Nothing Special   »   [go: up one dir, main page]

Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Engineering an efficient and enantioselective enzyme for the Morita–Baylis–Hillman reaction

Abstract

The combination of computational design and directed evolution could offer a general strategy to create enzymes with new functions. So far, this approach has delivered enzymes for a handful of model reactions. Here we show that new catalytic mechanisms can be engineered into proteins to accelerate more challenging chemical transformations. Evolutionary optimization of a primitive design afforded an efficient and enantioselective enzyme (BH32.14) for the Morita–Baylis–Hillman (MBH) reaction. BH32.14 is suitable for preparative-scale transformations, accepts a broad range of aldehyde and enone coupling partners and is able to promote selective monofunctionalizations of dialdehydes. Crystallographic, biochemical and computational studies reveal that BH32.14 operates via a sophisticated catalytic mechanism comprising a His23 nucleophile paired with a judiciously positioned Arg124. This catalytic arginine shuttles between conformational states to stabilize multiple oxyanion intermediates and serves as a genetically encoded surrogate of privileged bidentate hydrogen-bonding catalysts (for example, thioureas). This study demonstrates that elaborate catalytic devices can be built from scratch to promote demanding multi-step processes not observed in nature.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: A designed enzyme for the MBH reaction and the development of a dual-function mechanistic inhibitor.
Fig. 2: Characterization of BH32, BH32.14 and selected variants.
Fig. 3: Substrate scope of engineered MBHases.
Fig. 4: Crystal structures of BH32 and BH32.12.
Fig. 5: Proposed catalytic mechanism of an engineered MBHase.

Similar content being viewed by others

Data availability

Coordinates and structure factors have been deposited in the Protein Data Bank under accession numbers 6Z1K, 7O1D and 6Z1L. Data supporting the findings of this study are available within the paper and its Supplementary Information. Source data are provided with this paper.

References

  1. Hilvert, D. Design of protein catalysts. Annu. Rev. Biochem. 82, 447–470 (2013).

    Article  CAS  PubMed  Google Scholar 

  2. Röthlisberger, D. et al. Kemp elimination catalysts by computational enzyme design. Nature 453, 190–195 (2008).

    Article  PubMed  Google Scholar 

  3. Jiang, L. et al. De novo computational design of retro-aldol enzymes. Science 319, 1387–1391 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Siegel, J. B. et al. Computational design of an enzyme catalyst for a stereoselective bimolecular Diels-Alder reaction. Science 329, 309–313 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Eiben, C. B. et al. Increased Diels–alderase activity through backbone remodelling guided by Foldit players. Nat. Biotechnol. 30, 190–192 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Blomberg, R. et al. Precision is essential for efficient catalysis in an evolved Kemp eliminase. Nature 503, 418–421 (2013).

    Article  CAS  PubMed  Google Scholar 

  7. Obexer, R. et al. Emergence of a catalytic tetrad during evolution of a highly active artificial aldolase. Nat. Chem. 9, 50–56 (2017).

    Article  CAS  PubMed  Google Scholar 

  8. Gouverneur, V. E. et al. Control of the exo and endo pathways of the Diels-Alder reaction by antibody catalysis. Science 262, 204–208 (1993).

    Article  CAS  PubMed  Google Scholar 

  9. Stewart, J. D. & Benkovic, S. J. Transition-state stabilization as a measure of the efficiency of antibody catalysis. Nature 375, 388–391 (1995).

    Article  CAS  PubMed  Google Scholar 

  10. Barbas, C. F. III et al. Immune versus natural selection: antibody aldolases with enzymic rates but broader scope. Science 278, 2085–2092 (1997).

    Article  CAS  PubMed  Google Scholar 

  11. Basavaiah, D., Rao, A. J. & Satyanarayana, T. Recent advances in the Baylis-Hillman reaction and applications. Chem. Rev. 103, 811–892 (2003).

    Article  CAS  PubMed  Google Scholar 

  12. Basavaiah, D., Reddy, B. S. & Badsara, S. S. Recent contributions from the Baylis-Hillman reaction to organic chemistry. Chem. Rev. 9, 5447–5674 (2010).

    Article  Google Scholar 

  13. Wei, Y. & Shi, M. Recent advances in organocatalytic asymmetric Morita-Baylis-Hillman/aza-Morita-Baylis-Hillman reactions. Chem. Rev. 113, 6659–6690 (2013).

    Article  CAS  PubMed  Google Scholar 

  14. Metrano, A. J. et al. Asymmetric catalysis mediated by synthetic peptides, version 2.0: expansion of scope and mechanisms. Chem. Rev. 120, 11479–11615 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Shi, M. & Liu, X.-G. Asymmetric Morita-Baylis-Hillman reaction of arylaldehydes with 2-cyclohexen-1-one and 2-cyclopenten-1-one catalyzed by chiral bis(thio)urea and DABCO. Org. Lett. 10, 1043–1046 (2008).

    Article  CAS  PubMed  Google Scholar 

  16. Nakayama, Y., Gotanda, T. & Ito, K. Asymmetric Morita-Baylis-Hillman reactions of 2-cyclohexen-1-one catalyzed by chiral biaryl-based bis(thiourea) organocatalysts. Tetrahedron Lett. 52, 6234–6237 (2011).

    Article  CAS  Google Scholar 

  17. Islam, Z., Strutzenberg, T. S., Gurevic, I. & Kohen, A. Concerted versus stepwise mechanism in thymidylate synthase. J. Am. Chem. Soc. 136, 9850–9853 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Reetz, M. T., Mondière, R. & Carballeira, J. D. Enzyme promiscuity: first protein-catalyzed Morita-Baylis-Hillman reaction. Tetrahedron Lett. 48, 1679–1681 (2007).

    Article  CAS  Google Scholar 

  19. López-Iglesias, M., Busto, E., Gotor, V. & Gotor-Fernández, V. Use of protease from Bacillus licheniformis as promiscuous catalyst for organic synthesis: applications in C-C and C-N bond formation reactions. Adv. Synth. Catal. 353, 2345–2353 (2011).

    Article  Google Scholar 

  20. Joshi, P. N., Purushottam, L., Das, N. K., Mukherjee, S. & Rai, V. Protein self-assembly induces promiscuous nucleophilic biocatalysis in Morita-Baylis-Hillman (MBH) reaction. RSC Adv. 6, 208–211 (2016).

    Article  CAS  Google Scholar 

  21. Bjelic, S. et al. Computational design of enone-binding proteins with catalytic activity for the Morita-Baylis-Hillman reaction. ACS Chem. Biol. 8, 749–757 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bloom, J. D., Labthavikul, S. T., Otey, C. R. & Arnold, F. H. Protein stability promotes evolvability. Proc. Natl Acad. Sci. USA 103, 5869–5874 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Tokuriki, N. & Tawfik, D. S. Stability effects of mutations and protein evolvability. Curr. Opin. Struct. Biol. 19, 596–604 (2009).

    Article  CAS  PubMed  Google Scholar 

  24. Aggarwal, V. K., Emme, I. & Fulford, S. Y. Correlation between pKa and reactivity of quinuclidine-based catalysts in the Baylis-Hillman reaction: discovery of quinuclidine as optimum catalyst leading to substantial enhancement of scope. J. Org. Chem. 3, 692–700 (2003).

    Article  Google Scholar 

  25. Karur, S., Hardin, J., Headley, A. & Li, G. A novel approach to Morita-Baylis-Hillman (MBH) lactones via the Lewis acid-promoted couplings of α,β-unsaturated lactone with aldehydes. Tetrahedron Lett. 44, 2991–2994 (2003).

    Article  CAS  Google Scholar 

  26. Phillips, M. A., Fletterick, R. & Rutter, W. J. Arginine 127 stabilizes the transition state in carboxypeptidase. J. Biol. Chem. 265, 20692–20698 (1990).

    Article  CAS  PubMed  Google Scholar 

  27. Studer, S. et al. Evolution of a highly active and enantiospecific metalloenzyme from short peptides. Science 362, 1285–1288 (2018).

    Article  CAS  PubMed  Google Scholar 

  28. Janda, K. D., Schloeder, D., Benkovic, S. J. & Lerner, R. A. Induction of an antibody that catalyzes the hydrolysis of an amide bond. Science 241, 1188–1191 (1988).

    Article  CAS  PubMed  Google Scholar 

  29. Thayer, M. M. et al. Structural basis for amide hydrolysis catalyzed by the 43C9 antibody. J. Mol. Biol. 291, 329–345 (1993).

    Article  Google Scholar 

  30. Roberts, V. A., Stewart, J., Benkovic, S. J. & Getzoff, E. D. Catalytic antibody model and mutagenesis implicate arginine in transition-state stabilization. J. Mol. Biol. 235, 1098–1116 (1994).

    Article  CAS  PubMed  Google Scholar 

  31. Doyle, A. G. & Jacobsen, E. N. Small-molecule H-bond donors in asymmetric catalysis. Chem. Rev. 107, 5713–5743 (2007).

    Article  CAS  PubMed  Google Scholar 

  32. Taylor, M. S. & Jacobsen, E. N. Asymmetric catalysis by chiral hydrogen-bond donors. Angew. Chem. Int. Ed. 45, 1520–1543 (2006).

    Article  CAS  Google Scholar 

  33. Amarante, G. W. et al. Brønsted acid catalyzed Morita-Baylis-Hillman reaction: a new mechanistic view for thioureas revealed by ESI‐MS(/MS) monitoring and DFT calculations. Chem. Eur. J. 15, 12460–12469 (2009).

    Article  CAS  PubMed  Google Scholar 

  34. Knowles, R. R., Lin, S. & Jacobsen, E. N. Enantioselective thiourea-catalyzed cationic polycyclizations. J. Am. Chem. Soc. 132, 5030–5032 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Park, Y. et al. Macrocyclic bis-thioureas catalyze stereospecific glycosylation reactions. Science 355, 162–166 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. St-Jacques, A. D., Eyahpaise, M.-E. C. & Chica, R. A. Computational design of multisubstrate enzyme specificity. ACS Catal. 9, 5480–5485 (2019).

    Article  CAS  Google Scholar 

  37. Davey, J. A., Damry, A. M., Goto, N. K. & Chica, R. A. Rational design of proteins that exchange on functional timescales. Nat. Chem. Biol. 13, 1280–1285 (2017).

    Article  CAS  PubMed  Google Scholar 

  38. Lee, T. S. et al. BglBrick vectors and datasheets: a synthetic biology platform for gene expression. J. Biol. Eng. 5, 12 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kille, S. et al. Reducing codon redundancy and screening effort of combinatorial protein libraries created by saturation mutagenesis. ACS Synth. Biol. 2, 83–92 (2013).

    Article  CAS  PubMed  Google Scholar 

  40. Luo, S., Wang, P. G. & Cheng, J.-P. Remarkable rate acceleration of imidazole-promoted Baylis-Hillman reaction involving cyclic enones in basic water solution. J. Org. Chem. 69, 555–558 (2004).

    Article  CAS  PubMed  Google Scholar 

  41. Kataoka, T., Iwama, T., Tsujiyama, S., Iwamura, T. & Watanabe, S. The Chalcogeno-Baylis-Hillman reaction: a new preparation of allylic alcohols from aldehydes and electron-deficient alkenes. Tetrahedron 54, 11813–11824 (1998).

    Article  CAS  Google Scholar 

  42. Vazquez-Chavez, J. et al. Effect of chiral N-substituents with methyl and trifluoromethyl groups on the catalytic performance of mono- and bifunctional thioureas. Org. Biomol. Chem. 17, 10045–10051 (2019).

    Article  CAS  PubMed  Google Scholar 

  43. Wang, F. et al. A highly efficient kinetic resolution of Morita-Baylis-Hillman adducts achieved by N-Ar axially chiral Pd-complexes catalyzed asymmetric allylation. Chem. Commun. 47, 12813–12815 (2011).

    Article  CAS  Google Scholar 

  44. Kwong, C. K.-W., Huang, R., Zhang, M., Shi, M. & Toy, P. H. Bifunctional polymeric organocatalysts and their application in the cooperative catalysis of Morita-Baylis-Hillman reaction. Chemistry 13, 2369–2376 (2007).

    Article  CAS  PubMed  Google Scholar 

  45. Li, G., Wei, H.-X., Gao, J. J. & Caputo, T. D. TiCl4-mediated Baylis-Hillman and aldol reactions without the direct use of a Lewis base. Tetrahedron Lett. 41, 1–5 (2000).

    Article  CAS  Google Scholar 

  46. Yang, J. et al. Endohedral functionalized cage as a tool to create frustrated Lewis pairs. Angew. Chem. Int. Ed. 57, 14212–14215 (2018).

    Article  CAS  Google Scholar 

  47. Venable, J. D. et al. Preparation and biological evaluation of indole, benzimidazole, and thienopyrrole piperazine carboxamides: potent human histamine H4 antagonists. J. Med. Chem. 48, 8289–8298 (2005).

    Article  CAS  PubMed  Google Scholar 

  48. Comins, D. L. & Killpack, M. O. Lithiation of heterocycles directed by α-amino alkoxides. J. Org. Chem. 52, 104–109 (1987).

    Article  CAS  Google Scholar 

  49. Coelho, F. et al. Ultrasound in Baylis-Hillman reactions with aliphatic and aromatic aldehydes: scope and limitations. Tetrahedron 58, 7437–7447 (2002).

    Article  CAS  Google Scholar 

  50. Winter, G. et al. DIALS: implementation and evaluation of a new integration package. Acta Crystallogr. D 74, 85–97 (2018).

    Article  CAS  Google Scholar 

  51. Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of COOT. Acta Crystallogr. D Biol. Crystallogr. 66, 486–501 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Afonine, P. V. et al. Towards automated crystallographic structure refinement with phenix.refine. Acta Crystallogr. D Biol. Crystallogr. 68, 352–367 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Trott, O. & Olson, A. J. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 31, 455–461 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Morris, G. M. et al. AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J. Comput. Chem. 30, 2785–2791 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Frisch, M. J. et al. Gaussian 16, Revision A.03 (Gaussian, 2016).

  56. Becke, A. D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98, 5648–5652 (1993).

    Article  CAS  Google Scholar 

  57. Hehre, W., Ditchfield, R. & Pople, J. Further extensions of Gaussian-type basis sets for use in molecular orbital studies of organic molecules. J. Chem. Phys. 56, 2257–2261 (1972).

    Article  CAS  Google Scholar 

  58. Francl, M. et al. Self-consistent molecular orbital methods. XXIII. A polarization-type basis set for 2nd-row elements. J. Chem. Phys. 77, 3654–3665 (1982).

    Article  CAS  Google Scholar 

  59. Grimme, S., Ehrlich, S. & Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 32, 1456–1465 (2011).

    Article  CAS  PubMed  Google Scholar 

  60. Barone, V. & Cossi, M. Quantum calculation of molecular energies and energy gradients in solution by a conductor solvent model. J. Phys. Chem. 102, 1995–2001 (1998).

    Article  CAS  Google Scholar 

  61. Cossi, M., Rega, N., Scalmani, G. & Barone, V. Energies, structures, and electronic properties of molecules in solution with the C‐PCM solvation model. J. Comput. Chem. 24, 669–681 (2003).

    Article  CAS  PubMed  Google Scholar 

  62. Shaik, S., Kumar, D., de Visser, S. P., Altun, A. & Thiel, W. Theoretical perspective on the structure and mechanism of cytochrome P450 enzymes. Chem. Rev. 105, 2279–2328 (2005).

    Article  CAS  PubMed  Google Scholar 

  63. Heyes, D. J., Sakuma, M., de Visser, S. P. & Scrutton, N. S. Nuclear quantum tunneling in the light-activated enzyme protochlorophyllide oxidoreductase. J. Biol. Chem. 284, 3762–3767 (2009).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge the Biotechnology and Biological Sciences Research Council (David Phillips Fellowship BB/M027023/1 to A.P.G.), the European Research Council (ERC Starter Grant no. 757991 to A.P.G.) and the UK Research and Innovation Council (Future Leader Fellowship MR/T041722/1 to S.L.L.). We thank the Faculty of Science and Engineering (University of Manchester) for the award of a Presidential Fellowship to S.L.L. A.E.C. was supported by a BBSRC Industrial CASE PhD studentship (BB/S507040/1) supported by GSK. We are grateful to the Diamond Light Source for time on beamlines i03 and i04 under proposals MX17773–33 and MX17773–74, to the Manchester SYNBIOCHEM Centre (BB/M017702/1), the Future Biomanufacturing Hub (EP/S01778X/1) and the Henry Royce Institute for Advanced Materials (funded through EPSRC grants nos. EP/R00661X/1, EP/S019367/1, EP/P025021/1 and EP/P025498/1) for access to their facilities, and to M. Dunstan (Manchester Institute of Biotechnology) for guidance on automating directed evolution workflows. We thank R. Spiess and R. Sung (Manchester Institute of Biotechnology) for acquiring protein mass spectra and for assistance with HPLC method development, and Reach Separations (Nottingham) for supplying individual enantiomers of MBH adduct 3. We acknowledge assistance given by IT Services and use of the Computational Shared Facility at the University of Manchester.

Author information

Authors and Affiliations

Authors

Contributions

R.C. carried out molecular biology, protein production, purification, crystallization and kinetic characterization, and directed evolution experiments. A.E.C. and R.C. carried out organic synthesis and substrate profiling of the BH32 variants. R.C., A.J.B. and A.E.C. developed spectrophotometric assays and performed enzyme-inhibition experiments. L.J. and S.H. carried out molecular-docking and DFT calculations. S.H. interpreted and analysed kinetic data. C.L. interpreted, analysed and presented structural data. D.B. provided the BH32 design model. All authors discussed the results and participated in writing the manuscript. A.P.G. and S.L.L. directed the research.

Corresponding authors

Correspondence to Sarah L. Lovelock or Anthony P. Green.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Chemistry thanks Andrew Buller, Elaine O’Reilly and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–13, Tables 1–9, DNA and protein sequences, Cartesian coordinates for energy-minimized cluster models.

Supplementary Data 1

Source data for Supplementary Figs. 2, 5, 6, 11 and 13.

Supplementary Data 2

Raw NMR data for Supplementary Fig. 4a.

Supplementary Data 3

Raw NMR data for Supplementary Fig. 4b.

Source data

Source Data Fig. 1

Raw data supporting the main text and Fig. 1b.

Source Data Fig. 2

Raw data supporting the main text and Figs. 2b, 2c and 2d.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Crawshaw, R., Crossley, A.E., Johannissen, L. et al. Engineering an efficient and enantioselective enzyme for the Morita–Baylis–Hillman reaction. Nat. Chem. 14, 313–320 (2022). https://doi.org/10.1038/s41557-021-00833-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-021-00833-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing