Nothing Special   »   [go: up one dir, main page]

Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Transit detection of the long-period volatile-rich super-Earth ν2 Lupi d with CHEOPS

Subjects

Abstract

Exoplanets transiting bright nearby stars are key objects for advancing our knowledge of planetary formation and evolution. The wealth of photons from the host star gives detailed access to the atmospheric, interior and orbital properties of the planetary companions. ν2 Lupi (HD 136352) is a naked-eye (V = 5.78) Sun-like star that was discovered to host three low-mass planets with orbital periods of 11.6, 27.6 and 107.6 d via radial-velocity monitoring1. The two inner planets (b and c) were recently found to transit2, prompting a photometric follow-up by the brand new Characterising Exoplanets Satellite (CHEOPS). Here, we report that the outer planet d is also transiting, and measure its radius and mass to be 2.56 ± 0.09 R and 8.82 ± 0.94 M, respectively. With its bright Sun-like star, long period and mild irradiation (~5.7 times the irradiation of Earth), ν2 Lupi d unlocks a completely new region in the parameter space of exoplanets amenable to detailed characterization. We refine the properties of all three planets: planet b probably has a rocky mostly dry composition, while planets c and d seem to have retained small hydrogen–helium envelopes and a possibly large water fraction. This diversity of planetary compositions makes the ν2 Lupi system an excellent laboratory for testing formation and evolution models of low-mass planets.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: CHEOPS transit photometry of the ν2 Lupi planets.
Fig. 2: The ν2 Lupi planets in the context of other known transiting exoplanets.
Fig. 3: Internal structures of the ν2 Lupi planets.

Similar content being viewed by others

Data availability

The CHEOPS light curves used in this work will be made available for download at the CDS (Centre de Données astronomiques de Strasbourg). We will provide both the raw and detrended light curves. All other data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.

Code availability

The CHEOPS DRP is built over several public Python libraries, such as Astropy148,149, NumPy150 and SciPy151. The TESS light curve was extracted using the lightkurve31 open-source Python package. The data analysis was performed using the juliet Python library, which is also publicly available. The figures were produced using the Matplotlib152 and corner153 open-source Python modules. The codes used in this work are available upon reasonable request from the corresponding author.

References

  1. Udry, S. et al. The HARPS search for southern extra-solar planets. XLIV. Eight HARPS multiplanet systems hosting 20 super-Earth and Neptune-mass companions. Astron. Astrophys. 622, A37 (2019).

    Article  Google Scholar 

  2. Kane, S. R. et al. Transits of known planets orbiting a naked-eye star. Astron. J. 160, 129 (2020).

    Article  ADS  Google Scholar 

  3. Benz, W. et al. The CHEOPS mission. Exp. Astron. 51, 109–151 (2021).

    Article  ADS  Google Scholar 

  4. Baglin, A. et al. Scientific objectives for a minisat: CoRoT. In Proc.The CoRoT Mission Pre-Launch Status—Stellar Seismology and Planet Finding’ (eds Fridlund, M. et al.) 33–37 (ESA, 2006).

  5. Borucki, W. J. et al. Kepler planet-detection mission: introduction and first results. Science 327, 977–980 (2010).

    Article  ADS  Google Scholar 

  6. Ricker, G. R. et al. Transiting Exoplanet Survey Satellite (TESS). J. Astron. Telesc. Instrum. Syst. 1, 014003 (2015).

    Article  ADS  Google Scholar 

  7. Deline, A. et al. Expected performances of the Characterising Exoplanet Satellite (CHEOPS). I. Photometric performances from ground-based calibration. Astron. Astrophys. 635, A22 (2020).

    Article  ADS  Google Scholar 

  8. Lendl, M. et al. The hot dayside and asymmetric transit of WASP-189 b seen by CHEOPS. Astron. Astrophys. 643, A94 (2020).

    Article  Google Scholar 

  9. Motalebi, F. et al. The HARPS-N Rocky Planet Search. I. HD 219134 b: a transiting rocky planet in a multiplanet system at 6.5 pc from the Sun. Astron. Astrophys. 584, A72 (2015).

    Article  Google Scholar 

  10. Gillon, M. et al. Two massive rocky planets transiting a K-dwarf 6.5 parsecs away. Nat. Astron. 1, 0056 (2017).

    Article  ADS  Google Scholar 

  11. Vanderburg, A. et al. TESS spots a compact system of super-Earths around the naked-eye star HR 858. Astrophys. J. Lett. 881, L19 (2019).

    Article  ADS  Google Scholar 

  12. Dragomir, D. et al. Securing the legacy of TESS through the care and maintenance of TESS planet ephemerides. Astron. J. 159, 219 (2020).

    Article  ADS  Google Scholar 

  13. Hoyer, S. et al. Expected performances of the Characterising Exoplanet Satellite (CHEOPS). III. Data reduction pipeline: architecture and simulated performances. Astron. Astrophys. 635, A24 (2020).

    Article  Google Scholar 

  14. Espinoza, N., Kossakowski, D. & Brahm, R. juliet: a versatile modelling tool for transiting and non-transiting exoplanetary systems. Mon. Not. R. Astron. Soc. 490, 2262–2283 (2019).

    Article  ADS  Google Scholar 

  15. Speagle, J. S. DYNESTY: a dynamic nested sampling package for estimating Bayesian posteriors and evidences. Mon. Not. R. Astron. Soc. 493, 3132–3158 (2020).

    Article  ADS  Google Scholar 

  16. Sulis, S. et al. Mitigating flicker noise in high-precision photometry. I. Characterization of the noise structure, impact on the inferred transit parameters, and predictions for CHEOPS observations. Astron. Astrophys. 636, A70 (2020).

    Article  Google Scholar 

  17. Moya, A. et al. Asteroseismic potential of CHEOPS. Astron. Astrophys. 620, A203 (2018).

    Article  Google Scholar 

  18. Fulton, B. J. et al. The California–Kepler Survey. III. A gap in the radius distribution of small planets. Astron. J. 154, 109 (2017).

    Article  ADS  Google Scholar 

  19. Owen, J. E. & Wu, Y. The evaporation valley in the Kepler planets. Astrophys. J. 847, 29 (2017).

    Article  ADS  Google Scholar 

  20. Van Eylen, V. et al. An asteroseismic view of the radius valley: stripped cores, not born rocky. Mon. Not. R. Astron. Soc. 479, 4786–4795 (2018).

    Article  ADS  Google Scholar 

  21. Ginzburg, S., Schlichting, H. E. & Sari, R. Core-powered mass-loss and the radius distribution of small exoplanets. Mon. Not. R. Astron. Soc. 476, 759–765 (2018).

    Article  ADS  Google Scholar 

  22. Venturini, J., Guilera, O. M., Haldemann, J., Ronco, M. P. & Mordasini, C. The nature of the radius valley. Hints from formation and evolution models. Astron. Astrophys. 643, L1 (2020).

    Article  ADS  Google Scholar 

  23. Dorn, C. et al. Can we constrain the interior structure of rocky exoplanets from mass and radius measurements? Astron. Astrophys. 577, A83 (2015).

    Article  Google Scholar 

  24. Dorn, C. et al. A generalized Bayesian inference method for constraining the interiors of super Earths and sub-Neptunes. Astron. Astrophys. 597, A37 (2017).

    Article  Google Scholar 

  25. Kubyshkina, D. et al. Close-in sub-Neptunes reveal the past rotation history of their host stars: atmospheric evolution of planets in the HD 3167 and K2-32 planetary systems. Astrophys. J. 879, 26 (2019).

    Article  ADS  Google Scholar 

  26. Kubyshkina, D. et al. The Kepler-11 system: evolution of the stellar high-energy emission and initial planetary atmospheric mass fractions. Astron. Astrophys. 632, A65 (2019).

    Article  Google Scholar 

  27. Papaloizou, J. C. B. & Terquem, C. Critical protoplanetary core masses in protoplanetary disks and the formation of short-period giant planets. Astrophys. J. 521, 823–838 (1999).

    Article  ADS  Google Scholar 

  28. Alibert, Y. On the radius of habitable planets. Astron. Astrophys. 561, A41 (2014).

    Article  ADS  Google Scholar 

  29. Kempton, E. M. R. et al. A framework for prioritizing the TESS planetary candidates most amenable to atmospheric characterization. Publ. Astron. Soc. Pac. 130, 114401 (2018).

    Article  ADS  Google Scholar 

  30. Gaia Collaboration et al. Gaia Data Release 2. Summary of the contents and survey properties. Astron. Astrophys. 616, A1 (2018).

  31. Lightkurve Collaboration et al. Lightkurve: Kepler and TESS time series analysis in Python. Astrophysics Source Code Library ascl:1812.013 (2018).

  32. Christiansen, J. L. et al. The derivation, properties, and value of Kepler’s combined differential photometric precision. Publ. Astron. Soc. Pac. 124, 1279–1287 (2012).

    Article  ADS  Google Scholar 

  33. Stassun, K. G. et al. The revised TESS Input Catalog and Candidate Target List. Astron. J. 158, 138 (2019).

    Article  ADS  Google Scholar 

  34. Smith, J. C. et al. Kepler presearch data conditioning II—a Bayesian approach to systematic error correction. Publ. Astron. Soc. Pac. 124, 1000 (2012).

    Article  ADS  Google Scholar 

  35. Stumpe, M. C. et al. Multiscale systematic error correction via wavelet-based bandsplitting in Kepler data. Publ. Astron. Soc. Pac. 126, 100 (2014).

    Article  ADS  Google Scholar 

  36. Jenkins, J. M. et al. The TESS Science Processing Operations Center. Proc. SPIE 9913, 99133E (2016).

  37. Schwarz, G. Estimating the dimension of a model. Ann. Stat. 6, 461–464 (1978).

    Article  MathSciNet  MATH  Google Scholar 

  38. Sousa, S. G. et al. Spectroscopic parameters for 451 stars in the HARPS GTO planet search program. Stellar [Fe/H] and the frequency of exo-Neptunes. Astron. Astrophys. 487, 373–381 (2008).

    Article  ADS  Google Scholar 

  39. Sousa, S. G. in Determination of Atmospheric Parameters of B-, A-, F- and G-Type Stars. GeoPlanet: Earth and Planetary Sciences (eds Niemczura, E. et al.) 297–310 (Springer, 2014).

  40. Santos, N. C. et al. SWEET-Cat: a catalogue of parameters for Stars With ExoplanETs. I. New atmospheric parameters and masses for 48 stars with planets. Astron. Astrophys. 556, A150 (2013).

    Article  Google Scholar 

  41. Sousa, S. G. et al. Spectroscopic characterization of a sample of metal-poor solar-type stars from the HARPS planet search program. Precise spectroscopic parameters and mass estimation. Astron. Astrophys. 526, A99 (2011).

    Article  Google Scholar 

  42. Sousa, S. G., Santos, N. C., Israelian, G., Mayor, M. & Monteiro, M. J. P. F. G. A new code for automatic determination of equivalent widths: Automatic Routine for line Equivalent widths in stellar Spectra (ARES). Astron. Astrophys. 469, 783–791 (2007).

    Article  ADS  Google Scholar 

  43. Sousa, S. G., Santos, N. C., Adibekyan, V., Delgado-Mena, E. & Israelian, G. ARES v2: new features and improved performance. Astron. Astrophys. 577, A67 (2015).

    Article  ADS  Google Scholar 

  44. Kurucz, R. L. SYNTHE Spectrum Synthesis Programs and Line Data (Smithsonian Astrophysical Observatory, 1993).

  45. Sneden, C. A. Carbon and Nitrogen Abundances in Metal-Poor Stars. PhD thesis, Univ. of Texas at Austin (1973).

  46. Adibekyan, V. Z. et al. Chemical abundances of 1111 FGK stars from the HARPS GTO planet search program. Galactic stellar populations and planets. Astron. Astrophys. 545, A32 (2012).

    Article  Google Scholar 

  47. Adibekyan, V. et al. Identifying the best iron-peak and α-capture elements for chemical tagging: the impact of the number of lines on measured scatter. Astron. Astrophys. 583, A94 (2015).

    Article  Google Scholar 

  48. Blackwell, D. E. & Shallis, M. J. Stellar angular diameters from infrared photometry. Application to Arcturus and other stars; with effective temperatures. Mon. Not. R. Astron. Soc. 180, 177–191 (1977).

    Article  ADS  Google Scholar 

  49. Skrutskie, M. F. et al. The Two Micron All Sky Survey (2MASS). Astron. J. 131, 1163–1183 (2006).

    Article  ADS  Google Scholar 

  50. Wright, E. L. et al. The Wide-field Infrared Survey Explorer (WISE): mission description and initial on-orbit performance. Astron. J. 140, 1868–1881 (2010).

    Article  ADS  Google Scholar 

  51. Castelli, F. & Kurucz, R. L. New grids of ATLAS9 model atmospheres. In Modelling of Stellar Atmospheres, Poster Contributions. Proc 210th Symposium of the International Astronomical Union held at Uppsala University, Uppsala, Sweden, 17-21 June, 2002 (eds Piskunov, N. et al.) A20 (Astronomical Society of the Pacific, 2003).

  52. Scuflaire, R. et al. CLÉS, Code Liégeois d’Évolution Stellaire. Astrophys. Space Sci. 316, 83–91 (2008).

    Article  ADS  Google Scholar 

  53. Marigo, P. et al. A new generation of PARSEC-COLIBRI stellar isochrones including the TP-AGB phase. Astrophys. J. 835, 77 (2017).

    Article  ADS  Google Scholar 

  54. Asplund, M., Grevesse, N., Sauval, A. J. & Scott, P. The chemical composition of the sun. Annu. Rev. Astron. Astrophys. 47, 481–522 (2009).

    Article  ADS  Google Scholar 

  55. Iglesias, C. A. & Rogers, F. J. Updated OPAL opacities. Astrophys. J. 464, 943 (1996).

    Article  ADS  Google Scholar 

  56. Irwin, A. W. FreeEOS: equation of state for stellar interiors calculations. Astrophysics Source Code Library ascl:1211.002 (2012).

  57. Adelberger, E. G. et al. Solar fusion cross sections. II. The pp chain and CNO cycles. Rev. Mod. Phys. 83, 195–246 (2011).

    Article  ADS  Google Scholar 

  58. Bonfanti, A., Ortolani, S., Piotto, G. & Nascimbeni, V. Revising the ages of planet-hosting stars. Astron. Astrophys. 575, A18 (2015).

    Article  ADS  Google Scholar 

  59. Bonfanti, A., Ortolani, S. & Nascimbeni, V. Age consistency between exoplanet hosts and field stars. Astron. Astrophys. 585, A5 (2016).

    Article  ADS  Google Scholar 

  60. Caffau, E., Ludwig, H.-G., Steffen, M., Freytag, B. & Bonifacio, P. Solar chemical abundances determined with a CO5BOLD 3D model atmosphere. Sol. Phys. 268, 255–269 (2011).

    Article  ADS  Google Scholar 

  61. Cyburt, R. H. et al. The JINA REACLIB database: its recent updates and impact on type-I X-ray bursts. Astrophys. J. Suppl. 189, 240–252 (2010).

    Article  ADS  Google Scholar 

  62. Seaton, M. J. Opacity Project data on CD for mean opacities and radiative accelerations. Mon. Not. R. Astron. Soc. 362, L1–L3 (2005).

    Article  ADS  Google Scholar 

  63. Marigo, P. & Aringer, B. Low-temperature gas opacity. ÆSOPUS: a versatile and quick computational tool. Astron. Astrophys. 508, 1539–1569 (2009).

    Article  ADS  Google Scholar 

  64. Ecuvillon, A., Israelian, G., Pont, F., Santos, N. C. & Mayor, M. Kinematics of planet-host stars and their relation to dynamical streams in the solar neighbourhood. Astron. Astrophys. 461, 171–182 (2007).

    Article  ADS  Google Scholar 

  65. Kreidberg, L. batman: BAsic Transit Model cAlculatioN in Python. Publ. Astron. Soc. Pac. 127, 1161 (2015).

    Article  ADS  Google Scholar 

  66. Fulton, B. J., Petigura, E. A., Blunt, S. & Sinukoff, E. RadVel: The Radial Velocity Modeling Toolkit. Publ. Astron. Soc. Pac. 130, 044504 (2018).

    Article  ADS  Google Scholar 

  67. Espinoza, N. Efficient joint sampling of impact parameters and transit depths in transiting exoplanet light curves. Res. Not. Am. Astron. Soc. 2, 209 (2018).

    ADS  Google Scholar 

  68. Kipping, D. M. Efficient, uninformative sampling of limb darkening coefficients for two-parameter laws. Mon. Not. R. Astron. Soc. 435, 2152–2160 (2013).

    Article  ADS  Google Scholar 

  69. Foreman-Mackey, D., Agol, E., Angus, R. & Ambikasaran, S. Fast and scalable Gaussian process modeling with applications to astronomical time series. Astron. J. 154, 220 (2017).

    Article  ADS  Google Scholar 

  70. Ambikasaran, S., Foreman-Mackey, D., Greengard, L., Hogg, D. W. & O’Neil, M. Fast direct methods for Gaussian processes. IEEE Trans. Pattern Anal. Machine Intell. 38, 252–265 (2015).

    Article  ADS  Google Scholar 

  71. Trotta, R. Bayes in the sky: Bayesian inference and model selection in cosmology. Contemp. Phys. 49, 71–104 (2008).

    Article  ADS  Google Scholar 

  72. Barros, S. C. C. et al. Improving transit characterisation with Gaussian process modelling of stellar variability. Astron. Astrophys. 634, A75 (2020).

    Article  Google Scholar 

  73. Harvey, J. High-resolution helioseismology. In Future Missions in Solar, Heliospheric & Space Plasma Physics. Proc. ESA Workshop held in Garmisch-Partenkirchen, Germany, April 30–May 3, 1985 (eds Rolfe, E. & Battrick, B.) 199 (ESA, 1985).

  74. Kallinger, T. et al. The connection between stellar granulation and oscillation as seen by the Kepler mission. Astron. Astrophys. 570, A41 (2014).

    Article  Google Scholar 

  75. Lissauer, J. J. et al. Architecture and dynamics of Kepler’s candidate multiple transiting planet systems. Astrophys. J. Suppl. 197, 8 (2011).

    Article  ADS  Google Scholar 

  76. Miralda-Escudé, J. Orbital perturbations of transiting planets: a possible method to measure stellar quadrupoles and to detect Earth-mass planets. Astrophys. J. 564, 1019–1023 (2002).

    Article  ADS  Google Scholar 

  77. Agol, E., Steffen, J., Sari, R. & Clarkson, W. On detecting terrestrial planets with timing of giant planet transits. Mon. Not. R. Astron. Soc. 359, 567–579 (2005).

    Article  ADS  Google Scholar 

  78. Holman, M. J. & Murray, N. W. The use of transit timing to detect terrestrial-mass extrasolar planets. Science 307, 1288–1291 (2005).

    Article  ADS  Google Scholar 

  79. Fabrycky, D. C. et al. Architecture of Kepler’s multi-transiting systems. II. New investigations with twice as many candidates. Astrophys. J. 790, 146 (2014).

    Article  ADS  Google Scholar 

  80. Winn, J. N. & Fabrycky, D. C. The occurrence and architecture of exoplanetary systems. Annu. Rev. Astron. Astrophys. 53, 409–447 (2015).

    Article  ADS  Google Scholar 

  81. Borsato, L. et al. TRADES: a new software to derive orbital parameters from observed transit times and radial velocities. Revisiting Kepler-11 and Kepler-9. Astron. Astrophys. 571, A38 (2014).

    Article  Google Scholar 

  82. Malavolta, L. et al. The Kepler-19 system: a thick-envelope super-Earth with two Neptune-mass companions characterized using radial velocities and transit timing variations. Astron. J. 153, 224 (2017).

    Article  ADS  Google Scholar 

  83. Borsato, L. et al. HARPS-N radial velocities confirm the low densities of the Kepler-9 planets. Mon. Not. R. Astron. Soc. 484, 3233–3243 (2019).

    Article  ADS  Google Scholar 

  84. Hara, N. C., Boué, G., Laskar, J. & Correia, A. C. M. Radial velocity data analysis with compressed sensing techniques. Mon. Not. R. Astron. Soc. 464, 1220–1246 (2017).

    Article  ADS  Google Scholar 

  85. Dumusque, X. et al. Radial-velocity fitting challenge. II. First results of the analysis of the data set. Astron. Astrophys. 598, A133 (2017).

    Article  Google Scholar 

  86. Chen, J. & Kipping, D. Probabilistic forecasting of the masses and radii of other worlds. Astrophys. J. 834, 17 (2017).

    Article  ADS  Google Scholar 

  87. Cincotta, P. & Simó, C. Conditional entropy. Celest. Mech. Dyn. Astron. 73, 195–209 (1999).

    Article  ADS  MATH  Google Scholar 

  88. Cincotta, P. M. & Simó, C. Simple tools to study global dynamics in non-axisymmetric galactic potentials—I. Astron. Astrophys. Suppl. Ser. 147, 205–228 (2000).

    Article  ADS  Google Scholar 

  89. Cincotta, P. M., Giordano, C. M. & Simó, C. Phase space structure of multi-dimensional systems by means of the mean exponential growth factor of nearby orbits. Physica D 182, 151–178 (2003).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  90. Hinse, T. C., Christou, A. A., Alvarellos, J. L. A. & Goździewski, K. Application of the MEGNO technique to the dynamics of Jovian irregular satellites. Mon. Not. R. Astron. Soc. 404, 837–857 (2010).

    Article  ADS  Google Scholar 

  91. Jenkins, J. S. et al. GJ 357: a low-mass planetary system uncovered by precision radial velocities and dynamical simulations. Mon. Not. R. Astron. Soc. 490, 5585–5595 (2019).

    Article  ADS  Google Scholar 

  92. Pozuelos, F. J. et al. GJ 273: on the formation, dynamical evolution, and habitability of a planetary system hosted by an M dwarf at 3.75 parsec. Astron. Astrophys. 641, A23 (2020).

    Article  Google Scholar 

  93. Rein, H. & Liu, S.-F. REBOUND: an open-source multi-purpose N-body code for collisional dynamics. Astron. Astrophys. 537, A128 (2012).

    Article  ADS  Google Scholar 

  94. Rein, H. & Tamayo, D. whfast: a fast and unbiased implementation of a symplectic Wisdom–Holman integrator for long-term gravitational simulations. Mon. Not. R. Astron. Soc. 452, 376–388 (2015).

    Article  ADS  Google Scholar 

  95. Mignard, F. The evolution of the lunar orbit revisited. I. Moon Planets 20, 301–315 (1979).

    Article  ADS  MATH  Google Scholar 

  96. Hut, P. Tidal evolution in close binary systems. Astron. Astrophys. 99, 126–140 (1981).

    ADS  MATH  Google Scholar 

  97. Eggleton, P. P., Kiseleva, L. G. & Hut, P. The equilibrium tide model for tidal friction. Astrophys. J. 499, 853–870 (1998).

    Article  ADS  Google Scholar 

  98. Neron de Surgy, O. & Laskar, J. On the long term evolution of the spin of the Earth. Astron. Astrophys. 318, 975–989 (1997).

    ADS  Google Scholar 

  99. Demory, B. O. et al. A super-Earth and a sub-Neptune orbiting the bright, quiet M3 dwarf TOI-1266. Astron. Astrophys. 642, A49 (2020).

    Article  Google Scholar 

  100. Bolmont, E. et al. Impact of tides on the transit-timing fits to the TRAPPIST-1 system. Astron. Astrophys. 635, A117 (2020).

    Article  Google Scholar 

  101. Leconte, J., Chabrier, G., Baraffe, I. & Levrard, B. Is tidal heating sufficient to explain bloated exoplanets? Consistent calculations accounting for finite initial eccentricity. Astron. Astrophys. 516, A64 (2010).

    Article  ADS  Google Scholar 

  102. Nielsen, L. D. et al. Mass determinations of the three mini-Neptunes transiting TOI-125. Mon. Not. R. Astron. Soc. 492, 5399–5412 (2020).

    Article  ADS  Google Scholar 

  103. Blanco-Cuaresma, S. & Bolmont, E. Studying tidal effects in planetary systems with Posidonius. A N-body simulator written in Rust. In EWASS Special Session 4 (2017): Star–Planet Interactions (EWASS-SS4-2017) (eds Bolmont, E. & Blanco-Cuaresma, S.) https://doi.org/10.5281/zenodo.1095095 (2017).

  104. Bolmont, E., Raymond, S. N., Leconte, J., Hersant, F. & Correia, A. C. M. Mercury-T: a new code to study tidally evolving multiplanet systems. Applications to Kepler-62. Astron. Astrophys. 583, A116 (2015).

    Article  ADS  Google Scholar 

  105. Ogilvie, G. I. & Lin, D. N. C. Tidal dissipation in rotating giant planets. Astrophys. J. 610, 477–509 (2004).

    Article  ADS  Google Scholar 

  106. Pereira, F. et al. Gaussian process modelling of granulation and oscillations in red giant stars. Mon. Not. R. Astron. Soc. 489, 5764–5774 (2019).

    Article  ADS  Google Scholar 

  107. Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: the MCMC Hammer. Publ. Astron. Soc. Pac. 125, 306 (2013).

    Article  ADS  Google Scholar 

  108. Mathur, S. et al. Granulation in red giants: observations by the Kepler mission and three-dimensional convection simulations. Astrophys. J. 741, 119 (2011).

    Article  ADS  Google Scholar 

  109. Pallé, P. L. et al. The Sun as a star: background, intensity and velocity, power spectra and convection. In Stellar Structure: Theory and Test of Connective Energy Transport (eds Gimenez, A. et al.) 297 (Astronomical Society of the Pacific, 1999).

  110. Cubillos, P. et al. On correlated-noise analyses applied to exoplanet light curves. Astron. J. 153, 3 (2017).

    Article  ADS  Google Scholar 

  111. Mortier, A. et al. K2-111: an old system with two planets in near-resonance. Mon. Not. R. Astron. Soc. 499, 5004–5021 (2020).

    Article  ADS  Google Scholar 

  112. Haldemann, J., Alibert, Y., Mordasini, C. & Benz, W. AQUA: a collection of H2O equations of state for planetary models. Astron. Astrophys. 643, A105 (2020).

    Article  ADS  Google Scholar 

  113. Hakim, K. et al. A new ab initio equation of state of hcp-Fe and its implication on the interior structure and mass–radius relations of rocky super-Earths. Icarus 313, 61–78 (2018).

    Article  ADS  Google Scholar 

  114. Sotin, C., Grasset, O. & Mocquet, A. Mass–radius curve for extrasolar Earth-like planets and ocean planets. Icarus 191, 337–351 (2007).

    Article  ADS  Google Scholar 

  115. Lopez, E. D. & Fortney, J. J. Understanding the mass–radius relation for sub-Neptunes: radius as a proxy for composition. Astrophys. J. 792, 1 (2014).

    Article  ADS  Google Scholar 

  116. Thiabaud, A. et al. From stellar nebula to planets: the refractory components. Astron. Astrophys. 562, A27 (2014).

    Article  Google Scholar 

  117. Marboeuf, U., Thiabaud, A., Alibert, Y., Cabral, N. & Benz, W. From planetesimals to planets: volatile molecules. Astron. Astrophys. 570, A36 (2014).

    Article  ADS  Google Scholar 

  118. Wright, N. J., Drake, J. J., Mamajek, E. E. & Henry, G. W. The stellar-activity–rotation relationship and the evolution of stellar dynamos. Astrophys. J. 743, 48 (2011).

    Article  ADS  Google Scholar 

  119. Tu, L., Johnstone, C. P., Güdel, M. & Lammer, H. The extreme ultraviolet and X-ray Sun in time: high-energy evolutionary tracks of a solar-like star. Astron. Astrophys. 577, L3 (2015).

    Article  ADS  Google Scholar 

  120. Mamajek, E. E. & Hillenbrand, L. A. Improved age estimation for solar-type dwarfs using activity–rotation diagnostics. Astrophys. J. 687, 1264–1293 (2008).

    Article  ADS  Google Scholar 

  121. Pizzolato, N., Maggio, A., Micela, G., Sciortino, S. & Ventura, P. The stellar activity–rotation relationship revisited: dependence of saturated and non-saturated X-ray emission regimes on stellar mass for late-type dwarfs. Astron. Astrophys. 397, 147–157 (2003).

    Article  ADS  Google Scholar 

  122. Sanz-Forcada, J. et al. Estimation of the XUV radiation onto close planets and their evaporation. Astron. Astrophys. 532, A6 (2011).

    Article  Google Scholar 

  123. Choi, J. et al. Mesa Isochrones and Stellar Tracks (MIST). I. Solar-scaled models. Astrophys. J. 823, 102 (2016).

    Article  ADS  Google Scholar 

  124. Dotter, A. MESA Isochrones and Stellar Tracks (MIST) 0: methods for the construction of stellar isochrones. Astrophys. J. Suppl. 222, 8 (2016).

    Article  ADS  Google Scholar 

  125. Kubyshkina, D. et al. Grid of upper atmosphere models for 1–40 M planets: application to CoRoT-7 b and HD 219134 b,c. Astron. Astrophys. 619, A151 (2018).

    Article  Google Scholar 

  126. Kubyshkina, D. et al. Overcoming the limitations of the energy-limited approximation for planet atmospheric escape. Astrophys. J. Lett. 866, L18 (2018).

    Article  ADS  Google Scholar 

  127. Johnstone, C. P., Güdel, M., Brott, I. & Lüftinger, T. Stellar winds on the main-sequence. II. The evolution of rotation and winds. Astron. Astrophys. 577, A28 (2015).

    Article  ADS  Google Scholar 

  128. Louie, D. R. et al. Simulated JWST/NIRISS transit spectroscopy of anticipated TESS planets compared to select discoveries from space-based and ground-based surveys. Publ. Astron. Soc. Pac. 130, 044401 (2018).

    Article  ADS  Google Scholar 

  129. Beichman, C. et al. Observations of transiting exoplanets with the James Webb Space Telescope (JWST). Publ. Astron. Soc. Pac. 126, 1134 (2014).

    Article  ADS  Google Scholar 

  130. Batalha, N. E., Lewis, N. K., Line, M. R., Valenti, J. & Stevenson, K. Strategies for constraining the atmospheres of temperate terrestrial planets with JWST. Astrophys. J. Lett. 856, L34 (2018).

    Article  ADS  Google Scholar 

  131. Schlawin, E. et al. Two NIRCam channels are better than one: how JWST can do more science with NIRCam’s short-wavelength dispersed Hartmann sensor. Publ. Astron. Soc. Pac. 129, 015001 (2017).

    Article  ADS  Google Scholar 

  132. Ito, Y. et al. Theoretical emission spectra of atmospheres of hot rocky super-Earths. Astrophys. J. 801, 144 (2015).

    Article  ADS  Google Scholar 

  133. Allart, R. et al. Spectrally resolved helium absorption from the extended atmosphere of a warm Neptune-mass exoplanet. Science 362, 1384–1387 (2018).

    Article  ADS  Google Scholar 

  134. Nortmann, L. et al. Ground-based detection of an extended helium atmosphere in the Saturn-mass exoplanet WASP-69b. Science 362, 1388–1391 (2018).

    Article  ADS  Google Scholar 

  135. Bourrier, V. et al. Hubble PanCET: an extended upper atmosphere of neutral hydrogen around the warm Neptune GJ 3470b. Astron. Astrophys. 620, A147 (2018).

    Article  Google Scholar 

  136. Benneke, B. et al. A sub-Neptune exoplanet with a low-metallicity methane-depleted atmosphere and Mie-scattering clouds. Nat. Astron. 3, 813–821 (2019).

    Article  ADS  Google Scholar 

  137. Palle, E. et al. A He i upper atmosphere around the warm Neptune GJ 3470 b. Astron. Astrophys. 638, A61 (2020).

    Article  Google Scholar 

  138. Jura, M. An observational signature of evolved oceans on extrasolar terrestrial planets. Astrophys. J. Lett. 605, L65–L68 (2004).

    Article  ADS  Google Scholar 

  139. Ehrenreich, D. et al. A giant comet-like cloud of hydrogen escaping the warm Neptune-mass exoplanet GJ 436b. Nature 522, 459–461 (2015).

    Article  ADS  Google Scholar 

  140. Cloutier, R. et al. Characterization of the L 98-59 multi-planetary system with HARPS. Mass characterization of a hot super-Earth, a sub-Neptune, and a mass upper limit on the third planet. Astron. Astrophys. 629, A111 (2019).

    Article  Google Scholar 

  141. Snellen, I. A. G., de Kok, R. J., de Mooij, E. J. W. & Albrecht, S. The orbital motion, absolute mass and high-altitude winds of exoplanet HD209458b. Nature 465, 1049–1051 (2010).

    Article  ADS  Google Scholar 

  142. Allart, R. et al. Search for water vapor in the high-resolution transmission spectrum of HD 189733b in the visible. Astron. Astrophys. 606, A144 (2017).

    Article  Google Scholar 

  143. Tremaine, S., Touma, J. & Namouni, F. Satellite dynamics on the Laplace surface. Astron. J. 137, 3706–3717 (2009).

    Article  ADS  Google Scholar 

  144. Charnoz, S., Canup, R. M., Crida, A. & Dones, L. in Planetary Ring Systems (eds Tiscareno, M. S. & Murray, C. D.) 517–538 (Cambridge Univ. Press, 2018).

  145. Burns, J. A., Hamilton, D. P. & Showalter, M. R. in Interplanetary Dust (eds Grün E. et al.) 641–725 (Springer, 2001).

  146. Goldreich, P. & Soter, S. Q in the Solar System. Icarus 5, 375–389 (1966).

    Article  ADS  Google Scholar 

  147. Zeng, L. et al. Growth model interpretation of planet size distribution. Proc. Natl Acad. Sci. USA 116, 9723–9728 (2019).

    Article  ADS  Google Scholar 

  148. Astropy Collaboration et al. Astropy: a community Python package for astronomy. Astron. Astrophys. 558, A33 (2013).

  149. Astropy Collaboration et al. The Astropy Project: building an open-science project and status of the v2.0 core package. Astron. J. 156, 123 (2018).

  150. Harris, C. R. et al. Array programming with NumPy. Nature 585, 357–362 (2020).

    Article  ADS  Google Scholar 

  151. Virtanen, P. et al. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat. Methods 17, 261–272 (2020).

    Article  Google Scholar 

  152. Hunter, J. D. Matplotlib: a 2D graphics environment. Comput. Sci. Eng. 9, 90–95 (2007).

    Article  Google Scholar 

  153. Foreman-Mackey, D. corner.py: scatterplot matrices in Python. J. Open Source Softw. 1, 24 (2016).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

CHEOPS is a European Space Agency (ESA) mission in partnership with Switzerland with important contributions to the payload and the ground segment from Austria, Belgium, France, Germany, Hungary, Italy, Portugal, Spain, Sweden and the United Kingdom. The Swiss participation in CHEOPS has been supported by the Swiss Space Office in the framework of PRODEX and the Activités Nationales Complémentaires and the Universities of Bern and Geneva as well as the NCCR PlanetS and the Swiss National Science Foundation. The MOC activities have been supported by ESA contract 4000124370. S.C. acknowledges financial support by LabEx UnivEarthS (ANR-10-LABX-0023 and ANR-18-IDEX-0001). This work was supported by FCT (Fundação para a Ciência e a Tecnologia) through national funds and by FEDER (Fundo Europeu de Desenvolvimento Regional) through COMPETE2020—Programa Operacional Competitividade e Internacionalização with these grants: UID/FIS/04434/2019; UIDB/04434/2020; UIDP/04434/2020; PTDC/FIS-AST/32113/2017 and POCI-01-0145-FEDER-032113; PTDC/FIS-AST/28953/2017 and POCI-01-0145-FEDER-028953; PTDC/FIS-AST/28987/2017 and POCI-01-0145-FEDER-028987. S.C.C.B., S.G.S. and V.A. acknowledge support from FCT through contracts IF/01312/2014/CP1215/CT0004, CEECIND/00826/2018, POPH/FSE (EC) and IF/00650/2015/CP1273/CT0001. O.D.S.D. is supported in the form of a work contract (DL 57/2016/CP1364/CT0004) with national funds through FCT. M.J.H. acknowledges the support of the Swiss National Fund under grant 200020_172746. A.D. and D.E. acknowledge support from the European Research Council under the European Union’s Horizon 2020 research and innovation programme (project Four Aces; grant agreement 724427). S.H. acknowledges CNES funding through grant 837319. The Spanish scientific participation in CHEOPS has been supported by the Spanish Ministry of Science and Innovation and the European Regional Development Fund through grants ESP2016-80435-C2-1-R, ESP2016-80435-C2-2-R, ESP2017-87676-C5-1-R, PGC2018-098153-B-C31, PGC2018-098153-B-C33 and MDM-2017-0737 Unidad de Excelencia María de Maeztu–Centro de Astrobiología (INTA-CSIC), as well as by the Generalitat de Catalunya/CERCA programme. The Belgian participation in CHEOPS has been supported by the Belgian Federal Science Policy Office in the framework of the PRODEX Programme of the ESA under contract PEA 4000131343, and by the University of Liège through an ARC grant for Concerted Research Actions financed by the Wallonia–Brussels Federation. L.D. is an FRS-FNRS Postdoctoral Researcher. M. Gillon is an FRS–FNRS Senior Research Associate. V.V.G. is an FRS–FNRS Research Associate. M.L. acknowledges support from the Austrian Research Promotion Agency (FFG) under project 859724 ‘GRAPPA’. B.-O.D. acknowledges support from the Swiss National Science Foundation (PP00P2-190080). S. Salmon has received funding from the European Research Council under the European Union’s Horizon 2020 research and innovation programme (grant agreement 833925, project STAREX). G.M.S. acknowledges funding from the Hungarian National Research, Development and Innovation Office (NKFIH) grant GINOP-2.3.2-15-2016-00003 and K-119517. For Italy, CHEOPS activities have been supported by the Italian Space Agency, under the programmes ASI-INAF 2013-016-R.0 and ASI-INAF 2019-29-HH.0. L.B., G.P., I.P., G.S. and V.N. acknowledge funding support from the Italian Space Agency (ASI) regulated by ‘Accordo ASI-INAF 2013-016-R.0 del 9 luglio 2013 e integrazione del 9 luglio 2015’. A.C.C. and T.G.W. acknowledge support from STFC consolidated grant ST/M001296/1. D.G., X.B., S.C., M.F. and J.L. acknowledge their roles as ESA-appointed CHEOPS science team members. We thank S. R. Kane for sharing some RV data before their publication and L. D. Nielsen for helping to plan the CHEOPS observations on the basis of her analysis of the TESS data. We also thank M. Cretignier for his independent analysis of the HARPS RV data.

Author information

Authors and Affiliations

Authors

Contributions

L.D. led the data analysis, with support from L.B., M.J.H., S.H., A. Brandeker, A.D., P.G., N.H., M.O. and T.G.W. L.D. also coordinated the interpretation of the results and writing of the manuscript. D.E. designed and coordinated, with support from A.D., the CHEOPS Early Science programme, within which these observations took place. Y.A. led the analysis of the internal structures, with support from J.H., A. Bonfanti and L.F. performed the atmospheric evolution simulations. L.B. carried out the TTV simulations. F.J.P. studied the orbital stability and tidal interactions. S. Salmon, V.A., A. Bonfanti, S.G.S., V.V.G. and T.G.W. performed the stellar characterization. S. Sulis analysed the stellar granulation and oscillations. V.B. assessed the potential of the system for atmospheric characterization. S.C. evaluated the possibility of ν2 Lupi d having moons or rings. The other authors provided key contributions to the development of the CHEOPS mission. All authors read and commented on the manuscript, and helped with its revision.

Corresponding author

Correspondence to Laetitia Delrez.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Astronomy thanks Maximilian Günther and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Tables 1–5 and Figs. 1–15.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Delrez, L., Ehrenreich, D., Alibert, Y. et al. Transit detection of the long-period volatile-rich super-Earth ν2 Lupi d with CHEOPS. Nat Astron 5, 775–787 (2021). https://doi.org/10.1038/s41550-021-01381-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41550-021-01381-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing