Nothing Special   »   [go: up one dir, main page]

Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Spontaneous breaking of mirror symmetry in a cuprate beyond critical doping

Abstract

Identifying ordered phases and their underlying symmetries in materials that exhibit high-temperature superconductivity is an important step towards understanding the mechanism of that phenomenon. Indeed, the critical behaviour related to phase transitions of those ordered phases is expected to be correlated with the superconductivity. In cuprate materials, efforts to find such ordered phases have mainly focused on symmetry breaking in the pseudogap region whereas the Fermi-liquid-like metallic region beyond the so-called critical doping at which the pseudogap disappears has been regarded as a trivial disordered state. Here, we uncover a broken mirror symmetry in the Fermi-liquid-like phase in (Bi,Pb)2Sr2CaCu2O8+δ beyond the critical doping. We do this by tracking the temperature dependence of the rotational-anisotropy of second-harmonic generation for two different dopings. We observe behaviour reminiscent of an order parameter with an onset temperature that coincides with the strange metal to Fermi-liquid-like metal crossover. Angle-resolved photoemission spectroscopy shows that the quasiparticle coherence between CuO2 bilayers is enhanced in proportion to the symmetry-breaking response as a function of temperature, suggesting that the change in metallicity and symmetry breaking are linked. These observations contradict the conventional quantum disordered scenario for over-critical-doped cuprates.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Orthorhombic crystallographic structure of Pb-Bi2212 with p > pc.
Fig. 2: Spontaneous mirror symmetry breaking in Pb-Bi2212 (p ≈ 0.205).
Fig. 3: Temperature-dependent RA-SHG pattern amplitude in Pb-Bi2212 (p ≈ 0.205).
Fig. 4: Doping and temperature dependence of RA-SHG pattern amplitude in Pb-Bi2212.
Fig. 5: Temperature dependence of electronic structure in Pb-Bi2212 (p ≈ 0.205) across Tup.

Similar content being viewed by others

Data availability

All relevant data supporting the findings of this study are available from the corresponding authors on reasonable request. Source data are provided with this paper.

References

  1. Keimer, B., Kivelson, S. A., Norman, M. R., Uchida, S. & Zaanen, J. From quantum matter to high-temperature superconductivity in copper oxides. Nature 518, 179–186 (2015).

    Article  ADS  Google Scholar 

  2. Fradkin, E., Kivelson, S. A. & Tranquada, J. M. Colloquium: theory of intertwined orders in high temperature superconductors. Rev. Mod. Phys. 87, 457 (2015).

    Article  ADS  Google Scholar 

  3. Varma, C. M. Colloquium: linear in temperature resistivity and associated mysteries including high temperature superconductivity. Rev. Mod. Phys. 92, 031001 (2020).

    Article  ADS  Google Scholar 

  4. Naqib, S., Cooper, J., Tallon, J. & Panagopoulos, C. Temperature dependence of electrical resistivity of high-Tc cuprates—from pseudogap to overdoped regions. Phys. C: Supercond. 387, 365–372 (2003).

    Article  ADS  Google Scholar 

  5. Sterpetti, E., Biscaras, J., Erb, A. & Shukla, A. Comprehensive phase diagram of two-dimensional space charge doped Bi2Sr2CaCu2O8+δ. Nat. Commun. 8, 2060 (2017).

    Article  ADS  Google Scholar 

  6. Hussey, N. E. Phenomenology of the normal state in-plane transport properties of high-Tc cuprates. J. Phys.: Condens. Matter 20, 123201 (2008).

    ADS  Google Scholar 

  7. Cooper, R. et al. Anomalous criticality in the electrical resistivity of La2−xSrxCuO4. Science 323, 603–607 (2009).

    Article  ADS  Google Scholar 

  8. Proust, C. & Taillefer, L. The remarkable underlying ground states of cuprate superconductors. Annu. Rev. Condens. Matter Phys. 10, 409–429 (2019).

    Article  ADS  Google Scholar 

  9. Xia, J. et al. Polar Kerr-effect measurements of the high-temperature YBa2Cu3O6+x superconductor: evidence for broken symmetry near the pseudogap temperature. Phys. Rev. Lett. 100, 127002 (2008).

    Article  ADS  Google Scholar 

  10. Sato, Y. et al. Thermodynamic evidence for a nematic phase transition at the onset of the pseudogap in YBa2Cu3Oy. Nat. Phys. 13, 1074–1078 (2017).

    Article  Google Scholar 

  11. Zhang, J. et al. Discovery of slow magnetic fluctuations and critical slowing down in the pseudogap phase of YBa2Cu3Oy. Sci. Adv. 4, eaao5235 (2018).

    Article  ADS  Google Scholar 

  12. Ishida, K. et al. Divergent nematic susceptibility near the pseudogap critical point in a cuprate superconductor. J. Phys. Soc. Jpn 89, 064707 (2020).

    Article  ADS  Google Scholar 

  13. Kurashima, K. et al. Development of ferromagnetic fluctuations in heavily overdoped (Bi, Pb)2Sr2CuO6+δ copper oxides. Phys. Rev. Lett. 121, 057002 (2018).

    Article  ADS  Google Scholar 

  14. Peng, Y. et al. Re-entrant charge order in overdoped (Bi, Pb)2.12Sr1.88CuO6+δ outside the pseudogap regime. Nat. Mater. 17, 697–702 (2018).

    Article  ADS  Google Scholar 

  15. Miao, H. et al. Charge density waves in cuprate superconductors beyond the critical doping. npj Quantum Mater. 6, 31 (2021).

    Article  ADS  Google Scholar 

  16. Zhao, L. et al. Evidence of an odd-parity hidden order in a spin–orbit coupled correlated iridate. Nat. Phys. 12, 32–36 (2016).

    Article  Google Scholar 

  17. Harter, J., Zhao, Z., Yan, J.-Q., Mandrus, D. & Hsieh, D. A parity-breaking electronic nematic phase transition in the spin–orbit coupled metal \({{{{\rm{Cd}}}}}_{2}{{{{\rm{Re}}}}}_{2}{{{{\rm{O}}}}}_{7}\). Science 356, 295–299 (2017).

    Article  ADS  Google Scholar 

  18. Jin, W. et al. Observation of a ferro-rotational order coupled with second-order nonlinear optical fields. Nat. Phys. 16, 42–46 (2020).

    Article  Google Scholar 

  19. Kim, S. et al. A compact and stable incidence-plane-rotating second harmonics detector. Rev. Sci. Instrum. 92, 043905 (2021).

    Article  Google Scholar 

  20. Zhao, L. et al. A global inversion-symmetry-broken phase inside the pseudogap region of YBa2Cu3Oy. Nat. Phys. 13, 250–254 (2017).

    Article  Google Scholar 

  21. Torre, Adl et al. Mirror symmetry breaking in a model insulating cuprate. Nat. Phys. 17, 777–781 (2021).

    Article  Google Scholar 

  22. Frison, R. et al. Crystal symmetry of stripe-ordered La1.88Sr0.12CuO4. Phys. Rev. B 105, 224113 (2022).

    Article  ADS  Google Scholar 

  23. Kan, X. & Moss, S. Four-dimensional crystallographic analysis of the incommensurate modulation in a Bi2Sr2CaCu2O8 single crystal. Acta Crystallogr. Sect. B: Struct. Sci. 48, 122–134 (1992).

    Article  ADS  Google Scholar 

  24. Ivanov, A. A. et al. Local noncentrosymmetric structure of Bi2Sr2CaCu2O8+y by X-ray magnetic circular dichroism at Cu K-edge XANES. J. Supercond. Nov. Magn. 31, 663–670 (2018).

    Article  Google Scholar 

  25. Pavlov, V., Pisarev, R., Kirilyuk, A. & Rasing, T. Observation of a transversal nonlinear magneto-optical effect in thin magnetic garnet films. Phys. Rev. Lett. 78, 2004 (1997).

    Article  ADS  Google Scholar 

  26. Yang, Z. et al. Thermal expansion of Bi2.2Sr1.8CaCu2Ox superconductor single crystals. J. Supercond. 8, 233–239 (1995).

    Article  ADS  Google Scholar 

  27. Kar, U. et al. Nonlinear and nonreciprocal transport effects in untwinned thin films of ferromagnetic Weyl metal SrRuO3. Phys. Rev. X 14, 011022 (2024).

    Google Scholar 

  28. Shai, D. et al. Quasiparticle mass enhancement and temperature dependence of the electronic structure of ferromagnetic SrRuO3 thin films. Phys. Rev. Lett. 110, 087004 (2013).

    Article  ADS  Google Scholar 

  29. Kaminski, A. et al. Crossover from coherent to incoherent electronic excitations in the normal state of Bi2Sr2CaCu2O8+δ. Phys. Rev. Lett. 90, 207003 (2003).

    Article  ADS  Google Scholar 

  30. Axe, J. et al. Structural phase transformations and superconductivity in La2−xBaxCuO4. Phys. Rev. Lett. 62, 2751 (1989).

    Article  ADS  Google Scholar 

  31. Kambe, S., Matsuoka, T., Takahasi, M., Kawai, M. & Kawai, T. Superconductive transition at 98.5 K in monoclinic (Bi, Pb)2Sr2CaCu2Oy. Phys. Rev. B 42, 2669 (1990).

    Article  ADS  Google Scholar 

  32. Sarkar, T. et al. Ferromagnetic order beyond the superconducting dome in a cuprate superconductor. Science 368, 532–534 (2020).

    Article  ADS  Google Scholar 

  33. Fechner, M., Fierz, M. J., Thöle, F., Staub, U. & Spaldin, N. A. Quasistatic magnetoelectric multipoles as order parameter for pseudogap phase in cuprate superconductors. Phys. Rev. B 93, 174419 (2016).

    Article  ADS  Google Scholar 

  34. Lovesey, S., Chatterji, T., Stunault, A., Khalyavin, D. & van der Laan, G. Direct observation of anapoles by neutron diffraction. Phys. Rev. Lett. 122, 047203 (2019).

    Article  ADS  Google Scholar 

  35. Wang, C., Nahum, A., Metlitski, M. A., Xu, C. & Senthil, T. Deconfined quantum critical points: symmetries and dualities. Phys. Rev. X 7, 031051 (2017).

    Google Scholar 

  36. Cui, Y. et al. Proximate deconfined quantum critical point in SrCu2(BO3)2. Science 380, 1179–1184 (2023).

    Article  ADS  Google Scholar 

  37. Usui, T. et al. Doping dependencies of onset temperatures for the pseudogap and superconductive fluctuation in Bi2Sr2CaCu2O8+δ, studied from both in-plane and out-of-plane magnetoresistance measurements. J. Phys. Soc. Jpn 83, 064713 (2014).

    Article  ADS  Google Scholar 

  38. Watanabe, T., Fujii, T. & Matsuda, A. Anisotropic resistivities of precisely oxygen controlled single-crystal Bi2Sr2CaCu2O8+δ: Systematic study on ‘spin gap’ effect. Phys. Rev. Lett. 79, 2113 (1997).

    Article  ADS  Google Scholar 

  39. Momma, K. & Izumi, F. Vesta 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 44, 1272–1276 (2011).

    Article  ADS  Google Scholar 

  40. Fichera, B. ShgPy. GitHub https://bfichera.github.io/shgpy/ (2020).

Download references

Acknowledgements

We are grateful to R. Noguchi, S. S. Huh, H. Y. Choi and A. Hallas for their helpful discussions and useful comments. We appreciate the technical support on the fitting process from B. T. Fichera. We also thank S. H. Kim for his contribution to RA-SHG development. This work was conducted under the ISSP-CCES Collaborative Programme and was supported by the Institute for Basic Science in the Republic of Korea (Grant Nos. IBS-R009-G2 and IBSR009-D1). This work was also supported by the National Research Foundation of Korea (Grant Nos. 2022R1A3B1077234 and RS-2023-00258359) and the Japan Society for the Promotion of Science (KAKENHI Grant No. JP19H05823).

Author information

Authors and Affiliations

Authors

Contributions

S.J., D.S. and C.K. conceived the central idea and directed the project. S.J. performed the optical measurements with support from B.S., C.R., T.W.N. and S.S. S.J. conducted the symmetry analysis with support from B.S., C.R., Y.K. and S.K. S.J. performed the ARPES measurements with support from D.K. and Y.L. S.J. and D.S. performed the transport measurements. D.S. synthesized and characterized the samples with support from S.I. and H.E. S.J., D.S. and C.K. wrote the paper with input from all the authors.

Corresponding authors

Correspondence to Dongjoon Song or Changyoung Kim.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Physics thanks Claudio Giannetti and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–11 and sections 1–12.

Source data

Source Data Fig. 1

Source data used in each figure.

Source Data Fig. 2

Source data used in each figure.

Source Data Fig. 3

Source data used in each figure.

Source Data Fig. 4

Source data used in each figure.

Source Data Fig. 5

Source data used in each figure.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jung, S., Seok, B., Roh, C.j. et al. Spontaneous breaking of mirror symmetry in a cuprate beyond critical doping. Nat. Phys. 20, 1616–1621 (2024). https://doi.org/10.1038/s41567-024-02601-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-024-02601-1

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing