undifferentiated progenitor populations in the maintenance of cellular hierarchies and disease aggressiveness.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Gillen, A. E. et al. Single-cell RNA sequencing of childhood ependymoma reveals neoplastic cell subpopulations that impact molecular classification and etiology. Cell Rep. 32, 108023 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Panwalkar, P. et al. Targeting integrated epigenetic and metabolic pathways in lethal childhood PFA ependymomas. Sci. Transl. Med. 13, eabc0497 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Kim, J. et al. Spatiotemporal evolution of the primary glioblastoma genome. Cancer Cell 28, 318–328 (2015). Together with Wang et al. (2016), this article interrogates the evolution of glioblastomas over time, revealing substantial divergence between primary and recurrent specimens and suggesting a branched evolution model whereby evaluation of the primary tumour biopsy sample may not be representative of later recurrences.

    Article  CAS  PubMed  Google Scholar 

  86. Wang, J. et al. Clonal evolution of glioblastoma under therapy. Nat. Genet. 48, 768–776 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Lee, J. K. et al. Spatiotemporal genomic architecture informs precision oncology in glioblastoma. Nat. Genet. 49, 594–599 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Korber, V. et al. Evolutionary trajectories of IDHWT glioblastomas reveal a common path of early tumorigenesis instigated years ahead of initial diagnosis. Cancer Cell 35, 692–704 e612 (2019).

    Article  PubMed  CAS  Google Scholar 

  89. Klughammer, J. et al. The DNA methylation landscape of glioblastoma disease progression shows extensive heterogeneity in time and space. Nat. Med. https://doi.org/10.1038/s41591-018-0156-x (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Barthel, F. P. et al. Longitudinal molecular trajectories of diffuse glioma in adults. Nature 576, 112–120 (2019). Through analyses of molecular features, including mutations and copy number variation, this report suggests that diffuse gliomas undergo a largely neutral evolution process driven by stochastic mutations rather than clonal selection, while high-grade wild-type IDH gliomas displayed the largest proportion of clonal selection events.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Miller, A. M. et al. Tracking tumour evolution in glioma through liquid biopsies of cerebrospinal fluid. Nature 565, 654–658 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Gao, X. et al. Circular RNA-encoded oncogenic E-cadherin variant promotes glioblastoma tumorigenicity through activation of EGFR-STAT3 signalling. Nat. Cell Biol. 23, 278–291 (2021).

    Article  CAS  PubMed  Google Scholar 

  93. Nathanson, D. A. et al. Targeted therapy resistance mediated by dynamic regulation of extrachromosomal mutant EGFR DNA. Science 343, 72–76 (2014). This is among the first reports to document the presence of extrachromosomal circular DNA elements in glioblastomas and to describe the mechanisms by which dynamic control of these DNA elements drives EGFR-targeted therapeutic resistance, highlighting the importance of non-chromosomal DNA replication, segregation and regulation in cancer biology.

    Article  CAS  PubMed  Google Scholar 

  94. Turner, K. M. et al. Extrachromosomal oncogene amplification drives tumour evolution and genetic heterogeneity. Nature 543, 122–125 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. deCarvalho, A. C. et al. Discordant inheritance of chromosomal and extrachromosomal DNA elements contributes to dynamic disease evolution in glioblastoma. Nat. Genet. 50, 708–717 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Morton, A. R. et al. Functional enhancers shape extrachromosomal oncogene amplifications. Cell 179, 1330–1341 e1313 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Recasens, A. & Munoz, L. Targeting cancer cell dormancy. Trends Pharmacol. Sci. 40, 128–141 (2019).

    Article  CAS  PubMed  Google Scholar 

  98. Kleffel, S. & Schatton, T. Tumor dormancy and cancer stem cells: two sides of the same coin? Adv. Exp. Med. Biol. 734, 145–179 (2013).

    Article  CAS  PubMed  Google Scholar 

  99. Adamski, V. et al. Dormant glioblastoma cells acquire stem cell characteristics and are differentially affected by temozolomide and AT101 treatment. Oncotarget 8, 108064–108078 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Zhu, Z. et al. Targeting self-renewal in high-grade brain tumors leads to loss of brain tumor stem cells and prolonged survival. Cell Stem Cell 15, 185–198 (2014).

    Article  CAS  PubMed  Google Scholar 

  101. Richichi, C., Brescia, P., Alberizzi, V., Fornasari, L. & Pelicci, G. Marker-independent method for isolating slow-dividing cancer stem cells in human glioblastoma. Neoplasia 15, 840–847 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Tejero, R. et al. Gene signatures of quiescent glioblastoma cells reveal mesenchymal shift and interactions with niche microenvironment. EBioMedicine 42, 252–269 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Atkins, R. J. et al. Cell quiescence correlates with enhanced glioblastoma cell invasion and cytotoxic resistance. Exp. Cell Res. 374, 353–364 (2019).

    Article  CAS  PubMed  Google Scholar 

  104. Eyler, C. E. et al. Single-cell lineage analysis reveals genetic and epigenetic interplay in glioblastoma drug resistance. Genome Biol. 21, 174 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Rabe, M. et al. Identification of a transient state during the acquisition of temozolomide resistance in glioblastoma. Cell Death Dis. 11, 19 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Jane, E. P. et al. Targeting NAD+ biosynthesis overcomes panobinostat and bortezomib-induced malignant glioma resistance. Mol. Cancer Res. 18, 1004–1017 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Rusu, P. et al. GPD1 specifically marks dormant glioma stem cells with a distinct metabolic profile. Cell Stem Cell 25, 241–257 e248 (2019).

    Article  CAS  PubMed  Google Scholar 

  108. Osswald, M. et al. Brain tumour cells interconnect to a functional and resistant network. Nature 528, 93–98 (2015).

    Article  CAS  PubMed  Google Scholar 

  109. Wang, X. et al. Reciprocal signaling between glioblastoma stem cells and differentiated tumor cells promotes malignant progression. Cell Stem Cell 22, 514–528 e515 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Kim, D. et al. SHMT2 drives glioma cell survival in ischaemia but imposes a dependence on glycine clearance. Nature 520, 363–367 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Man, J. et al. Hypoxic induction of vasorin regulates notch1 turnover to maintain glioma stem-like cells. Cell Stem Cell 22, 104–118 e106 (2018).

    Article  CAS  PubMed  Google Scholar 

  112. Tardito, S. et al. Glutamine synthetase activity fuels nucleotide biosynthesis and supports growth of glutamine-restricted glioblastoma. Nat. Cell Biol. 17, 1556–1568 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Villa, G. R. et al. An LXR-cholesterol axis creates a metabolic co-dependency for brain cancers. Cancer Cell 30, 683–693 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Zhang, H., Zhou, Y., Cui, B., Liu, Z. & Shen, H. Novel insights into astrocyte-mediated signaling of proliferation, invasion and tumor immune microenvironment in glioblastoma. Biomed. Pharmacother. 126, 110086 (2020).

    Article  CAS  PubMed  Google Scholar 

  115. Ricci-Vitiani, L. et al. Tumour vascularization via endothelial differentiation of glioblastoma stem-like cells. Nature 468, 824–828 (2010).

    Article  CAS  PubMed  Google Scholar 

  116. Zhou, W. et al. Targeting glioma stem cell-derived pericytes disrupts the blood-tumor barrier and improves chemotherapeutic efficacy. Cell Stem Cell 21, 591–603 e594 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Venkatesh, H. S. et al. Neuronal activity promotes glioma growth through neuroligin-3 secretion. Cell 161, 803–816 (2015). In a series of studies using optogenetic control mechanisms, Venkatesh et al. (2015, 2017 and 2019) delineate the critical role of neuronal activity in the tumour microenvironment in supporting brain tumour growth via a neuroligin 3–PI3K–mTOR signalling axis, as well as the functional integration of gliomas into electrical circuits and synaptic communication, with implications for tumour survival and therapeutic development.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Venkatesh, H. S. et al. Targeting neuronal activity-regulated neuroligin-3 dependency in high-grade glioma. Nature 549, 533–537 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. Venkatesh, H. S. et al. Electrical and synaptic integration of glioma into neural circuits. Nature 573, 539–545 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Venkataramani, V. et al. Glutamatergic synaptic input to glioma cells drives brain tumour progression. Nature 573, 532–538 (2019).

    Article  CAS  PubMed  Google Scholar 

  121. Yu, K. et al. PIK3CA variants selectively initiate brain hyperactivity during gliomagenesis. Nature 578, 166–171 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Brooks, L. J. et al. The white matter is a pro-differentiative niche for glioblastoma. Nat. Commun. 12, 2184 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Wu, Y. et al. Glioblastoma epigenome profiling identifies SOX10 as a master regulator of molecular tumour subtype. Nat. Commun. 11, 6434 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Veglia, F., Perego, M. & Gabrilovich, D. Myeloid-derived suppressor cells coming of age. Nat. Immunol. 19, 108–119 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Klemm, F. et al. Interrogation of the microenvironmental landscape in brain tumors reveals disease-specific alterations of immune cells. Cell 181, 1643–1660 e1617 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Pombo Antunes, A. R. et al. Single-cell profiling of myeloid cells in glioblastoma across species and disease stage reveals macrophage competition and specialization. Nat. Neurosci. 24, 595–610 (2021).

    Article  CAS  PubMed  Google Scholar 

  127. De, I. et al. CSF1 overexpression promotes high-grade glioma formation without impacting the polarization status of glioma-associated microglia and macrophages. Cancer Res. 76, 2552–2560 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Zhou, W. et al. Periostin secreted by glioblastoma stem cells recruits M2 tumour-associated macrophages and promotes malignant growth. Nat. Cell Biol. 17, 170–182 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Pyonteck, S. M. et al. CSF-1R inhibition alters macrophage polarization and blocks glioma progression. Nat. Med. 19, 1264–1272 (2013). This article describes the importance of tumour-associated macrophages in the brain tumour microenvironment and the utility of targeting a key macrophage dependency, CSF1R, for therapeutic benefit, setting the stage for later work addressing interactions between stem populations and tumour-associated macrophages.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Quail, D. F. et al. The tumor microenvironment underlies acquired resistance to CSF-1R inhibition in gliomas. Science 352, aad3018 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  131. Akkari, L. et al. Dynamic changes in glioma macrophage populations after radiotherapy reveal CSF-1R inhibition as a strategy to overcome resistance. Sci. Transl. Med. 12 https://doi.org/10.1126/scitranslmed.aaw7843 (2020).

  132. Chen, P. et al. Symbiotic macrophage-glioma cell interactions reveal synthetic lethality in PTEN-null glioma. Cancer Cell 35, 868–884 e866 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  133. Chen, P. et al. Circadian regulator CLOCK recruits immune-suppressive microglia into the GBM tumor microenvironment. Cancer Discov. 10, 371–381 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Takenaka, M. C. et al. Control of tumor-associated macrophages and T cells in glioblastoma via AHR and CD39. Nat. Neurosci. 22, 729–740 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Gangoso, E. et al. Glioblastomas acquire myeloid-affiliated transcriptional programs via epigenetic immunoediting to elicit immune evasion. Cell 184, 2454–2470 e2426 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Bunse, L. et al. Suppression of antitumor T cell immunity by the oncometabolite (R)-2-hydroxyglutarate. Nat. Med. 24, 1192–1203 (2018).

    Article  CAS  PubMed  Google Scholar 

  137. Di Tomaso, T. et al. Immunobiological characterization of cancer stem cells isolated from glioblastoma patients. Clin. Cancer Res. 16, 800–813 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  138. Domenis, R. et al. Systemic T cells immunosuppression of glioma stem cell-derived exosomes is mediated by monocytic myeloid-derived suppressor cells. PLoS ONE 12, e0169932 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  139. Chongsathidkiet, P. et al. Sequestration of T cells in bone marrow in the setting of glioblastoma and other intracranial tumors. Nat. Med. 24, 1459–1468 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Mathewson, N. D. et al. Inhibitory CD161 receptor identified in glioma-infiltrating T cells by single-cell analysis. Cell 184, 1281–1298 e1226 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Friebel, E. et al. Single-cell mapping of human brain cancer reveals tumor-specific instruction of tissue-invading leukocytes. Cell 181, 1626–1642 e1620 (2020).

    Article  CAS  PubMed  Google Scholar 

  142. Moore, G., Annett, S., McClements, L. & Robson, T. Top notch targeting strategies in cancer: a detailed overview of recent insights and current perspectives. Cells 9 https://doi.org/10.3390/cells9061503 (2020).

  143. Latour, M., Her, N. G., Kesari, S. & Nurmemmedov, E. WNT signaling as a therapeutic target for glioblastoma. Int. J. Mol. Sci. 22 https://doi.org/10.3390/ijms22168428 (2021).

  144. Piccirillo, S. G. et al. Bone morphogenetic proteins inhibit the tumorigenic potential of human brain tumour-initiating cells. Nature 444, 761–765 (2006).

    Article  CAS  PubMed  Google Scholar 

  145. Lee, J. et al. Epigenetic-mediated dysfunction of the bone morphogenetic protein pathway inhibits differentiation of glioblastoma-initiating cells. Cancer Cell 13, 69–80 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Dong, Z. et al. Targeting glioblastoma stem cells through disruption of the circadian clock. Cancer Discov. https://doi.org/10.1158/2159-8290.CD-19-0215 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  147. Mancini, A. et al. Disruption of the beta1L Isoform of GABP reverses glioblastoma replicative immortality in a TERT promoter mutation-dependent manner. Cancer Cell 34, 513–528 e518 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Zhu, Z. et al. Zika virus has oncolytic activity against glioblastoma stem cells. J. Exp. Med. 214, 2843–2857 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Brown, C. E. et al. Regression of glioblastoma after chimeric antigen receptor T-cell therapy. N. Engl. J. Med. 375, 2561–2569 (2016). This is the first article demonstrating efficacy of CAR T cell therapy in glioblastomas and shows that targeting IL-13Rα2 with this novel immunotherapeutic approach could safely induce regression in a phase I clinical trial, informing application of this technology to stem-specific targets.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. O’Rourke, D. M. et al. A single dose of peripherally infused EGFRvIII-directed CAR T cells mediates antigen loss and induces adaptive resistance in patients with recurrent glioblastoma. Sci. Transl. Med. 9 https://doi.org/10.1126/scitranslmed.aaa0984 (2017).

  151. Ahmed, N. et al. HER2-specific chimeric antigen receptor-modified virus-specific T cells for progressive glioblastoma: a phase 1 dose-escalation trial. JAMA Oncol. 3, 1094–1101 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  152. Weiss, T., Weller, M., Guckenberger, M., Sentman, C. L. & Roth, P. NKG2D-Based CAR T cells and radiotherapy exert synergistic efficacy in glioblastoma. Cancer Res. 78, 1031–1043 (2018).

    Article  CAS  PubMed  Google Scholar 

  153. Cui, J. et al. Targeting hypoxia downstream signaling protein, CAIX, for CAR T-cell therapy against glioblastoma. Neuro Oncol. 21, 1436–1446 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Pellegatta, S. et al. Constitutive and TNFalpha-inducible expression of chondroitin sulfate proteoglycan 4 in glioblastoma and neurospheres: Implications for CAR-T cell therapy. Sci. Transl. Med. 10 https://doi.org/10.1126/scitranslmed.aao2731 (2018).

  155. Chow, K. K. et al. T cells redirected to EphA2 for the immunotherapy of glioblastoma. Mol. Ther. 21, 629–637 (2013).

    Article  CAS  PubMed  Google Scholar 

  156. Vora, P. et al. The rational development of CD133-targeting immunotherapies for glioblastoma. Cell Stem Cell 26, 832–844 e836 (2020).

    Article  CAS  PubMed  Google Scholar 

  157. Roybal, K. T. et al. Precision tumor recognition by T cells with combinatorial antigen-sensing circuits. Cell 164, 770–779 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Choe, J. H. et al. SynNotch-CAR T cells overcome challenges of specificity, heterogeneity, and persistence in treating glioblastoma. Sci. Transl. Med. 13 https://doi.org/10.1126/scitranslmed.abe7378 (2021).

  159. Wang, D. et al. CRISPR screening of CAR T cells and cancer stem cells reveals critical dependencies for cell-based therapies. Cancer Discov. 11, 1192–1211 (2021).

    Article  CAS  PubMed  Google Scholar 

  160. Hilf, N. et al. Actively personalized vaccination trial for newly diagnosed glioblastoma. Nature 565, 240–245 (2019). In this report of a phase I actively personalized vaccination trial, individualized vaccines developed from transcriptomic and immunopeptidomic analysis of patients displayed evidence of safety and activation of sustained immune responses against targeted antigens, including PTPRZ1, which enriches stem populations.

    Article  CAS  PubMed  Google Scholar 

  161. Frederico, S. C. et al. Making a cold tumor hot: the role of vaccines in the treatment of glioblastoma. Front. Oncol. 11, 672508 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  162. Lapidot, T. et al. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature 367, 645–648 (1994). This is the first article that provides evidence for and establishes our modern understanding of the classical CSC hypothesis, whereby stem populations are positioned at the apex of a developmental hierarchy essential for the initiation and maintenance of acute myeloid leukaemias.

    Article  CAS  PubMed  Google Scholar 

  163. Al-Hajj, M., Wicha, M. S., Benito-Hernandez, A., Morrison, S. J. & Clarke, M. F. Prospective identification of tumorigenic breast cancer cells. Proc. Natl Acad. Sci. USA 100, 3983–3988 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Singh, S. K. et al. Identification of human brain tumour initiating cells. Nature 432, 396–401 (2004).

    Article  CAS  PubMed  Google Scholar 

  165. Singh, S. K. et al. Identification of a cancer stem cell in human brain tumors. Cancer Res. 63, 5821–5828 (2003). Together with Singh et al. (2004), this is the first report of the identification of CSCs in glioblastomas and medulloblastomas, with prospective isolation of CD133+ cells that displayed stem cell properties, including capacity for self-renewal, tumour initiation and recapitulation of the original tumour on serial transplantation.

    CAS  PubMed  Google Scholar 

  166. Collins, A. T., Berry, P. A., Hyde, C., Stower, M. J. & Maitland, N. J. Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res. 65, 10946–10951 (2005).

    Article  CAS  PubMed  Google Scholar 

  167. O’Brien, C. A., Pollett, A., Gallinger, S. & Dick, J. E. A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature 445, 106–110 (2007).

    Article  PubMed  CAS  Google Scholar 

  168. Ricci-Vitiani, L. et al. Identification and expansion of human colon-cancer-initiating cells. Nature 445, 111–115 (2007).

    Article  CAS  PubMed  Google Scholar 

  169. Li, C. et al. Identification of pancreatic cancer stem cells. Cancer Res. 67, 1030–1037 (2007).

    Article  CAS  PubMed  Google Scholar 

  170. Lambert, A. W., Pattabiraman, D. R. & Weinberg, R. A. Emerging biological principles of metastasis. Cell 168, 670–691 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Oskarsson, T., Batlle, E. & Massague, J. Metastatic stem cells: sources, niches, and vital pathways. Cell Stem Cell 14, 306–321 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Ganesh, K. & Massague, J. Targeting metastatic cancer. Nat. Med. 27, 34–44 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Gonzalez, H. et al. Cellular architecture of human brain metastases. Cell https://doi.org/10.1016/j.cell.2021.12.043 (2022).

    Article  PubMed  Google Scholar 

  174. Yu, M. et al. Circulating breast tumor cells exhibit dynamic changes in epithelial and mesenchymal composition. Science 339, 580–584 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Steinbichler, T. B. et al. Cancer stem cells and their unique role in metastatic spread. Semin. Cancer Biol. 60, 148–156 (2020).

    Article  CAS  PubMed  Google Scholar 

  176. Gkountela, S. et al. Circulating tumor cell clustering shapes DNA methylation to enable metastasis seeding. Cell 176, 98–112 e114 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Lawson, D. A. et al. Single-cell analysis reveals a stem-cell program in human metastatic breast cancer cells. Nature 526, 131–135 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Hosseini, H. et al. Early dissemination seeds metastasis in breast cancer. Nature 540, 552–558 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Berghoff, A. S. et al. Identification and characterization of cancer cells that initiate metastases to the brain and other organs. Mol. Cancer Res. 19, 688–701 (2021).

    Article  CAS  PubMed  Google Scholar 

  180. Harper, K. L. et al. Mechanism of early dissemination and metastasis in Her2+ mammary cancer. Nature 540, 588–592 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Malladi, S. et al. Metastatic latency and immune evasion through autocrine inhibition of WNT. Cell 165, 45–60 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Laughney, A. M. et al. Regenerative lineages and immune-mediated pruning in lung cancer metastasis. Nat. Med. 26, 259–269 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Fumagalli, A. et al. Plasticity of Lgr5-negative cancer cells drives metastasis in colorectal cancer. Cell Stem Cell 26, 569–578 e567 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Ganesh, K. et al. L1CAM defines the regenerative origin of metastasis-initiating cells in colorectal cancer. Nat. Cancer 1, 28–45 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Er, E. E. et al. Pericyte-like spreading by disseminated cancer cells activates YAP and MRTF for metastatic colonization. Nat. Cell Biol. 20, 966–978 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Sirkisoon, S. R. et al. TGLI1 transcription factor mediates breast cancer brain metastasis via activating metastasis-initiating cancer stem cells and astrocytes in the tumor microenvironment. Oncogene 39, 64–78 (2020).

    Article  CAS  PubMed  Google Scholar 

  187. Ren, D. et al. Targeting brain-adaptive cancer stem cells prohibits brain metastatic colonization of triple-negative breast cancer. Cancer Res. 78, 2052–2064 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Chen, Q. et al. Carcinoma-astrocyte gap junctions promote brain metastasis by cGAMP transfer. Nature 533, 493–498 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Valiente, M. et al. Serpins promote cancer cell survival and vascular co-option in brain metastasis. Cell 156, 1002–1016 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Zeng, Q. et al. Synaptic proximity enables NMDAR signalling to promote brain metastasis. Nature 573, 526–531 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Ferraro, G. B. et al. Fatty acid synthesis is required for breast cancer brain metastasis. Nat. Cancer 2, 414–428 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Jin, X. et al. A metastasis map of human cancer cell lines. Nature 588, 331–336 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Pascual, G. et al. Targeting metastasis-initiating cells through the fatty acid receptor CD36. Nature 541, 41–45 (2017).

    Article  CAS  PubMed  Google Scholar 

  194. Tasdogan, A. et al. Metabolic heterogeneity confers differences in melanoma metastatic potential. Nature 577, 115–120 (2020).

    Article  CAS  PubMed  Google Scholar 

  195. Mashimo, T. et al. Acetate is a bioenergetic substrate for human glioblastoma and brain metastases. Cell 159, 1603–1614 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Chen, J. et al. Gain of glucose-independent growth upon metastasis of breast cancer cells to the brain. Cancer Res. 75, 554–565 (2015).

    Article  CAS  PubMed  Google Scholar 

  197. Tuveson, D. & Clevers, H. Cancer modeling meets human organoid technology. Science 364, 952–955 (2019).

    Article  CAS  PubMed  Google Scholar 

  198. Hubert, C. G. et al. A three-dimensional organoid culture system derived from human glioblastomas recapitulates the hypoxic gradients and cancer stem cell heterogeneity of tumors found in vivo. Cancer Res. 76, 2465–2477 (2016). This is the first report of the use of three-dimensional brain tumour organoids for more physiologic and representative modelling of glioblastomas and metastatic tumours, enabling more precise investigation of tumour cellular architecture, cellular and phenotypic heterogeneity, microenvironmental gradients and cancer stem state biology.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Ogawa, J., Pao, G. M., Shokhirev, M. N. & Verma, I. M. Glioblastoma model using human cerebral organoids. Cell Rep. 23, 1220–1229 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Bian, S. et al. Genetically engineered cerebral organoids model brain tumor formation. Nat. Methods 15, 631–639 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Linkous, A. et al. Modeling patient-derived glioblastoma with cerebral organoids. Cell Rep. 26, 3203–3211 e3205 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Pine, A. R. et al. Tumor microenvironment is critical for the maintenance of cellular states found in primary glioblastomas. Cancer Discov. 10, 964–979 (2020).

    Article  CAS  PubMed  Google Scholar 

  203. Ballabio, C. et al. Modeling medulloblastoma in vivo and with human cerebellar organoids. Nat. Commun. 11, 583 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Jacob, F. et al. A patient-derived glioblastoma organoid model and biobank recapitulates inter- and intra-tumoral heterogeneity. Cell 180, 188–204 e122 (2020).

    Article  CAS  PubMed  Google Scholar 

  205. Jacob, F., Ming, G. L. & Song, H. Generation and biobanking of patient-derived glioblastoma organoids and their application in CAR T cell testing. Nat. Protoc. 15, 4000–4033 (2020). Together with Jacob et al. (2020)204, this report details the generation of a patient-derived glioblastoma organoid biobank with improved retention of features of the primary tumour, including histologic features, cellular composition and transcriptional profiles, and uses this approach to evaluate personalized targeted therapies and immunotherapies.

    Article  CAS  PubMed  Google Scholar 

  206. Heinrich, M. A. et al. 3D-bioprinted mini-brain: a glioblastoma model to study cellular interactions and therapeutics. Adv. Mater. 31, e1806590 (2019).

    Article  PubMed  CAS  Google Scholar 

  207. Tang, M. et al. Three-dimensional bioprinted glioblastoma microenvironments model cellular dependencies and immune interactions. Cell Res. 30, 833–853 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Tang, M. et al. Rapid 3D bioprinting of glioblastoma model mimicking native biophysical heterogeneity. Small 17, e2006050 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  209. Yi, H. G. et al. A bioprinted human-glioblastoma-on-a-chip for the identification of patient-specific responses to chemoradiotherapy. Nat. Biomed. Eng. 3, 509–519 (2019).

    Article  CAS  PubMed  Google Scholar 

  210. Chadwick, M. et al. Rapid processing and drug evaluation in glioblastoma patient-derived organoid models with 4D bioprinted arrays. iScience 23, 101365 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors apologize to the authors of the many outstanding publications not referenced here owing to space restrictions. R.C.G is supported by US National Institutes of Health (NIH) grant F30CA217065. K.Y. is supported by the Computational Genomic Epidemiology of Cancer program at Case Comprehensive Cancer Center (T32CA094186), the Young Investigator Award in Glioblastoma from Conquer Cancer, the ASCO Foundation, and an RSNA research resident grant. M.E.H. is funded by the Joshua’s Wish Foundation. S.A. is funded by NIH grant R01NS115831, the Michael Mosier Defeat DIPG Foundation and the V Foundation (Connor’s Cure). J.N.R. is supported by NIH grants R35CA197718, R01CA238662 and R01NS103434.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Jeremy N. Rich.

Ethics declarations

Competing interests

The authors declare no competing interests in relation to the work described.

Peer review

Peer review information

Nature Reviews Cancer thanks Maciej Lesniak and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Lineage infidelity

Process by which cells differentiated along a particular developmental lineage lose their original identity and assume a more primitive developmental state or display features of a distinct differentiated lineage.

Single-cell sequencing

An array of methods to assess genomic, epigenomic or transcriptomic states of individual cells through next-generation sequencing approaches. These techniques allow resolution of distinct cellular populations, identification of new cell types or states, acquisition of information on expression dynamics and insights into cellular and tissue evolution, among other characteristics.

DNA barcoding

Method of individually labelling single cells or a cellular population for tracking over time, with applications in cell tracing and reconstruction of evolutionary lineages. Cell labelling can be accomplished with lentiviral or CRISPR-based transduction approaches and interrogated with flow cytometry, sequencing or imaging, and analysis can be performed with single-cell resolution.

Subventricular zone

Anatomic region in the brain situated along the lateral ventricles that contains populations of proliferative immature neural lineages. This region gives rise to more differentiated progeny through the process of neurogenesis, with possible links to gliomagenesis.

Organoid

Three-dimensional, self-organizing heterogeneous cellular collections derived from stem-like populations and consisting of a variety of cell states used to model cellular interactions and higher-order functions of tissue systems, including tissue regeneration, maintenance and cellular connectivity in both neoplastic and non-neoplastic settings.

Mitotic somal translocation

Characteristic migratory behaviour of outer radial glial cells in which the cell body rapidly moves from the outer subventricular zone towards the cortical plate immediately before cell division during neurogenesis.

Oncohistone mutations

Mutations in a variety of histone proteins that promote cancer growth primarily through disruptions in the global histone post-translational modification landscape and disrupted epigenetic regulation. In brain tumours, common mutations include K27M (histone H3) in diffuse intrinsic pontine gliomas and G34V/R (histone H3) in paediatric glioblastomas, among others.

RNA velocity analysis

Method to estimate the rate of change of transcriptional states of cells in single-cell sequencing studies through comparison of the ratio of newly transcribed (unspliced) transcripts to mature transcripts (spliced) and to infer expression dynamics and future cellular states.

Temozolomide

Alkylating chemotherapy agent with blood–brain barrier penetrance that serves as standard-of-care treatment for patients with glioblastoma alongside surgical resection and radiotherapy.

Branched and neutral evolution

Different models to describe the emergence of intratumoural genetic heterogeneity and development of lineage trajectories in cancers. Branched evolution models suggest that heterogeneous clones emerge on the basis of a selective advantage and evolve in parallel, while neutral evolution models posit that intratumoural heterogeneity is driven primarily by random mutations and genetic drift without strong selective forces. Branched and neutral evolution models describe relatively high intratumoural heterogeneity, while linear or punctuated evolution models consist of lower heterogeneity at a given time point driven by single clones with increased fitness.

Extrachromosomal circular DNA

Collections of circular DNA sequences lacking centromeres that exist outside chromosomes and which can be replicated and differentially segregated to daughter cells during cell division, with important implications for intratumoural heterogeneity and cancer evolution. Extrachromosomal circular DNA can lead to massive amplification of oncogenes and products facilitating therapy resistance, can consist of highly rearranged genomic sequences and is thought to arise through the process of genomic shattering (chromothripsis) with disrupted DNA damage repair pathways, although competing models exist.

Microvascular proliferation

Characteristic histologic hallmark of glioblastomas referring to pathogenic glomeruloid proliferation of mitotically active and multilayered hyperplastic endothelial cells secondary to high angiogenic activity of VEGF that may be associated with areas of hypoxia and necrosis.

Circadian rhythm

Cell-intrinsic or multisystem process that occurs on a 24-h cycle and is maintained through cyclical production and degradation of circadian protein complexes or entrained through endocrine signalling mechanisms. While circadian rhythms on the whole-organism level can be controlled through exposure to light cycles, independent molecular clocks exist within many individual single cell types driven by peripheral oscillator transcriptional networks, including CLOCK, BMAL1, PER and CRY.

Chimeric antigen receptor (CAR) T cells

Synthetic T lymphocytes containing an engineered T cell receptor targeted against a specific antigen with optimized intracellular signalling components to coordinate antitumour immune responses and facilitate cancer cell killing in experimental and clinically validated immunotherapies. CAR T cells can be expanded in vitro and then infused into patients, serving as a ‘living drug’ with capacity to expand in vivo and generate memory responses.

Synthetic Notch receptor

Customized receptor generated through cellular engineering approaches to sense particular extracellular signals and coordinate a specific programmable intracellular response via a regulatory transmembrane domain and an effector intracellular domain such as a transcription factor. This highly tuneable tool enables sensing of specific signals to be coupled with a downstream effector response via a synthetic biology approach, with applications in cancer immunotherapy and beyond.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gimple, R.C., Yang, K., Halbert, M.E. et al. Brain cancer stem cells: resilience through adaptive plasticity and hierarchical heterogeneity. Nat Rev Cancer 22, 497–514 (2022). https://doi.org/10.1038/s41568-022-00486-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41568-022-00486-x

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer