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Generalized leaky integrate-and-fire models
classify multiple neuron types
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There is a high diversity of neuronal types in the mammalian neocortex. To facilitate con-
struction of system models with multiple cell types, we generate a database of point models
associated with the Allen Cell Types Database. We construct a set of generalized leaky
integrate-and-fire (GLIF) models of increasing complexity to reproduce the spiking behaviors
of 645 recorded neurons from 16 transgenic lines. The more complex models have an
increased capacity to predict spiking behavior of hold-out stimuli. We use unsupervised
methods to classify cell types, and find that high level GLIF model parameters are able to
differentiate transgenic lines comparable to electrophysiological features. The more complex
model parameters also have an increased ability to differentiate between transgenic lines.
Thus, creating simple models is an effective dimensionality reduction technique that enables
the differentiation of cell types from electrophysiological responses without the need for a
priori-defined features. This database will provide a set of simplified models of multiple cell
types for the community to use in network models.
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he problem of understanding the complexity of the brain

has been central to neuroscience. The classification of

neurons into cell types is a conceptual simplification
intended to reduce this complexity. To this end, a large-scale
effort at the Allen Institute for Brain Science has focused on
characterizing the diversity of cell types in the primary visual
cortex of the adult mouse using electrophysiology, morphological
reconstructions, connectivity, and modeling in one standardized
effort. This has resulted in the Allen Cell Types Database! that is
publicly and freely available at http://celltypes.brain-map.org. It
includes both morphological and electrophysiological data of
genetically identified neurons mapped to the common coordinate
framework?. Morphologically and biophysically detailed as well as
simple generalized leaky integrate-and-fire point neuron models
have been generated! to reproduce cellular data produced under
highly standardized conditions.

Creating simplified models is a way to reduce the complexity of
the brain to its most fundamental mechanisms. In addition to the
benefits of clarifying mechanisms for single-neuron behavior,
single-neuron models can be used in larger network models that
attempt to explain network computation. Thus, many models of a
wide range of complexity have been developed to describe and
recreate various aspects of neuronal behavior’. For an in-depth
characterization of the diversity of neuron models, see the
review®, and for their capacity to reproduce spike times see ref. °.

At the high end of the complexity spectrum, are the mor-
phologically and biophysically realistic Hodgkin—Huxley-like
models®®. Their strength lies in their capacity to map between
multiple observables: morphology, electrophysiology, intracellular
calcium concentration, and levels of expression and patterns of
distributions of ionic currents. Although adding complexity to a
model may increase the ability of that model to recreate certain
behavior, finding the right parameters for complex models
becomes a challenge®. Furthermore, the computational power
needed to simulate sophisticated neural models can be quite
large!?. Therefore, ideally one would use a computationally
minimal model adequate to recreate and to understand the
desired behavior!!. One simplification that significantly reduces
model complexity is to represent the entire dendritic tree, soma,
and axonal hillock by a single compartment, while maintaining
the dynamics of the individual conductances®. This approxima-
tion is especially warranted when characterizing neurons via
somatic current injection and voltage recording as is done in the
Allen Cell Types Database.

Here we report on the point neuron modeling portion of the
Allen Cell Types Database!. In this study, we aimed to identify
simple models that could both effectively reduce the biological
space to a set of useful parameters for cell type classification and
recreate spiking behavior for a diverse set of neurons for use in
network models. In the adult cortex, the majority of commu-
nication between neurons is via chemical synapses from axons
onto dendritic or somatic membrane (with a fraction of inhibi-
tory neurons coupled by gap junctions as notable exceptions).
The response of these non-NMDA synapses is generally depen-
dent only on the action potentials generated by the presynaptic
cell. Thus, we focus on reproducing the temporal properties of
spike trains using computationally compact point neuron models.
This spike-train focus allows us to generate models which are
much simpler than biophysically detailed models but still capture
a substantial amount of their complexity.

An extensive amount of work has gone into constructing
simple models that can accurately reproduce the spiking behavior
of neurons®. Yet many large network modeling papers use tra-
ditional leaky integrate and fire models (for example, ref. 12). We
wanted to understand how much may be gained (or lost) in
adding complexity to such models. Thus, we characterized how
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adding phenomenological complexity to a model influences its
ability to reproduce neuronal spike times and classify cells.

We used a family of models we refer to as generalized leaky
integrate and fire (GLIF) models. This family of models starts
with the classic leaky integrate and fire model'> and then
incorporates additional phenomenological mechanisms similar to
other studies. These mechanisms are fit directly from the elec-
trophysiological data and loosely represent slow activation/inac-
tivation of voltage-gated ion channels and long-term effects of ion
channel currents. Although there are many simplified and com-
putationally compact models'* available in the literature, the
GLIF framework has a combination of advantages ideal for this
study. First, GLIFs have been shown to be able to recreate a wide
variety of biologically realistic behavior'>. Second, the dynamical
equations of the GLIF model are linear, and various versions have
been previously fit to biological data'®>=2°, In addition, phenom-
enological mechanisms loosely representing real biological
mechanisms can be added to the LIF model that can easily be
interpreted and potentially could be mapped to biological
mechanisms. Other simplified non-linear models such as those of
Izhikevich?1?? can be difficult to fit to data®® and are less phe-
nomenologically interpretable. Furthermore, Mensi et al.' have
shown the potential of GLIF models to classify cell types by
identifying three cortical neuronal types using a linear classifier.

Here we expand on previous work, and apply GLIF-fitting tools
to a large-scale database of neuronal responses and demonstrate
the striking ability of GLIF models to both reproduce spiking
behavior and classify a wide variety of transgenic lines. We show:
(1) The traditional LIF model (GLIF,;) was able to reproduce 70%
of the spike times within a resolution of 10 ms on an in vivo-like
stimulus for a large set of biological neurons. Including additional
mechanisms increased the ability of the models to recreate spike
times by almost 10%. (2) Inhibitory neurons can be better fit than
excitatory neurons, and we present evidence that inhibitory
neurons are more stereotypical than excitatory neurons. (3)
Inhibitory and excitatory models require different mechanisms to
achieve the spike trains of neurons. (4) Increasing model com-
plexity by adding mechanisms fit from the voltage waveform does
not necessarily lead to increased performance in spiking behavior.
Furthermore, mechanisms that do not increase performance
independently can provide additional benefit when combined
with other mechanisms. (5) Parameters obtained from fitting
neurons with GLIF models are useful in classifying cell types:
higher level GLIF parameters are more effective at differentiating
cell types associated with transgenic lines than sub-threshold
electrophysiological features. (6) GLIF parameters can be com-
bined with spike-shape features for cell type classification.

We provide a large-scale database of point neuron models for
16 transgenic lines. We characterize the parameters of the GLIF
models associated with the different transgenic lines and illustrate
the neurons that best recreate the actual spike trains for each of
the transgenic lines.

Results

Model description. In GLIF models, the mechanisms are sepa-
rated by time scale: GLIF models aim to represent the slow linear
sub-threshold behavior of a neuron and recreate the spike times,
not the shape of the action potential caused by fast, non-linear ion
channels. Thus, none of the fast, non-linear processes associated
with the action potential itself are included directly in the
dynamics. However, some attributes of the spike, such as spike
width and voltage after a spike relative to voltage before a spike,
are accounted for in the reset rules which map the state before the
spike to the state thereafter (Supplementary Methods “Parameter
fitting and distributions” and Supplementary Fig. 1). Model
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Table 1 Description of model parameters and variables

Variables

Mechanism Symbol Variable
V(t) Membrane potential

ASC li(t) After-spike currents

reset (1) Spike-dependent threshold component

adapt. th. 0,(t) Voltage-dependent threshold component

Parameters

Mechanism Symbol Parameter Fit from Post hoc opt
C Capacitance Sub-threshold noise No
R Membrane resistance Sub-threshold noise No
E, Resting potential Resting V before noise No
Oy Instantaneous threshold Short square input Yes
ot Spike cut length All noise spikes No

reset f, Voltage fraction following spike All noise spikes No

reset sV Voltage addition following spike All noise spikes No

reset b Spike-induced threshold time constant Triple short square No

reset 60, Threshold addition following spike Triple short square No

ASC dl; After-spike current amplitudes Supra-threshold noise No

ASC k; After-spike current time constants Supra-threshold noise No

ASC f, Current fraction following spike Set to 1 No

adapt. th. a, Adaptation index of threshold Prespike V supra-thr. noise No

adapt. th. b, Voltage-induced threshold time constant Prespike V supra-thr. noise No

equations can be found in the “Methods” section of the main text
and the Supplementary Methods. Table 1 summarizes the model
parameters and variables.

The family of GLIF models is schematized in Fig. 1a. Examples
of model behavior are shown in Fig. 1b. A standard LIF model
was our starting point, progressing to more generalized leaky
integrate-and-fire models. In the standard LIF model (GLIF,
here), current injected into the cell causes the voltage to rise in a
linear fashion. When the voltage reaches a fixed threshold
(referred to as ©,, here) the model spikes and the threshold is
reset to the resting potential of the neuron.

The GLIF, model advances the GLIF; model by incorporating
more realistic reset rules (R) for voltage and threshold. The rapid
changes of the action potentials are followed by slower dynamics
which affect a neuron’s state. The voltage after a spike does not
reset to rest and the threshold does not remain at a fixed value.
This GLIF, model continues to assume that the spikes are
sufficiently similar such that a mapping between the voltage and
threshold state before and after a spike can be found. The specific
linear relationship of the voltage after the spike as a function of
the voltage before the spike is found directly from the
electrophysiological data (Supplementary Fig. 1). This relation-
ship also defines the width of a spike or the “refractory period”
which is implemented as a time in which the model cannot
produce another spike. In addition to the refractory period, it is
often more difficult to cause a neuron to spike again after a first
spike due to mechanisms such as the slow inactivation of voltage-
dependent currents which activate during the spike. This
difficulty in causing another spike is modeled as a rise in
threshold that decays after the spike and is again extracted
directly from the data (Supplementary Fig. 3).

Although GLIF models do not aim to recreate the shape of an
action potential caused by fast non-linear ion channel activation,
the GLIF; model does incorporate the longer term effects of ion
channels. Here we assume that ion channel currents have a
stereotyped activation following a spike, and we bundle all slow
ion-channel effects into a set of two after-spike currents (ASC)
with different time scales. These currents are again fit directly
from the data (see “Parameter fitting and distributions” in
the Supplementary Methods).
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The GLIF, model incorporates both reset rules of GLIF, and
the after-spike currents of GLIFs;.

Finally, slow depolarization can lead to partial inactivation of
the voltage-dependent sodium current which generates a spike. In
GLIF;5 we incorporate this mechanism into an adapting threshold
(AT) which is dependent on the membrane potential (see
“Parameter descriptions” in the Supplementary Methods).

Note that the number of variables increases from one (V(t)) for
GLIF, to two (V(¢), O4(t)) for GLIF,, etc., up to five for GLIFs (see
Table 2).

Data. Intracellular electrophysiological recordings were carried
out via a highly standardized process**. The data can be accessed
in the Allen Cell Types Database!. The data considered here
consists of in vitro electrophysiology data collected from 16 dif-
ferent labeled Cre-positive transgenic lines selective for different
types of neurons. The transgenic line panel of Fig. 2 summarizes
the properties of the different transgenic lines. Colors and short
hand names represent all transgenic line data throughout this
manuscript. In general, shades of red represent inhibitory trans-
genic lines and shades of blue represent excitatory lines. Excita-
tory neurons from each layer are identified using layer-selective
lines. For inhibitory neurons, cells are targeted across lamina
using lines selective for known neuronal subtypes?®. Cells from
each of the three major inhibitory subtypes (Pvalb (primarily
basket cells), Sst (primarily Martinotti cells), and Htr3a (diverse
morphologies)) are represented. Also included are transgenic
lines that enrich for subsets of inhibitory types: the Vip, Ndnf,
and Chat Cre lines (subtypes of Htr3a), Chrna2 (subtype of Sst),
and Nkx2.1 (subtype of Pvalb). All cell types recorded are from
young adult (P45 to P70) C57BL/6] mouse primary visual cortex.

Model performance. After model fitting and optimization
(see Supplementary Methods for details; see Fig. 3 for distribu-
tions of the fit parameters) on our set of training stimuli (Fig. 2;
see the “Stimulus” section of the Methods for details), we test
model performance on a “hold out” in vivo-like noise stimulus
not used for training (to ensure our models were not over fit).
Using hold-out data to evaluate model performance is the “gold
standard” for model selection. In the “Akaike Information Cri-
terion” section of the Supplementary Methods and
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Fig. 1 Five generalized leaky integrate-and-fire (GLIF) models consisting of different phenomenological mechanisms are fit to electrophysiological data. A
schematic describing the mechanisms is shown in a. Example data and models from two neurons of different transgenic lines are shown in b. For all models
the input is a current, lo(t), injected via a patch electrode illustrated in black at the top of b. Below the current are the voltage traces from four repeats of the
same stimulus (here colors represent the different responses to the repeated stimuli and do not adhere to the standard color scheme in the rest of the
manuscript). Below the biological data, the GLIF models are plotted. The output of the models is the trans-membrane potential, V(t), pictured in blue.

When V(t) reaches a threshold, ©® = O, + Os(t) + ©,(t), shown in dashed green, a spike is produced, illustrated by blue dots. Note that the shape of the
spike is not plotted as it is not fit by these models. Instead, after a refractory period, V(t) is reset to a value dependent on the specific model. The GLIF,
model is equivalent to the traditional LIF model with a refractory period where the model can not spike. This model contains one variable, V(t), and the
threshold is fixed to a value we refer to as @, GLIF, models include a second variable: a spike-induced threshold ©s(t) which is added to the baseline
threshold ©.. When the model spikes, @s(t), jumps up and then decays. Thus, after a spike, initially the total threshold is higher making it harder for the
model to reach threshold. GLIF5 includes V(t) and two variables corresponding to two spike initiated after spike currents, Ij(t), which have different time
constants and decay back to zero. The sum of the after-spike currents are illustrated in red. GLIF, combines GLIF, and GLIFs for a total of four variables.
GLIFs includes an additional threshold component ©,(t). Oy (t) is dependent on the voltage of the model. Scale bars represent all model plots (not the

amplitude of the current injection or biological voltage traces)

Supplementary Fig. 11, we also provide an Akaike Information
Criterion (AIC) measure (which follows the same trends) to
characterize the trade-off between complexity and model per-
formance of GLIF models on training data. We quantified per-
formance by how much of the temporal variance in the spike
times of the data can be explained by the model at a 10 ms
temporal scale (see Fig. 4 and “Evaluation of model spike times”
in the Supplementary Methods for details). Medians of explained
variance of all data can be viewed in Fig. 5 with corresponding
values in Table 3. We begin our analysis by testing if there are
overall differences between the GLIF model levels. A Friedman
test reports that there are overall differences with a p-value of
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1.83e—45. Thus, we continue with Wilcoxon sign-ranked tests
where p-values are corrected for multiple comparisons using the
Bejamini-Hochberg procedure. All p-values can viewed in Sup-
plementary Figs. 8, 9, and 10.

The progression of explained variance through the different
model levels demonstrates that different mechanisms are
important for achieving spiking behavior of inhibitory and
excitatory neurons. Overall GLIF, (equivalent to a leaky integrate
and fire model) had a surprisingly high explained variance of 70%
when all neurons were considered. Inhibitory neuron models
perform better then excitatory models: 75% versus 68%. The
introduction of reset rules in GLIF, decreases the performance of
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Table 2 Summary of GLIF models and results

Num. Variables Model parameters Parameters in clustering Explained Num.
cells variance clusters
At=10ms
GLIF, 645 V(t) R, C E, O, &t R, C E, O, 6t 70.2% 10
GLIF, 254 V(t), Os(t) R, C, E, O, 6t f, 8V, bs, 60, R, C, E, f, 6V, O, 5t 67.7% 15
GLIF3 645 V(t), h(t), I2(t) Rasc, C, El, O, 8t, ky, 8h, ko, 812 Rasc, C, Ey, O, 6t,8h/ki, 812 /k2 72.4% 18
GLIF, 254 V(t), Os(t) h(t), 2(t) Rasc, C EL, O, 8t fu, 8V, bs, Rasc, C, Ei, O, 8t, f,, 8V, 8h/ki, 6l2/ka  75.9% 16
50, ky, Sh, ko, 51>
GLIFs 253 V(t), Os(t) h(t), Rasc, C, E, O, 6t, f,, 8V, b, N/A: additional parameters are not 77.6% N/A
(1), O,(t) 80, ky, 8, ko, 615, a,, b, available for all 645 neurons.
All features 645 N/A N/A T Rir Viests linvesh's Vinresh's Voeak N/A 16
Vfasttroughvi‘l Vtroughjr up:downstroke’i', up:
downstroke*, sag, f-/ curve slope,
latency, max. burst index
Sub-thr 645 N/A N/A T Rir Vrestr IthreshTr VthreshAi‘: Vtrough*: sag, N/A 16
features f-I curve slope, latency, max. burst
index

features measured during a long square stimulus (Fig. 2)

The “Num. cells” column reports the number of cells for which a model was constructed or the paradigm was clustered. Note that for the GLIF models clustering was only performed on parameters that
were available for all 645 cells. Therefore, the “Parameters in clustering” list is a subset of the total “Model Parameters” available for any level. The variables for each model level are listed in the

“Variables” column. Note that resistance was fit along with after-spike currents in models where after-spike currents were implemented. R denotes the resistance fit without ASC and Rasc denotes the
resistance fit along with after-spike currents. GLIFs does not report clusters because there are no additional parameters available for all 645 neurons, i.e., it would be the same clustering paradigm as in
GLIF, as the only new parameters associated with GLIFs (a, and b,) are only fit for the reduced set of cells. We are unable to cluster on the time scales of every after-spike current alone as there were five
discrete possible values but only two were chosen for each neuron. Therefore, we cluster on the total charge deposited over short 81 /k; and long 61, /k, time scales (continuous numbers) for the model
levels that contain after-spike currents. The average explained variance at a time resolution of 10 ms for all neurons at each level is reported as well as the number of clusters that were found using the
aforementioned clustering parameters via the hierarchical clustering technique. As in Supplementary Tables 6 and 7, * denotes features measured during a short square stimulus, and 1 represents

the models for both excitatory (65%) and inhibitory (74%)
neurons. The introduction of after-spike currents alone in GLIF;
helps the inhibitory neurons (81%) but not the excitatory (68%)
neurons. To confirm that improvement of fitting between GLIF,
and GLIF; follow different trends for inhibitory and excitatory
neurons, we subtracted the pairwise explained variance ratio of
GLIF, from GLIF; models. We found that the distributions of
these differences for the excitatory and inhibitory neurons
are significantly different (p=1.35e-7, Mann—Whitney U;
Benjamini-Hochberg correction, family size=10), suggesting
that after-spike currents have different influence in inhibitory
and excitatory neurons. Interestingly, the inclusion of reset rules
with after-spike currents in GLIF, improves the performance of
both excitatory (72%) and inhibitory neurons (83%) even though
reset rules alone hurt performance. Please see the “Discussion”
section for a discourse on the influence of model complexity on
performance. Here again, the distribution of differences between
GLIF; and GLIF, are statistically different for inhibitory
and excitatory neurons (p=2.89e—4, Mann—Whitney U;
Benjamini—Hochberg correction, family size=10). Finally, the
addition of the adaptive threshold along with the after-spike
currents and reset rules provides an improvement for excitatory
cells (75%) but does little for inhibitory (84%) cells. Distributions
of differences of excitatory and inhibitory neurons differ with the
following values GLIF; and GLIFs: p=1.98e—5, GLIF, and GLIFs:
p=1.40e-2 (Mann—Whitney U; Benjamini-Hochberg correction,
family size =10).

We found it interesting that the addition of reset rules
measured directly from the data actually hindered the ability of
the GLIF, model to recreate spike times of the neural data. We
explored if there was a relationship between the ability of a model
to reproduce the sub-threshold behavior of the voltage waveform
and reproduce the neural spike times. When taking into account
all models, overall there is a correlation between the ability of a
model to reproduce the sub-threshold voltage and its ability to
reproduce spike times (please see the black regression line in
Supplementary Fig. 15). However, when considering the median
performance values describing the ability of the different model
levels to reproduce sub-threshold voltage and spike times
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(Supplementary Fig. 15), although GLIF, better reproduces sub-
threshold voltage than GLIF, and GLIF;, it does worse at
reproducing the spiking behavior. Thus, the ability of a model to
reproduce sub-threshold voltage does not necessarily translate
into better spike time performance.

There are several potential methodological and biological
explanations for the increased ability to fit inhibitory neurons
over excitatory neurons. It is possible that inhibitory neurons are
better optimized because they generally fire more and thus have
more data points to optimize (see the Supplementary Methods for
details). Alternatively, perhaps they are easier to fit because they
are more stereotypical than excitatory neurons. As described in
the “Parameter fitting and distributions” section of the Supple-
mentary Methods and Supplementary Fig. 1, we define spike cut
length as the post spike time at which a linear regression based on
the voltage before the spike minimizes the squared residuals of
the voltage after the spike. We use the standard error from this
spike cut length fit as a description of spike reproducibility.
Inhibitory neurons have shorter spike cut lengths than excitatory
neurons (median 2.7 versus 4.6 ms, respectively; p=1.10e-47,
Mann Whitney U), spike more frequently (a median of 84 versus
38 spikes per noise 1 stimuli, respectively; p=6.15e-35, Mann
Whitney U), and have more reproducible spikes (median
standard error 2.6e-2 and 5.7e-2, respectively; p=4.97e-39,
Mann Whitney U). Supplementary Fig. 4 shows there are
correlations between the explained variance ratio for each of
these three variables. To investigate the importance of these
factors in achieving a good model fit, we perform a multiple linear
regression (Python, statsmodels.regression.linear_model.OLS).
Spike cut length and number of spikes are good indicators of
how well a neuron will be fit (p-values are 2.80e—19 and 5.95¢-21,
respectively), whereas this measure of spike reproducibility is not
statistically important (p-value: 0.276).

It is likely that individual transgenic lines will have different
mechanisms most important for achieving their spiking behavior.
We do not draw any conclusions here due to a large number of
non-significant p-values between model levels for individual
transgenic lines (most likely due to the lower number of neurons
from individual transgenic lines in this study). Performance of
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Fig. 2 Overall, 645 different neurons from 16 transgenic lines containing all the required stimuli on the Allen Cell Types Database are considered in this
study. (Left) lllustrated colors correspond to the different transgenic lines in all figures. “n" describes the number of neurons for which the lowest level
model (GLIF;) could be generated. Transgenic lines can identify either or both inhibitory (1) or excitatory (E) cells, which reside in layer 1 (L1) through layer
6 (L6). Note that most Chrna2-Cre-positive neurons are inhibitory and thus are labeled here as inhibitory. (Right) A minimal set of stimuli were required for
training and testing different GLIF models. GLIF models were trained using a at least two repeats of pink noise stimuli (3 s each, 1/f distribution of power,
1-100 Hz) with amplitudes centered at 75, 100, and 125 percent of action potential threshold, b a short (3 ms) just supra-threshold pulse to fit the
instantaneous threshold, @, ¢ a long square (1) pulse just below threshold to estimate the intrinsic noise present in the voltage traces (used in the post
hoc optimization step), and d a series of three peri-threshold short pulse sets for any model with reset rules (GLIF,, GLIF4, and GLIFs). GLIF models were
then tested using a hold-out stimulus set e of at least two sweeps of a second pink noise stimuli generated in an identical manner to the training but
initialized with a different random seed. Representative data shown from an Htr3a-Cre-positive neuron (resting membrane potential (RMP) =67 mV) and a
Ctgf-Cre-positive neuron (RMP =-74 mV). Scale bar in a corresponds to 40 mV (a, e), 50 mV (b, d), or 20 mV (c)

individual transgenic lines can be viewed in Fig. 5 with
corresponding values in Table 3 and Supplementary Figs. 9 and 10.

Example neurons. Throughout the manuscript data and models
from two exemplary neurons are consistently shown as examples:
an Htr3a inhibitory neuron (specimen ID 474637203) and a Ctgf
pyramidal neuron (specimen ID 512322162).

To provide examples of models that do well reproducing the
spike times of the different transgenic cell lines, for each line we
select the model which has the highest explained variance from
neurons that have all five model levels. Example neurons are
labeled with stars in all figures and can be found on the website
via the following specimen IDs: Nr5al: 469704261 GLIFs, Cux2:
490376252 GLIF,, Ctgf: 512322162 GLIFs, Vip: 562535995 GLIFs,
Scnnla-Tg2: 490205998 GLIFs, Ntsrl: 490263438 GLIF,, Sst-
IRES: 313862134 GLIF,, Rbp4: 488380827 GLIFs, Scnnla-Tg3-
Cre: 323834998 GLIF;, Chrna2: 580895033 GLIF,, Pvalb:
477490421 GLIF,, Ndnf: 569623233 GLIFs, Nkx2.1: 581058351
GLIFs, Htr3a: 474637203 GLIFs, Chat: 518750800 GLIFs, Rorb:
467003163 GLIF;. Although these neurons are the best
performers, they may not be the most representative cells. Most
of these models have at least one parameter which lies outside the
5 to 95 percentiles for the trangenic line. To facilitate the choice of
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other good representative models, neurons that contain all GLIF
model levels and all model parameters within the 5 to 95
percentiles are available in Supplementary Table 1.

Clustering. After deriving parameters for each of the GLIF
models, we assessed how well these parameters could classify
neurons into putative types corresponding to transgenic lines. We
used two different clustering algorithms to identify trends that
were not method-specific. The first of these is an iterative binary
splitting method, using standard hierarchical clustering methods
(see the “Clustering” section of the Supplementary Methods for
details) to separate cells into groups in an iterative manner. We
show the results of the hierarchical clustering here in Figs. 6
and 7. We confirm the general trends from this analysis using a
second clustering method, affinity propagation®®, as shown in
Supplementary Figs. 12 and 14.

To compare different partitions of the cells, we use the adjusted
Rand index (ARD)? and the adjusted variation of information
(AVOI) metric?8. The adjusted Rand index is a corrected-for-
chance extension of the Rand Index, which measures the
probability that any pair of elements will belong to the same
cluster in different partitionings. A value of 1 indicates that the
data clusterings are exactly the same, whereas a value of 0

| DOI: 10.1038/541467-017-02717-4 | www.nature.com/naturecommunications


www.nature.com/naturecommunications

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-02717-4

ARTICLE

50
45|
40
35+
30+
25
20t
15
10 +

5
-90 -85 -80 -75 -70 -65 -60 -55

Measured AVO_ (mV)

Resting potential (mV)

[P N
7 A
4 ”:\E\‘;, ¥§

100

80

.
60 [*Sepe

401 T, o .
Frar-
20  Suret °

o .
%o o

6 8 10 12 14 16 18
50, (mV)

1/bg (ms)

Slope (mV/mS)

3 4 5 6 7 8 9 10

Q, (pC)

3.5

3.0
25
2.0
1.5

log,, (b,)

1.0
0.5

0.0
-0.2-0.10.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
a,/b,

Fig. 3 Slices from the parameter space fit from electrophysiological data. Detailed parameter fitting methodology (Fig. 2) is available in the Supplementary
Methods. Stars denote example neurons listed in the main text. a Resting potential is measured as the average voltage during rest before training noise
(noise 1) current is injected. The threshold relative to rest, AV, is measured by subtracting resting voltage from the threshold obtained from the supra-
threshold short square pulse. b The spike waveform is removed from the voltage trace by aligning all spikes and fitting a line to the voltage before and after
a spike. The best fit line within a window of 10 ms after spike initiation was chosen (Supplementary Fig. 1). This spike cut length is used in all models, and
voltage measurements before and after a spike are used to reset voltage in (GLIF,, GLIF4, and GLIFs). ¢ Capacitance and resistance are fit via linear
regression to sub-threshold voltage (Supplementary Fig. 2). The membrane time constant, = RC is plotted. d Total charges of the fast, Q;, and slow, Q,,
after-spike currents deposited each time there is a spike. @ The amplitude, as, and decay, b, of the spiking component of the threshold, Ay, (used in GLIF,,
GLIF,4, and GLIFs) is fit to the triple short square data set (Supplementary Fig. 3). f In the GLIFs, the threshold is influenced by the voltage of the neuron
according to (Equation 4). The two parameters of Eq. 4 are plotted here. Colors in all panels correspond to transgenic lines illustrated in Fig. 2

indicates that the clusterings are no different from what would be
expected by chance. The AVOI metric is an information-theoretic
value measuring the ability of one partitioning to predict the
other, as compared to shuffled-label data. A value of 0 indicates
that the clusterings are no different from what would be expected
by chance. The upper bound on the AVOI is dependent on the
number of elements in the clustering. Here the upper bound is
6.47. We show the ARI and AVOI from the hierarchical
clustering in the main text (Figs. 6 and 7). We show results from
affinity propagation in the Supplementary Figs. 12 and 14. The
variability in the performance of the binary splitting method via
bootstrapping is shown in Supplementary Fig. 17. As mentioned

NATURE COMMUNICATIONS| (2018)9:709

in the “Stimulus” section of the Methods, GLIF,, GLIF,, and
GLIF; require a stimulus that is not applied to all neurons (for
reasons independent of this study). To ensure a full data set for
clustering, we use only parameters that are available for all 645
cells. Table 2 describes the parameters used in each clustering
paradigm.

First, we assess how well the putative clusters agree with known
cell type information based on the transgenic lines from which
the cells were derived. This is an imperfect validation as it is
known that different transgenic lines may not perfectly
correspond to different cell types, as measured by transcrip-
tomics?®. The ARI and AVOI values for Cre lines compared to
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Injected current shown in black. Black rasters are spikes from recorded neurons to repeated current injections. Colored rasters correspond to the five
different, deterministic models. The current injection is 3 s long. As GLIF; and GLIF, do not have a spike frequency adaptation mechanism (implemented by
the summation of after-spike currents over many spikes in GLIF3), they have trouble reproducing simultaneously the firing patterns at multiple input
amplitudes. b Explained variance for the different model levels at different levels of time window resolution At. The black lines represent the explained
variance of the data (how well the neuron repeats its own spiking behavior). This trace would reach 100% if the spike times of the data were all exactly at
the same time in each repeated stimulus: the fact that they are not 100% reflects the intrinsic variation in the spike times within the experimental data. The
blue line illustrates the pairwise explained variance of the model with the data. Because the model can not be expected to explain the data better than the
data can explain itself, the red line is the ratio of the pairwise explained variance of the model (blue) and the data divided by the explained variance of the
data (black). This ratio value at a A t =10 ms time bin is used for the explained variance performance metric in the main text

transcriptomics found in a previous study?’, are 0.30 and 2.69,
respectively (AVOI upper bound was 6.86 in the cited study).
Nonetheless, we would expect some degree of relationship, as
broad classes of cells do tend to segregate by transgenic line.
Second, to further validate our results, we compare the clustering
obtained by GLIF parameters to the clustering obtained using
features extracted directly from electrophysiological traces. Here
we use two sets of features. In the first set, we cluster on 14
features that contain aspects of both sub-threshold and supra-
threshold spike-shape features. As GLIF neurons do not recreate
the shape of a spike, in the second set we start with the same set of
features but eliminate all features that describe the shape of the
action potential. See the “Electrophysiological features” section for
a brief description of the features used here; a more detailed
description can be found in ref. 24

The progression of the ability of the GLIF model parameters to
recapitulate segregation of cells by transgenic line is shown in
Fig. 6. Figure 6 quantifies how clustering the different GLIF level
parameters improves the distinction among different transgenic
lines. Although GLIF; and GLIF, have an ARI of ~0.08 (AVOI
~0.8), GLIF; ARI increases to ~0.12 (AVOI ~1.3) and GLIF,
improves even more yielding a value of ~0.18 for the iterative
binary clustering (AVOI ~1.3). Similarly, the ARI and AVOI
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values calculated during affinity propagation are higher for GLIF;
and GLIF, than for GLIF, and GLIF, (Supplementary Fig. 12).

The transgenic line composition of each terminal cluster in
GLIF, (Fig. 6) suggests that clustering based on model parameters
broadly segregates neurons into previously identified classes of
cells. Neurons from transgenic lines labeling predominantly
excitatory neurons cluster separately from those labeling mainly
interneurons. In addition, sub-categories of neurons appear: these
include parvalbumin-positive interneurons, layer 6a corticotha-
lamic neurons (derived from the Ntsrl transgenic line), and layer
6b neurons (derived from the Ctgf transgenic line).

When the same hierarchical clustering technique is applied
directly to the electrophysiological feature data set that includes
spike-shape parameters (bottom left of Fig. 6 and Supplementary
Fig. 14), the correspondence between electrophysiological clusters
and transgenic lines is similar to those of GLIF, parameter-based
clusters (the electrophysiological cluster scores higher than GLIF,
when using iterative binary clustering (Fig. 6) and lower when
using affinity propagation (Supplementary Fig. 12). However,
when the features describing the spike shape of the neuron are
removed, the ARI drops below GLIF, to a value similar to GLIF;
(Fig. 6). Thus, the dimensionality reduction onto the space of
model fit parameters allows for discriminability better than that
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Fig. 5 Different mechanisms improve model performance for inhibitory and
excitatory neurons. The traditional leaky integrate and fire model (GLIF;)
yielded surprisingly high model performance. Overall, inhibitory models
were more successful at reproducing spike times than excitatory models.
Reset rules implemented on their own (GLIF,) decreased model
performance. After-spike currents (GLIF3) improved inhibitory model
performance, whereas a combination of both after spike currents and reset
rules (GLIF4) were required to gain performance of excitatory models. The
voltage-dependent adapting threshold (GLIFs) improved performance of
excitatory models even more, but had only a slight effect on inhibitory
models. The thick blue line denotes all excitatory neurons, the thick red line
denotes all inhibitory neurons, and the thick black line is for all neurons.
Thin lines are different transgenic lines. Accompanying data is available in
Table 3. p-values for significant differences between GLIF model levels can
be found in Supplementary Figures 8, 9, and 10. Briefly, for the “all”,
“excitatory”, and “inhibitory” groupings the p-values are smaller than 0.01
(and often much smaller) for all but between the excitatory GLIF, and GLIF3
(Supplementary Fig. 8). Differences between GLIF levels of different
transgenic lines are sometimes statistically significant and sometimes not
(Supplementary Figures 9 and 10)

obtained by the extraction of a subset of electrophysiological
features without spike shape.

Similarly, when we compare how well the GLIF parameter
clustering matches the full feature-based clustering (Fig. 7,
bottom right), GLIF, and GLIF, parameter-based clustering
results in partitions that are dissimilar from that obtained using
the electrophysiological features. GLIF; and GLIF, parameter-
based clustering results in partitions that are closer to that
obtained with the full-feature clustering. The set of partitions
obtained by the non-spike electrophysiological features are the
most similar to the partitions obtained from the full set of
electrophysiological features. This is not surprising as the non-
spike features are a subset of the full set of features. Confusion
matrices of the relationship between electrophysiological feature-
based clustering and GLIF parameter-based clustering are shown
in Supplementary Fig. 13.

We performed clustering on the GLIF parameters and the spike
features to determine whether combining them would further
help the differentiation of Cre lines (Fig. 7 and Supplementary
Fig. 14). Including spike-shape features along with GLIF; and
GLIF, parameters greatly increases their ability to differentiate
Cre lines. For the more complex neuronal models, the
improvement of including the spike features is modest, suggesting
that the GLIF; and GLIF, model parameters encompass most of
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the information contained in this set of sub and supra-threshold
electrophysiological features.

Discussion

In the cerebral cortex there is a wide diversity of neuron types
observed at transcriptomic levels®>. The existence of different
types may be driven by a need to develop particular cell type-
specific connectivity, neuromodulation, or perform different cell
specific computations, as well as by developmental and evolu-
tionary constraints. When constructing a system-level model, it is
important to know how many types of neurons are needed.

We provide a sizable database of GLIF models that can facil-
itate the development of system models with cell types available
in the Allen Cell Types Database at http://celltypes.brain-map.
org/. Here we show that GLIF models can simultaneously
reproduce the spike times of biological neurons and reduce the
complex mapping between the input current to the spike-train
output with a small number of parameters. We explore how
complexity affects the ability of models to both reproduce spike
times and differentiate transgenic lines via unsupervised cluster-
ing. We find that the more complex models (GLIF; or greater) are
better than the less complex models at reproducing biological
spike times and differentiating transgenic lines.

After optimizing the neuronal parameters, we were surprised at
how well the traditional leaky integrate and fire neuron models
reproduce spike times under naturalistic conditions, explaining a
median value of 70.2% of the variance. To put this value in
context, biophysically realistic models with passive dendrites in
the Allen Cell Types Database! achieve a median explained var-
iance of 65.1% (n=195) and biophysically realistic models with
active dendrites achieve a median explained variance of 69.3% (n
=107). It should be noted that the biophysical models are not
optimized to reproduce spike times but instead to recreate other
aspects of electrophysiological responses®?°. As we show with
GLIF,, fitting data to aspects of the voltage waveform does not
mean that the ability of the models to reproduce spike times will
improve.

Our result that a model’s ability to reproduce sub-threshold or
spiking behavior does not increase monotonically with model
complexity may seem counterintuitive. Furthermore, we
demonstrate that the overall ability of a model level to reproduce
sub-threshold behavior does not translate into the overall ability
of a model level to reproduce spike times. When trying to
understand how this is possible, it is important to note several
things. Theoretically, in a situation where all parameters are
simultaneously optimized, increasing complexity (via the addition
of new mechanisms and variables to the previous model) should
lead to a smaller error of the function being minimized. In this
paradigm, one could include more parameters or state variables
until the model starts to over fit the training data. Optimizing on
our performance metric of explained variance would no longer be
convex, and hence, optimization would be more unintuitive and
computationally intensive with no guarantee of convergence. We
chose a different route, in which different observables and error
functions are used to isolate the effects of individual mechanisms.
For example, here we optimize the difference in voltage between
the model and the data during the forced spike paradigm because
this is a convex problem. What we desired was a “good” model
that has mechanisms which relate to how the neuron is actually
performing computations and thus recreates observed behavioral
aspects such as sub-threshold voltage and spike times. In our
study, the following procedures could lead to the observed non-
monotonic behavior. (1) Individual mechanisms are not opti-
mized to reproduce the spike times, but rather to fit different
aspects of the sub-threshold membrane potential during different
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Table 3 Explained variance of all model levels after post hoc optimization

GLIF;

GLIF,

GLIFs

n GLIF, GLIF,

All 645 70.2 (43.8,93.7) 67.7 (47.4,90.5)
Inhibitory 283 74.7 (41.7, 95.6) 73.6 (45.5, 93.8)
Excitatory 362 68.0 (47, 81.6) 65.2 (49.5, 75.2)
Scnnla-Tg2 22 62.2 (39.6, 74.4) 63.8 (52.3, 70.5)
Nr5al 47 67.7 (50.8, 80.1) 66.4 (61.6, 76.3)
Scnnla-Tg3 37 66.6 (49.7, 79) 67.8 (56.4, 80.1)
Rorb 88 67.5 (46.4, 81.1) 67.6 (56.9, 77.2)
Cux2 56 70.5 (591, 82.2) 67.3 (53.4, 75)
Ntsr1 39 70.2 (52.1, 80.4) 57.7 (38.4, 68.7)
Ctgf 20 60.4 (349, 74.2) 56.0 (44.2, 66)
Rbp4 53 70.2 (49.6, 85.1) 64.1 (525, 73.8)
Sst 64 751 (32.2, 93.5) 75.4 (46, 90.9)
Pvalb 53 93.1(32.4, 96.9) 89.5 (43.4, 96.3)
Htr3a 62 70.9 (49.6, 83.2) 63.8 (45.5, 80)
Ndnf 15 83.4 (59.3, 93) 76.2 (55, 83.1)
Chat 18 65.8 (44.2, 80.7) NaN

Vip 19 69.3 (41.7, 85.3) 67.7 (50.8, 72.7)
Chrna2 29 64.9 (52.6, 89.3) 67.4 (51.2, 88.2)
Nkx2 23 75.0 (59.6, 97.4) 68.7 (60.4, 96.2)

72.4 (40.7, 95.3)
80.7 (42.6, 97.2)
67.5 (39.8, 86.9)
56.5 (36, 74.8)
70.1(46.3, 85.7)
58.6 (42.2, 89)
67 (39.1, 86.5)
73.2 (42.9, 86.3)
79.4 (55.4, 88.4)
52.9 (335, 78)
68.3 (435, 86.5)
77.3 (37, 95.8)
95.3 (34.6, 97.6)
83.1(49.2, 94)
89.8 (58.2, 92.6)
75.7 (43.6, 85.3)
76.2 (52.6, 89.3)
65.8 (43.4, 91)
77.8 (581, 95.3)

75.9 (46.8, 96.5)
83.3 (521, 97.5)
72 (46.2, 88)
62.9 (38, 72.8)
74.6 (49.4, 85.6)
65.7 (39.9, 88.5)
71.2 (513, 85.2)
75.7 (56.1, 87.7)
79.9 (69.2, 91.1)
52.4 (38, 78.4)
75.8 (53.8, 87.2)
77.2 (51.7, 95.8)
96.9 (53.2, 98.5)
83.5 (57.7, 94)
90.5 (60, 94.4)
NaN

77.1 (62.8, 86.6)
69.5 (53.5, 95.6)
82.9 (68.2, 97.5)

77.6 (49.4, 96.5)
84.1 (523, 97.3)
74.8 (46.6, 89.1)
64.9 (37.5, 75.3)
76.3 (57, 86)
63.4 (48.2, 88.6)
72.2 (50.7, 87)
75.7 (60, 87.6)
83.2 (69.2, 91.6)
63.6 (33.7, 81.3)
77.5 (58.2, 88.1)
78.1(49.3, 95.7)
96.7 (54.9, 98.6)
85.6 (64.7, 93.9)
90.7 (65.9, 94.2)
NaN

79.8 (63.5, 86.7)
72.9 (54.5, 95.9)
82.8 (68.4, 97.5)

Data illustrated in Supplementary Figures 8, 9, and 10

The single number in each cell is the median. The first and third quartiles are in brackets below the median. All Cre lines with five or more neurons (n) present in the GLIF; level are included. Some
neurons have the required stimuli for LIF models but do not have the stimuli required for higher level models. When there are not more than five neurons in the level, the values are denoted with a NaN.

stimuli. (2) The biological effects phenomenologically described
here by reset rules and the after-spike currents act together to
create the voltage waveform of a neuron. Here, we fit the after-
spike currents and the reset rules independently on the voltage
waveform of a neuron without subtracting out the effect of the
other mechanism. Explicitly, when the reset rules in GLIF, were
calculated, there were certainly after-spike currents (which loosely
represent the summation of the ion-channel effects in biological
neurons) present in the data. In addition, the after-spike currents
were fit to the observed sub-threshold voltage, which includes the
biological reset rules. (3) Reset rules and after-spike currents exert
influence on different time scales. Reset rules have an instanta-
neous effect implemented right after a spike (or far away from the
next spike) whereas after-spike currents have multiple time scales
that extend though the sub-threshold portion of the voltage trace
to the next spike. (4) We only optimize one parameter to the
spike times of the data. More parameters could be optimized to
potentially achieve better spike time performance. However,
adding more parameters greatly increases optimization time and
is more prone to over-fitting. (5) The metrics we used to fit and
optimize the parameters (linear regression and difference between
model and data voltage at spike time in the forced spike para-
digm) were not our reporting metrics (explained variance, dif-
ference in sub-threshold voltage). The “take home” message here
is that the ability to accurately reproduce spike times is due to the
complicated interaction of many counteracting mechanisms over
different time scales.

The progression of the explained variance for the different
GLIF levels suggests that after-spike currents are very important
for achieving the spiking behavior of inhibitory neurons, whereas
a combination of after-spike currents and reset rules are necessary
to improve the performance of excitatory neurons. In addition,
incorporating the voltage-activated threshold improves the per-
formance of excitatory neurons even more while it does little for
inhibitory models. At all levels, models were able to reproduce the
spike times of inhibitory neurons better than excitatory neurons.
Inhibitory neurons have a more stereotyped relationship between
voltage before and after a spike, shorter spike cut lengths, and
spike more. The spike cut length and the number of spikes sig-
nificantly predict a model's capacity to reproduce neuronal spike
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times whereas the error in fitting the pre/post-spike voltage did
not.

Our work uses similar methods to ref. 2° Both studies incor-
porate generalizations on the basic LIF model. In addition, both
studies implement a fast fitting step followed by a slower opti-
mization of a variable. However, there are some differences: (1)
Here, more complex reset rules are used that map the state of the
neuron before the spike to that after. (2) We include a membrane
potential-dependent adaptation of threshold. (3) We use expo-
nential basis functions for the time-dependencies of the after-
spike currents. These allow a much sparser representation,
essential for clustering, compared to the non parameterized after
spike-current trace composed of wavelets implemented in Poz-
zorini et al2? (4) We use a direct measurement of noise in the
membrane potential of a neuron rather than a probabilistic
threshold. The exact comparison of performance for models
across different publications is difficult because performance is
dependent on the properties of the input currents, i.e., if there are
large variations in the input current, the capacity to predict the
spiking output is better. We chose to compute the performance
metrics on stimuli similar to what would be observed in vivo: our
stimuli have a coefficient of variation equal to 0.2 centered
around baselines at 0.75, 1.0, and 1.25 current threshold (rheo-
base). The Pozzorini et al.2? stimulus has a variable coefficient of
variation centered around a single baseline. As opposed to
comparing models across previous studies, the focus of this study
is to apply generalizations of the leaky integrate and fire model to
a large database of neuronal responses, characterize the models
associated with a large number of transgenic lines, and demon-
strate how well they describe the spiking responses and dissociate
between cell types.

In an attempt to characterize cell types associated with the
input/output transform measured by electrophysiological
experiments, clustering algorithms can be run on a set of elec-
trophysiology features. However, it is not entirely clear which are
the most important features to consider. An alternative method is
to use the entire spike-train by synthesizing the input/output
relationship into a model and then performing the clustering on
the model parameters. A seemingly intuitive model to use for
such a clustering would be a biophysically detailed model, as the
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parameters map well to biological mechanisms. However, one
problem with such models is that they do not provide unique
solutions: repeated optimization with the same input can lead to
solutions which are far away in parameter space. Thus, another
approach is to use simpler linear models which have both (a)
unique parameter solutions, and (b) have been shown to
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reproduce spike times of biological data?’. Indeed, previous stu-
dies have touched upon the potential for clustering using sim-
plified models'®.

The unsupervised clusters of the GLIF parameters or the fea-
tures extracted from the electrophysiological traces do not per-
fectly match the transgenic lines. This is not surprising given that
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the transgenic lines are known to comprise multiple molecularly
defined cell types. In addition, it is not known what specific
electrophysiological features are needed to classify cell types.
Nonetheless, we certainly expected and did observe relationships.

GLIF model parameters have a better capacity for differ-
entiating transgenic lines than sub-threshold features designed for
that purpose. The set of 14 electrophysiological features that
include features dependent on spike shape, perform similarly to
the GLIF, parameters we use here, at differentiating transgenic
lines (the full set of features perform slightly worse than GLIF,
when differentiated by the iterative binary clustering and perform
slightly better when differentiated by affinity propagation). When
the spike-shape features are removed, their ability to classify
transgenic lines drops below the ability of GLIF,. This suggests
that aspects of spike shape are helpful for transgenic line classi-
fication®® when clustering electrophysiological features alone.
When including spike-shape features along with GLIF; and GLIF,
parameters in classification, any improvement in the ability to
differentiate Cre lines is slight. This suggests that the GLIF; and
GLIF, parameters carry much of the information present in this
set of sub-threshold and supra-threshold electrophysiological
features.

We did not cluster on all available GLIF parameters as they
were not available for all 645 cells. It is likely that incorporating
the threshold adaptation parameters would further improve
clustering. The GLIF model paradigm is sufficiently general that
additional mechanisms could be added to the GLIF model family.
For example, a mechanism that accounts for the sharp voltage rise
at spike initiation?® incorporated by the adaptive exponential
integrate and fire model®! could further raise the clustering
capabilities of GLIF parameters.

As with all abstractions, there are limitations to our models: the
traces which are reproduced are coming from a current injection
into the soma of the neuron under stereotyped recording con-
ditions. We try to keep the statistics of the test stimulus similar to
in vivo patch clamp currents, but in vivo, additional large sources
of variability will occur from stochastic transmission at synapses,
complex dendritic integration, neuromodulation, etc. These
mechanisms, which are necessary for exact integration of single-
neuron models into systems models are beyond the scope of the
current study.

For any study, the best model to use will depend on the
question at hand. Currently, it is unknown what level of spike
precision will be needed in network models. However, as the
brain has evolved a diversity of cell types, it is likely cell type-
specific models will be necessary to model brain computation. We
hope that this study along with our corresponding publicly
available database of models will be a useful resource for the
community by providing both optimized models and an intuition

for how much complexity aids in spike time performance and cell
type classification.

Methods

Model definitions. We developed five different GLIF models, each of which
successively incorporates the time evolution of one to five state variables. For
brevity, here all model level equations are presented together. A separate and
detailed description of the models along with their mathematical equations are
available in the “Model definitions” section of the Supplementary Methods.

The set of five state variables X = {V (t), O5(t), Ij=1,2)(t), Ov (t)} represent the
neuronal membrane potential, the spike-dependent component of the threshold,
two after-spike currents and the membrane potential-dependent component of the
threshold, respectively. Figure 1a illustrates the iteration between the state variables
in the model equations. Table 1 contains a summary of the parameters and
variables. It is assumed that these state variables evolve in a linear manner between
spikes:

V(1) =é<ze<t> #3210 V(D) —EL>)., 1)
6.(t) = —b.64(1), )

() = ~Kl(0): j= 1.2, 3

6,(1) = a,(V(1) ~ 1) ~ b,6,(1), @)

where C represents the neurons’s capacitance, R, the membrane resistance, Ej, the
resting membrane potential, I, the external current, 1/kj, 1/bs, 1/b, are the time
constants of the after-spike currents, spike and voltage dependence of the
threshold, and a, couples the membrane potential to the threshold.

If V(t)>0,(t) + O4(t) + O, a spike is generated. After a refractory period, 5,
the state variables are updated with a linear dependence on the state before the
spike:

V(L) — Byt fox (V(E) — E) 8V, %)
0.(t.) — 6,(1.) + 66, ©
5t < fx (t-) + 3, ?)

0,(t.) — O,(t.). ®)

Where t, and t_ represent the time just after and before a spike, respectively. f,, and
dy, are the slope and intercept of the linear relationship of the voltage before and
after a spike (see Supplementary Fig. 1). 50; is the amplitude of the spike-induced
threshold after spiking. f, is a fraction of current implemented after a spike; here it
is always set to 1. 6I; is the amplitude of the spike-induced currents.

The 1D model, GLIF,, is represented by equation 1, with a simple reset and
I;(t)=0 for all j. GLIF, adds ©, and the more complex reset rules (Egs. 5 and 6).
GLIF; uses membrane potential and two spike-induced currents, I;(t) in Eq. 1, and
reset rules defined by Eq. 7. GLIF, uses membrane potential, spike-induced
threshold dependence and after spike currents, whereas GLIFs uses all the variables
described.

Fig. 6 We identify discrete putative clusters using an iterative binary clustering approach on 645 cells. The top six panels show the summary of clusters
obtained by iterative binary clustering using electrophysiological features extracted from the traces and GLIF model parameters. In every panel, each row
represents a cluster, and each column a transgenic line. The size of the circle indicates the fraction of cells from a given transgenic line falling into a specific
cluster (such that the sum of fractions in a column add up to 1). The dendrogram on the y-axis shows the iterative binary splitting into clusters using the
algorithm explained in the text. For each intermediate node, a support vector machine was trained on half the cells at that node and used to classify the
remaining cells. The number at each node indicates the minimum percentage of test cells correctly classified over 100 iterations of randomly selected
training and test cells. Clustering based on features and using the GLIF3 and GLIF, model parameters shows separation among lines labeling inhibitory and
excitatory cells. In addition, transgenic Cre lines marking Pvalb+, Ntsr1+, Nr5al+, and Ctgf+cells tend to segregate into distinct clusters. The bottom two
panels show two measures of overall clustering similarity: the adjusted Rand index (ARI) in red, and the adjusted variation of information (AVOL) in black.
The bottom left panel shows similarity between each set of clusters and the transgenic lines. The bottom right panel shows similarity between each set of
clusters and the clusters obtained using the features. An ARI of 1 indicates perfect agreement between partitions, whereas O or negative values indicate
chance levels of agreement. A positive value of the AVOI indicates agreement between partitions that is better than chance (which is indicated by 0). The
gray and pink traces in these two panels show the AVOI and ARI values, respectively, for random subsets of the features containing the same number of
parameters as each of the four GLIF models
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The first type of stimulus we used were very short (3 ms) square pulses of
multiple amplitudes to assess the threshold of a neuron. The minimal voltage at
which the neuron fires a spike in response to a short current pulse is defined as the
instantaneous threshold, ©,.. This parameter is later optimized in the post hoc
procedure (see sections, “Fitting and post hoc optimization of instantaneous

Stimulus. We designed a set of four different types of stimuli for fitting and testing
parameters of our GLIF models (Fig. 2). This set of stimuli is part of a much larger
electrophysiological stimulation protocol which are the subject of different studies.
Details of the stimuli described here and the other stimuli of the Allen Cell Type
Database can be found at ref. 24
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Fig. 7 Iterative binary splitting clustering obtained from using GLIF model parameters plus spike-shape-related feature parameters. The top four panels
show cluster versus Cre line composition, similar to Fig. 6. The bottom two panels show the adjusted variation of information metric and the adjusted Rand
index for the GLIF model-derived clusters with and without the spike-shape parameters
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threshold in the main text”, and “Post hoc optimization” in the Supplementary
Methods).

The most substantial type of stimulus we used, consists of noise stimuli. This
noise was created to have a coefficient of variation of 0.2 (similar to in vivo patch
clamp recordings) at three different base amplitudes: one sub-threshold, one
peri-threshold and one supra-threshold to explore different parameter regimes.
Each amplitude is given for 3 s with a 5 s break in between to allow the neuron to
settle to a rest state. Using stimuli with highly varied structure is important. Not
only does it allow the model to explore the parameter space but it is more
realistic to what a neuron actually experiences in vivo. Solely using traditional
simple stimuli, such as square pulses, would present only a small subset of
possible histories (both spiking and sub-threshold) and bias the data set to a
non-physiological regime. Within this noise data we have two different complete
sets of noise which we refer to as noise 1 and noise 2. The noise 1 and noise
2 stimuli have the same statistics but were created with a different random seed.
We used noise 1 data to fit the model and noise 2 as “hold out” test data to ensure
we have not over fit our model. Both the noise 1 and noise 2 stimuli are repeated
at least twice to characterize how consistently the biological neuron fires at the
same time for a repeated stimulus.

The third type of stimulus is a (3 s) sub-threshold long square pulse just below
rheobase given to characterize the intrinsic noise in the neuronal membrane near
threshold (please see “Objective function: maximum likelihood based on internal
noise (MLIN)” in the Supplementary Methods and Supplementary Fig. 5).

Finally, a series of short square pulses at different frequencies, referred to as a
“triple short square” (Supplementary Fig. 3), are used to characterize the spike-
induced changes in threshold in the absence of additional membrane potential-
induced changes (such as the voltage-induced changes in threshold modeled in
GLIFs). This stimulus is necessary to fit all models with a spike component of
threshold, i.e., GLIF,, GLIF,, and GLIFs. Due to experimental constraints
independent of this study, this triple short square stimulus was only played to
approximately half the neurons. This is why there are many fewer GLIF,, GLIF,,
and GLIFs models available.

Model exclusion criteria. Only transgenic lines which contained more than five
neurons and had the necessary data to create a basic GLIF; model described in
“Stimulus” section, were included in this study. In addition, models which had
biologically unrealistic parameter values after fitting, or neurons that had an
explained variance ratio value less than 20% for one model on the training data set
(noise 1) were eliminated (please see the “Exclusion criteria” section in the Sup-
plementary Methods for a detailed explanation of excluded data). Overall, a total of
645 neurons from 16 transgenic lines met the criteria for fitting the GLIF, and
GLIF; models. As mentioned in the “Stimulus” section, only some neurons were
given the stimulus needed to create GLIF,, GLIF,, and GLIFs models. 254 neurons
met the additional requirements for models with reset rules (GLIF, and GLIF,) and
253 neurons met all the criteria for a GIFs model.

Fitting and post hoc optimization of instantaneous threshold, ®,. Similar to
ref.2%, GLIF model fitting is achieved in two steps. In the first step, parameters
are fit directly from the electrophysiological data using linear methods described
in detail in the “Parameter fitting and distributions” section of the Supplemen-
tary Methods: E; from the mean membrane potential at rest, R, and C from
fitting the membrane potential during a sub-threshold noise stimulus, 81, k;
from fitting the membrane potential between spikes during a supra-threshold
stimulus, f,, t, 8V relating the potential before and after a spike during the noise
stimulus, bs, 5@ from the potential of subsequent spikes during a series of brief
square pulses, a, and b, from the potential of subsequent spikes during the
supra-threshold noise stimulus. Slices from this parameter space are shown in
Fig. 3a—f.

In the second step, the instantaneous threshold, ©., was optimized to fit the
probability of a neuron model reproducing observed spike times. This is realized
using a non-linear Nelder Mead optimization strategy as described in detail in the
“Post hoc optimization” section of the Supplementary Methods. ©., represents the
threshold of a neuron when it is stimulated from rest. Any parameter, or
combination of parameters, could have been chosen for additional optimization.
However, the time needed to optimize more than one parameter is prohibitive. @,
was chosen for further optimization because it is represents the overall excitability
of a neuron and therefore is likely to be the best parameter to counteract any error
in the fitting or the inherent error introduced by simplifying any complex system to
a simple model. The changes in instantaneous threshold, €., with optimization
subsection of the Supplementary Methods and Supplementary Fig. 7 discuss how
0., is altered by optimization.

Electrophysiological features. We use a set of 14 electrophysiological features to
perform clustering. Detailed explanations of these features can be found at ref. 2%,
Here, we briefly describe them below.

Membrane time constant (z,,): The membrane time constant of the cell was
calculated by averaging the time constants of single-exponential fits to
hyperpolarizing responses evoked by one-second current steps with
amplitudes from —10 pA to —90 pA (20 pA interval). Fits were performed on the

14 | (2018)9:709

traces from 10% of the maximum voltage deflection to the maximum voltage
deflection.

Input resistance (R;): The input resistance was calculated by first measuring the
peak voltage deflection evoked by one-second current steps with amplitudes from
—10 pA to —90 pA (20 pA interval), then taking the slope of a linear fit to those
deflections versus the respective stimulus amplitudes.

Resting potential (Vies): The resting potential was calculated by averaging
the pre-stimulus membrane potential across all one-second current step
responses.

Threshold current (I eqn): The threshold current was the minimum
amplitude of a one-second current step that evoked at least one action
potential.

Action potential threshold (Viyyesn): The action potential threshold was defined
as the membrane potential before the action potential peak where the dV/dt was
5% of the maximum dV/dt averaged across all spikes evoked by the stimulus.

Action potential peak (Vjeqr): The action potential peak was defined as the
maximum membrane potential reached during an action potential.

Action potential fast trough (Verougn): The action potential fast trough was
defined as the minimum value of the membrane potential within 5 ms after the
action potential peak.

Action potential trough (Virougn): The action potential fast trough was defined
as the minimum value of the membrane potential before the next spike (or end of
the stimulus interval).

Upstroke/downstroke ratio (up:downstroke): The ratio between the absolutes
values of the action potential peak upstroke (i.e., maximum dV/dt value before the
peak) and action potential peak downstroke (i.e., minimum dV/dt value after the
peak). Here, the upstroke/downstroke ratio was separately measured on action
potentials evoked by a one-second (long square) current step and a 3 ms (short
square) current step.

Sag: The sag was calculated as the difference between the minimum membrane
potential value reached during a hyperpolarizing one-second current step and the
steady-state membrane potential during that step, divided by the difference
between the minimum membrane potential value reached during the step and the
baseline membrane potential. The sag was calculated on the step where the
minimum membrane potential was closest to a value of =100 mV.

f-I curve slope: The f~I curve was calculated by measuring the average firing
rate during one-second current steps versus the stimulus amplitude. The supra-
threshold part of the curve was fit with a line, and the slope was taken from that
linear fit.

Latency to the first action potential (latency): Latency was calculated as the
interval between the start of the stimulus and the time of the first spike evoked by
the stimulus.

Maximum burst index (max. burst index): If a burst was identified during a
response, a burst index was calculated as the difference between the maximum
instantaneous firing rate inside the burst and the maximum instantaneous firing
rate outside the burst, normalized by their sum. Bursts were identified as a
change in the character of the voltage trajectory during the interspike interval
(e.g., changing from a “direct” trajectory, where the membrane potential was
always increasing after a spike, to a “delay” trajectory, where the membrane
potential first hyperpolarized, then depolarized after a spike). If no burst was
detected, the index was zero. The maximum index reported here was the
maximum across all the supra-threshold responses evoked by depolarizing one-
second current steps.

Data availability. All data are publicly and freely available on the Allen Cell Type
Database at http://celltypes.brain-map.org. Analysis code is available in the Allen
Institute Github repository at https://github.com/AllenInstitute/
GLIF_Teeter_et_al_2018. Code for the creation of the pink noise stimulus can be
found at https://github.com/AllenInstitute/ephys_pink_noise.
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