Nothing Special   »   [go: up one dir, main page]

Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Accurate oxygen abundance of interstellar gas in Mrk 71 from optical and infrared spectra

Abstract

The heavy element content (‘metallicity’) of the Universe is a record of the total star formation history. Gas-phase metallicity in galaxies, as well as its evolution with time, is of particular interest as a tracer of accretion and outflow processes. However, metallicities from the widely used electron temperature (Te) method are typically approximately two times lower than the values based on the recombination line method. This ‘abundance discrepancy factor’ is well known and is commonly ascribed to bias due to temperature fluctuations. We present a measurement of oxygen abundance in the nearby (3.4-Mpc) system, Markarian 71, using a combination of optical and far-infrared emission lines to measure and correct for temperature fluctuation effects. Our far-infrared result is inconsistent (>2σ significance) with the metallicity from recombination lines and, instead, indicates little to no bias in the standard Te method, ruling out the long-standing hypothesis that the abundance discrepancy factor is explained by temperature fluctuations for this object. Our results provide a framework to accurately measure metallicity across cosmic history, including with recent data reaching within the first billion years, with the James Webb Space Telescope and the Atacama Large Millimeter Array.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of our spectroscopic datasets on Mrk 71.
Fig. 2: A summary of spectra we obtained for Mrk 71.
Fig. 3: A summary of the electron temperature and O++ abundace of Mrk 71 measured from different direct methods.

Similar content being viewed by others

Data availability

The raw Keck Cosmic Web Imager data in this work are available in the Keck Observatory Archive: https://www2.keck.hawaii.edu/koa/public/koa.php. The reduced Far Infrared Field-Imaging Line Spectrometer data are available in the Stratospheric Observatory for Infrared Astronomy data archive: https://irsa.ipac.caltech.edu/Missions/sofia.html. The Photodetector Array Camera and Spectrometer data before transient correction are available in the Herschel data archive: http://archives.esac.esa.int/hsa/whsa/. Additional data can be provided upon reasonable request.

Code availability

This study uses publicly available software/packages, including PyNeb43, Astropy47, emcee48, the Keck Cosmic Web Imager Data Reduction Pipeline (https://github.com/Keck-DataReductionPipelines/KCWI_DRP.git), SOSPEX (https://github.com/darioflute/sospex), Montage (http://montage.ipac.caltech.edu) and the Stratospheric Observatory for Infrared Astronomy Data Reduction Pipeline (https://github.com/SOFIA-USRA/sofia_redux). For the Keck Cosmic Web Imager data, the post-Data Reduction Pipeline background subtraction and stacking code is maintained at https://github.com/yuguangchen1/kcwi. Additional analysis code can be provided upon reasonable request.

References

  1. Osterbrock, D. E. & Ferland, G. J. Astrophysics of Gas Nebulae and Active Galactic Nuclei (University Science Books, 2006).

    Google Scholar 

  2. Peimbert, M. Temperature determinations of H ii regions. Astrophys. J. 150, 825 (1967).

    Article  ADS  Google Scholar 

  3. Peimbert, M., Storey, P. J. & Torres-Peimbert, S. The O++/H+ abundance ratio in gaseous nebulae derived from recombination lines. Astrophys. J. 414, 626 (1993).

    Article  ADS  Google Scholar 

  4. Blanc, G. A., Kewley, L., Vogt, F. P. A. & Dopita, M. A. IZI: inferring the gas phase metallicity (Z) and ionization parameter (q) of ionized nebulae using Bayesian statistics. Astrophys. J. 798, 99 (2015).

    Article  ADS  Google Scholar 

  5. Esteban, C. et al. Keck HIRES spectroscopy of extragalactic H ii regions: C and O abundances from recombination lines. Astrophys. J. 700, 654–678 (2009).

    Article  ADS  Google Scholar 

  6. Esteban, C. et al. Carbon and oxygen abundances from recombination lines in low-metallicity star-forming galaxies. Implications for chemical evolution. Monthly Notices R. Astron. Soc. 443, 624–647 (2014).

    Article  ADS  Google Scholar 

  7. Bresolin, F. et al. Extragalactic chemical abundances: do H ii regions and young stars tell the same story? The case of the spiral galaxy NGC 300. Astrophys. J. 700, 309–330 (2009).

    Article  ADS  Google Scholar 

  8. Croxall, K. V. et al. Toward a removal of temperature dependencies from abundance determinations: NGC 628. Astrophys. J. 777, 96 (2013).

    Article  ADS  Google Scholar 

  9. Stasińska, G. et al. No temperature fluctuations in the giant H ii region H 1013. Astron. Astrophys. 551, 82 (2013).

    Article  Google Scholar 

  10. Corwin, J. H. G. VizieR online data catalog: history and accurate positions for the NGC/IC objects (Corwin, 2004).

  11. Micheva, G., Oey, M. S., Jaskot, A. E. & James, B. L. Mrk 71/NGC 2366: the nearest green pea analog. Astrophys. J. 845, 165 (2017).

    Article  ADS  Google Scholar 

  12. Steidel, C. C. et al. Strong nebular line ratios in the spectra of z ~ 2–3 star forming galaxies: first results from KBSS-MOSFIRE. Astrophys. J. 795, 165 (2014).

    Article  ADS  Google Scholar 

  13. Tang, M., Stark, D. P., Chevallard, J. & Charlot, S. MMT/MMIRS spectroscopy of z = 1.3–2.4 extreme [O iii] emitters: implications for galaxies in the reionization era. Monthly Notices R. Astron. Soc. 489, 2572–2594 (2019).

    Article  ADS  Google Scholar 

  14. Sanders, R. L. et al. The MOSDEF survey: direct-method metallicities and ISM conditions at z ~ 1.5–3.5. Monthly Notices R. Astron. Soc. 491, 1427–1455 (2020).

    Article  ADS  Google Scholar 

  15. Endsley, R., Stark, D. P., Chevallard, J. & Charlot, S. The [O iii] + H β equivalent width distribution at z 7: implications for the contribution of galaxies to reionization. Monthly Notices R. Astron. Soc. 500, 5229–5248 (2021).

    Article  ADS  Google Scholar 

  16. Arellano-Córdova, K. Z. et al. A first look at the abundance pattern—O/H, C/O, Ne/O, and Fe/OΧ—in z > 7 galaxies with JWST/NIRSpec. Astrophys. J. Lett. 940, L23 (2022).

    Article  ADS  Google Scholar 

  17. Katz, H. et al. First insights into the ISM at z > 8 with JWST: possible physical implications of a high [O iii]λ4363/[O iii]λ5007. Monthly Notices R. Astron. Soc. 518, 592–603 (2023).

    Article  ADS  Google Scholar 

  18. Curti, M. et al. The chemical enrichment in the early Universe as probed by JWST via direct metallicity measurements at z ~ 8. Monthly Notices R. Astron. Soc. 518, 425–438 (2023).

    Article  ADS  Google Scholar 

  19. Morrissey, P. et al. The Keck Cosmic Web Imager integral field spectrograph. Astrophys. J. 864, 93 (2018).

    Article  ADS  Google Scholar 

  20. Fischer, C. et al. FIFI-LS: the Field-Imaging Far-Infrared Line Spectrometer on SOFIA. J. Astron. Instrument. 7, 1840003 (2018).

    Article  ADS  Google Scholar 

  21. Poglitsch, A. et al. The Photodetector Array Camera and Spectrometer (PACS) on the Herschel Space Observatory. Astron. Astrophys. 518, 2 (2010).

    Article  Google Scholar 

  22. Cardelli, J. A., Clayton, G. C. & Mathis, J. S. The relationship between infrared, optical, and ultraviolet extinction. Astrophys. J. 345, 245 (1989).

    Article  ADS  Google Scholar 

  23. Peimbert, M., Peimbert, A. & Delgado-Inglada, G. Nebular spectroscopy: a guide on H ii regions and planetary nebulae. Publ. Astron. Soc. Pacific 129, 082001 (2017).

    Article  ADS  Google Scholar 

  24. Mingozzi, M. et al. CLASSY IV. Exploring UV diagnostics of the interstellar medium in local high-z analogs at the dawn of the JWST era. Astrophys. J. 939, 110 (2022).

    Article  ADS  Google Scholar 

  25. Liu, X.-W. et al. NGC 6153: a super-metal-rich planetary nebula? Monthly Notices R. Astron. Soc. 312, 585–628 (2000).

    Article  ADS  Google Scholar 

  26. Stasińska, G., Tenorio-Tagle, G., Rodríguez, M. & Henney, W. J. Enrichment of the interstellar medium by metal-rich droplets and the abundance bias in H ii regions. Astron. Astrophys. 471, 193–204 (2007).

    Article  ADS  Google Scholar 

  27. Tsamis, Y. G., Barlow, M. J., Liu, X.-W., Danziger, I. J. & Storey, P. J. Heavy elements iN galactic and magellanic cloud H ii regions: recombination-line versus forbidden-line abundances. Monthly Notices R. Astron. Soc. 338, 687–710 (2003).

    Article  ADS  Google Scholar 

  28. Jenkins, E. B. A unified representation of gas-phase element depletions in the interstellar medium. Astrophys. J. 700, 1299–1348 (2009).

    Article  ADS  Google Scholar 

  29. Bresolin, F. et al. Young stars and ionized nebulae in M83: comparing chemical abundances at high metallicity. Astrophys. J. 830, 64 (2016).

    Article  ADS  Google Scholar 

  30. Bresolin, F., Kudritzki, R.-P. & Urbaneja, M. A. The metallicity and distance of NGC 2403 from blue supergiants. Astrophys. J. 940, 32 (2022).

    Article  ADS  Google Scholar 

  31. Jones, T. et al. The mass-metallicity relation at z 8: direct-method metallicity constraints and near-future prospects. Astrophys. J. 903, 150 (2020).

    Article  ADS  Google Scholar 

  32. Bakx, T. J. L. C. et al. Deep ALMA redshift search of a z ~ 12 GLASS-JWST galaxy candidate. Monthly Notices R. Astron. Soc. 519, 5076–5085 (2023).

    Article  ADS  Google Scholar 

  33. Sanders, R. L. et al. The MOSDEF survey: the evolution of the mass–metallicity relation from z = 0 to z ~ 3.3. Astrophys. J. 914, 19 (2021).

    Article  ADS  Google Scholar 

  34. Chen, Y. et al. The KBSS-KCWI survey: the connection between extended Ly α haloes and galaxy azimuthal angle at z ~ 2–3. Monthly Notices R. Astron. Soc. 508, 19–43 (2021).

    Article  ADS  Google Scholar 

  35. Temi, P., Hoffman, D., Ennico, K. & Le, J. SOFIA at full operation capability: technical performance. J. Astron. Instrument. 7, 1840011 (2018).

    Article  ADS  Google Scholar 

  36. Colditz, S. et al. Spectral and spatial characterization and calibration of FIFI-LS—the field imaging spectrometer on SOFIA. J. Astron. Instrument. 7, 1840004 (2018).

    Article  ADS  Google Scholar 

  37. Fadda, D., Jacobson, J. D. & Appleton, P. N. Transient effects in Herschel/PACS spectroscopy. Astron. Astrophys. 594, 90 (2016).

    Article  ADS  Google Scholar 

  38. Sutter, J. & Fadda, D. [C ii] map of the molecular ring and arms of the spiral galaxy NGC 7331. Astrophys. J. 926, 82 (2022).

    Article  ADS  Google Scholar 

  39. Komarova, L. et al. Emission-line wings driven by Lyman continuum in the green pea analog Mrk 71. Astrophys. J. Lett. 920, 46 (2021).

    Article  ADS  Google Scholar 

  40. Law, D. R. et al. The Data Reduction Pipeline for the SDSS-IV MaNGA IFU galaxy survey. Astron. J. 152, 83 (2016).

    Article  ADS  Google Scholar 

  41. James, B. L., Auger, M., Aloisi, A., Calzetti, D. & Kewley, L. Resolving ionization and metallicity on parsec scales across Mrk 71 with HST-WFC3. Astrophys. J. 816, 40 (2016).

    Article  ADS  Google Scholar 

  42. Urbaneja, M. A. et al. LMC blue supergiant stars and the calibration of the flux-weighted gravity-luminosity relationship. Astron. J. 154, 102 (2017).

    Article  ADS  Google Scholar 

  43. Luridiana, V., Morisset, C. & Shaw, R. A. PyNeb: a new tool for analyzing emission lines. I. Code description and validation of results. Astron. Astrophys. 573, 42 (2015).

    Article  ADS  Google Scholar 

  44. Storey, P. J., Sochi, T. & Badnell, N. R. Collision strengths for nebular [O iii] optical and infrared lines. Monthly Notices R. Astron. Soc. 441, 3028–3039 (2014).

    Article  ADS  Google Scholar 

  45. Storey, P. J., Sochi, T. & Bastin, R. Recombination coefficients for O ii lines in nebular conditions. Monthly Notices R. Astron. Soc. 470, 379–389 (2017).

    Article  ADS  Google Scholar 

  46. Esteban, C. et al. A reappraisal of the chemical composition of the Orion nebula based on very large telescope echelle spectrophotometry. Monthly Notices R. Astron. Soc. 355, 229–247 (2004).

    Article  ADS  Google Scholar 

  47. Astropy Collaboration et al.The Astropy Project: sustaining and growing a community-oriented open-source project and the latest major release (v5.0) of the core package. Astrophys. J. 935, 167 (2022).

    Article  ADS  Google Scholar 

  48. Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: the MCMC hammer. Publ. Astron. Soc. Pacific 125, 306 (2013).

    Article  ADS  Google Scholar 

  49. Chambers, K. C. et al. The Pan-STARRS1 surveys. Preprint at arXiv https://doi.org/10.48550/arXiv.1612.05560(2019).

  50. Flewelling, H. A. et al. The Pan-STARRS1 database and data products. Astrophys. J. Suppl. 251, 7 (2020).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was based on data obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration (NASA). The observatory was made possible by the generous financial support of the W. M. Keck Foundation. We recognize and acknowledge the very significant cultural role and reverence that the summit of Maunakea has always had within the indigenous Hawaiian community. We are fortunate to have the opportunity to conduct observations from this mountain. Results in this paper are based on observations made with the NASA/DLR Stratospheric Observatory for Infrared Astronomy (SOFIA). SOFIA is jointly operated by the Universities Space Research Association, Inc. (NASA Contract NAS2-97001) and the Deutsches SOFIA Institut (DLR Contract 50-OK-0901 to the University of Stuttgart). Herschel is an ESA space observatory with science instruments provided by a European-led principal investigator consortia and important participation from NASA. We thank the W. M. Keck Observatory staff, the SOFIA observatory staff and the Herschel Data Archive for making this study possible. Financial support for this work was provided by NASA (Award 08_0071 issued by the Universities Space Research Association, Inc.). R.S. acknowledges the support of NASA (NASA Hubble Fellowship Grant HST-HF2-51469.001-A awarded by the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Incorporated (NASA Contract NAS5-26555)). J. Sutter acknowledges funding from STScI (Grant JWST-GO-02107.006.A). R.M. acknowledges support from the National Radio Astronomy Observatory, which is a facility of the National Science Foundation operated under cooperative agreement with Associated Universities, Inc.

Author information

Authors and Affiliations

Authors

Contributions

Y.C. led the overall data reduction, analysis and interpretation of the project. T.J. and R.S. conceived the project. Y.C. conducted the Keck Cosmic Web Imager data reduction and analysis. D.F. conducted the Far Infrared Field-Imaging Line Spectrometer data reduction. D.F., J. Sutter and R.M. contributed to the improvement of the Photodetector Array Camera and Spectrometer data. All authors contributed to the planning of the observations, the overall interpretation of the results, various aspects of analysis and the preparation of the manuscript.

Corresponding author

Correspondence to Yuguang Chen.

Ethics declarations

Competing interests

The authors declare no competing interest.

Peer review

Peer review information

Nature Astronomy thanks Mirko Curti, Rolf Kudritzki and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–4 and Tables 1 and 2.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Jones, T., Sanders, R. et al. Accurate oxygen abundance of interstellar gas in Mrk 71 from optical and infrared spectra. Nat Astron 7, 771–778 (2023). https://doi.org/10.1038/s41550-023-01953-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41550-023-01953-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing