Nothing Special   »   [go: up one dir, main page]

Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Tight junction-based epithelial microenvironment and cell proliferation

Abstract

Belt-like tight junctions (TJs), referred to as zonula occludens, have long been regarded as a specialized differentiation of epithelial cell membranes. They are required for cell adhesion and paracellular barrier functions, and are now thought to be partly involved in fence functions and in cell polarization. Recently, the molecular bases of TJs have gradually been unveiled. TJs are constructed by TJ strands, whose basic frameworks are composed of integral membrane proteins with four transmembrane domains, designated claudins. The claudin family is supposedly composed of at least 24 members in mice and humans. Other types of integral membrane proteins with four transmembrane domains, namely occludin and tricellulin, as well as the single transmembrane proteins, JAMs (junctional adhesion molecules) and CAR (coxsackie and adenovirus receptor), are associated with TJ strands, and the high-level organization of TJ strands is likely to be established by membrane-anchored scaffolding proteins, such as ZO-1/2. Recent functional analyses of claudins in cell cultures and in mice have suggested that claudin-based TJs may have pivotal functions in the regulation of the epithelial microenvironment, which is critical for various biological functions such as control of cell proliferation. These represent the dawn of ‘Barriology’ (defined by Shoichiro Tsukita as the science of barriers in multicellular organisms). Taken together with recent reports regarding changes in claudin expression levels, understanding the regulation of the TJ-based microenvironment system will provide new insights into the regulation of polarization in the respect of epithelial microenvironment system and new viewpoints for developing anticancer strategies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • Amieva MR, Vogelmann R, Covacci A, Tompkins LS, Nelson WJ, Falkow S . (2003). Disruption of the epithelial apicaljunctional complex by Helicobacter pylori CagA. Science 300: 1430–1434.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Angelow S, Ahlstrom R, Yu AS . (2008). Biology of claudins. Am J Physiol Renal Physiol (in press).

  • Behr M, Riedel D, Schuh R . (2003). The Claudin-like megatrachea is essential in septate junctions for the epithelial barrier function in Drosophila. Dev Cell 5: 611–620.

    CAS  PubMed  Google Scholar 

  • Ben-Yosef T, Belyantseva IA, Saunders TL, Hughes ED, Kawamoto K, Van Itallie CM et al. (2003). Claudin 14 knockout mice, a model for autosomal recessive deafness DFNB29, are deaf due to cochlear hair cell degeneration. Hum Mol Genet 12: 2049–2061.

    CAS  PubMed  Google Scholar 

  • Chao JC, Liu KY, Chen SH, Fang CL, Tsao CW . (2003). Effect of oral Epidermal growth factor on mucosal healing in rats with duodenal ulcer. World J Gastroenterol 9: 2261–2265.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Claude P . (1978). Morphological factors influencing transepithelial permeability: a model for the resistance of the zonula occludens. J Membr Biol 39: 219–232.

    CAS  PubMed  Google Scholar 

  • Cohen CJ, Shieh JT, Pickles RJ, Okegawa T, Hsieh JT, Bergelson JM . (2001). The coxsackie virus and adenovirus receptor is a transmembrane component of the tight junction. Proc Natl Acad Sci USA 98: 15191–15196.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Colegio OR, Van Itallie C, Rahner C, Anderson JM . (2003). Claudin extracellular domains determine paracellular charge selectivity and resistance but not tight junction fibril architecture. Am J Physiol Cell Physiol 284: 1346–1354.

    Google Scholar 

  • Diamond JM . (1977). Twenty-first Bowditch lecture. The epithelial junction: bridge, gate, and fence. Physiologist 20: 10–18.

    CAS  PubMed  Google Scholar 

  • D’Souza T, Indig FE, Morin PJ . (2007). Phosphorylation of claudin-4 by PKCepsilon regulates tight junction barrier function in ovarian cancer cells. Exp Cell Res 313: 3364–3375.

    PubMed  PubMed Central  Google Scholar 

  • Farquhar MG, Palade GE . (1963). Junctional complexes in various epithelia. J Cell Biol 17: 375–412.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Frizzell RA, Schultz SG . (1972). Ionic conductances of extracellular shunt pathway in rabbit ileum: influence of shunt on transmural sodium transport and electrical potential differences. J Gen Physiol 59: 318–346.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fujita K, Katahira J, Horiguchi Y, Sonoda N, Furuse M, Tsukita Sh . (2000). Clostridium perfringens enterotoxin binds to the second extracellular loop of claudin-3, a tight junction integral membrane protein. FEBS Lett 476: 258–261.

    CAS  PubMed  Google Scholar 

  • Furuse M, Furuse K, Sasaki H, Tsukita Sh . (2001). Conversion of zonulae occludentes from tight to leaky strand type by introducing claudin-2 into Madin-Darby canine kidney I cells. J Cell Biol 153: 263–272.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Furuse M, Hata M, Furuse K, Yoshida Y, Haratake A, Sugitani Y et al. (2002). Claudin-based tight junctions are crucial for the mammalian epidermal barrier: a lesson from claudin-1-deficient mice. J Cell Biol 156: 1099–1111.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Furuse M, Hirase T, Itoh M, Nagafuchi A, Yonemura S, Tsukita Sa et al. (1993). Occludin: a novel integral membrane protein localizing at tight junctions. J Cell Biol 123: 1777–1788.

    CAS  PubMed  Google Scholar 

  • Furuse M, Sasaki H, Tsukita Sh . (1999). Manner of interaction of Heterogeneous claudin species within and between tight junction strands. J Cell Biol 147: 891–903.

    CAS  PubMed  PubMed Central  Google Scholar 

  • González-Mariscal L, Lechuga S, Garay E . (2007). Role of tight junctions in cell proliferation and cancer. Prog Histochem Cytochem 42: 1–57.

    PubMed  Google Scholar 

  • Gow A, Southwood CM, Li JS, Pariali M, Riordan GP, Brodie SE et al. (1999). CNS myelin and Sertoli cell tight junction strands are absent in Osp/Claudin-11 null mice. Cell 99: 649–659.

    CAS  PubMed  Google Scholar 

  • Gumbiner BM . (1993). Breaking through the tight junction barrier. J Cell Biol 123: 1631–1633.

    CAS  PubMed  Google Scholar 

  • Hamazaki Y, Itoh M, Sasaki H, Furuse M, Tsukita Sh . (2002). Multi-PDZ domain protein 1 (MUPP1) is concentrated at tight junctions through its possible interaction with claudin-1 and junctional adhesion molecule. J Biol Chem 277: 455–461.

    CAS  PubMed  Google Scholar 

  • Hartsock A, Nelson WJ . (2008). Adherens and tight junctions: structure, function and connections to the actin cytoskeleton. Biochim Biophys Acta 1778: 660–669.

    CAS  PubMed  Google Scholar 

  • Hopfer U . (1977). Isolated membrane vesicles as tools for analysis of epithelial transport. Am J Physiol 233: E445–E449.

    CAS  PubMed  Google Scholar 

  • Hou J, Gomes AS, Paul DL, Goodenough DA . (2006). Study of claudin function by RNA interference. J Biol Chem 281: 36117–36123.

    CAS  PubMed  Google Scholar 

  • Ikenouchi J, Matsuda M, Furuse M, Tsukita Sh . (2003). Regulation of tight junctions during the epithelium-mesenchyme transition: direct repression of the gene expression of claudins/occludin by Snail. J Cell Sci 116: 1959–1967.

    CAS  PubMed  Google Scholar 

  • Ikenouchi J, Furuse M, Furuse K, Sasaki H, Tsukita Sa, Tsukita Sh . (2005). Tricellulin constitutes a novel barrier at tricellular contacts of epithelial cells. J Cell Biol 171: 939–945.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Itoh M, Furuse M, Morita K, Kubota K, Saitou M, Tsukita Sh . (1999). Direct binding of three tight junction-associated MAGUKs, ZO-1, ZO-2, and ZO-3, with the COOH termini of claudins. J Cell Biol 147: 1351–1363.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Itoh M, Sasaki H, Furuse M, Ozaki H, Kita T, Tsukita Sh . (2001). Junctional adhesion molecule (JAM) binds to PAR-3: a possible mechanism for the recruitment of PAR-3 to tight junctions. J Cell Biol 154: 491–497.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Katahira J, Inoue N, Horiguchi Y, Matsuda M, Sugimoto N . (1997). Molecular cloning and functional characterization of the receptor for Clostridium perfringens enterotoxin. J Cell Biol 136: 1239–1247.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Katsuno T, Umeda K, Matsui T, Hata M, Tamura A, Itoh M et al. (2008). Deficiency of zonula occludens-1 causes embryonic lethal phenotype associated with defected yolk sac angiogenesis and apoptosis of embryonic cells. Mol Biol Cell 19: 2465–2475.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kachar B, Reese TS . (1982). Evidence for the lipidic nature of tight junction strands. Nature 296: 464–466.

    CAS  PubMed  Google Scholar 

  • Kitajiri S, Miyamoto T, Mineharu A, Sonoda N, Furuse K, Hata M et al. (2004). Compartmentalization established by claudin-11-based tight junctions in stria vascularis is required for hearing through generation of endocochlear potential. J Cell Sci 117: 5087–5096.

    CAS  PubMed  Google Scholar 

  • Kominsky SL . (2006). Claudins: emerging targets for cancer therapy. Expert Rev Mol Med 8: 1–11.

    PubMed  Google Scholar 

  • Konrad M, Schaller A, Seelow D, Pandey AV, Waldegger S, Lesslauer A et al. (2006). Mutations in the tight-junction gene claudin 19 (CLDN19) are associated with renal magnesium wasting, renal failure, and severe ocular involvement. Am J Hum Genet 79: 949–957.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kottra G, Haase W, Frömter E . (1993a). Tight-junction tightness of Necturus gall bladder epithelium is not regulated by cAMP or intracellular Ca2+. I. Microscopic and general electrophysiological observations. Pflugers Arch 425: 528–534.

    CAS  PubMed  Google Scholar 

  • Kottra G, Frömter E . (1993b). Tight-junction tightness of Necturus gall bladder epithelium is not regulated by cAMP or intracellular Ca2+. II. Impedance measurements. Pflugers Arch 425: 535–545.

    CAS  PubMed  Google Scholar 

  • Krause G, Winker L, Mueller SL, Haseloff RF, Piontek J, Blasig IE . (2008). Structure and function of claudins. Biochi Biophy Acta 1778: 631–645.

    CAS  Google Scholar 

  • Lioni M, Brafford P, Andl C, Rustgi A, El-Deiry W, Herlyn M et al. (2007). Dysregulation of claudin-7 leads to loss of E-cadherin expression and the increased invasion of esophageal squamous cell carcinoma cells. Am J Pathol 170: 709–721.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Y, Nursat A, Schnell FJ, Reaves TA, Walsh S, Pochet M et al. (2000). Human junction adhesion molecule regulates tight junction resealing in epithelia. J Cell Sci 113: 2363–2374.

    CAS  PubMed  Google Scholar 

  • Loh YH, Christoffels A, Brenner S, Hunziker W, Venkatesh B . (2004). Extensive expansion of the claudin gene family in the teleost fish, Fugu rubripes. Genome Res 14: 1248–1257.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Macarthur M, Hold GL, El-Omar EM . (2004). Inflammation and Cancer II. Role of chronic inflammation and cytokine gene polymorphisms in the pathogenesis of gastrointestinal malignancy. Am J Physiol Gastrointest Liver Physiol 286: G515–G520.

    CAS  PubMed  Google Scholar 

  • Matsuda M, Kubo A, Furuse M, Tsukita Sh . (2004). A peculiar internalization of claudins, tight junction-specific adhesion molecules, during the intercellular movement of epithelial cells. J Cell Sci 117: 1247–1257.

    CAS  PubMed  Google Scholar 

  • Mitic LL, Anderson JM . (1998). Molecular architecture of tight junctions. Annu Rev Physiol 60: 121–142.

    CAS  PubMed  Google Scholar 

  • Miyamoto T, Morita K, Takemoto D, Takeuchi K, Kitano Y, Miyakawa T et al. (2005). Tight junctions in Schwann cells of peripheral myelinated axons: a lesson from claudin-19-deficient mice. J Cell Biol 169: 527–538.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Morita K, Sasaki H, Furuse M, Tsukita Sh . (1999a). Endothelial claudin: claudin-5/TMVCF constitutes tight junction strands in endothelial cells. J Cell Biol 147: 185–194.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Morita K, Sasaki H, Fujimoto K, Furuse M, Tsukita Sh . (1999b). Claudin-11/OSP-based tight junctions of myelin sheaths in brain and Sertoli cells in testis. J Cell Biol 145: 579–588.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Morita K, Furuse M, Yoshida Y, Itoh M, Sasaki H, Tsukita Sh et al. (2002). Molecular architecture of tight junctions of periderm differs from that of the maculae occludentes of epidermis. J Invest Dermatol 118: 1073–1079.

    CAS  PubMed  Google Scholar 

  • Moriwaki K, Tsukita S, Furuse M . (2007). Tight junctions containing claudin 4 and 6 are essential for blastocyst formation in preimplantation mouse embryos. Dev Biol 312: 509–522.

    CAS  PubMed  Google Scholar 

  • Nitta T, Hata M, Gotoh S, Seo Y, Sasaki H, Hashimoto N et al. (2003). Size-selective loosening of the blood-brain barrier in claudin-5-deficient mice. J Cell Biol 161: 653–660.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Okada Y, Irimajiri A, Inouye A . (1977). Electrical properties and active Solute transport in rat intestine. II. Conductive properties of transepithelial routes. J Membr Biol 31: 221–232.

    CAS  PubMed  Google Scholar 

  • Pan XY, Wang B, Che YC, Weng ZP, Dai HY, Peng W . (2007). Expression of claudin-3 and claudin-4 in normal, hyperplastic, and endometrial tissue. Int J Gynecol Cancer 17: 233–241.

    CAS  PubMed  Google Scholar 

  • Pinto da Silva P, Kachar B . (1982). On tight junction structure. Cell 28: 441–450.

    CAS  PubMed  Google Scholar 

  • Powell DW . (1981). Barrier function of epithelia. Am J Physiol 241: 275–288.

    Google Scholar 

  • Reuss L . (1992). Tight junction permeability to ions and water. In: Cereijido M (ed). Tight Junctions. CRC Press: London, 49–66.

    Google Scholar 

  • Saitou M, Furuse M, Sasaki H, Schulzke JD, Fromm M, Takano H et al. (2000). Complex phenotype of mice lacking occludin, a component of tight junction strands. Mol Biol Cell 11: 4131–4142.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sánchez-Pulido L, Mart́n-Belmonte F, Valencia A, Alonso MA . (2002). MARVEL: a conserved domain involved in membrane apposition events. Trends Biochem Sci 27: 599–601.

    PubMed  Google Scholar 

  • Sasaki H, Matsui C, Furuse K, Mimori-Kiyosue Y, Furuse M, Tsukita Sh . (2003). Dynamic behavior of paired claudin strands within apposing plasma membranes. Proc Natl Acad Sci USA 100: 3971–3976.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schmidt A, Utepbergenov DI, Mueller SL, Beyermann M, Schneider-Mergener J, Krause G et al. (2004). Occludin binds to the SH3-hinge-GuK unit of zonula occludens protein 1: potential mechanism of tight junction regulation. Cell Mol Life Sci 61: 1354–1365.

    CAS  PubMed  Google Scholar 

  • Schultheis PJ, Clarke LL, Meneton P, Miller ML, Soleimani M, Gawenis LR et al. (1998). Renal and intestinal absorptive defects in mice lacking the NHE3 Na+/H+ exchanger. Nat Genet 19: 282–285.

    CAS  PubMed  Google Scholar 

  • Simon DB, Lu Y, Choate KA, Velazquez H, Al-Sabban E, Praga M et al. (1999). Paracellin-1, a renal tight junction protein required for paracellular Mg2+ resorption. Science 285: 103–106.

    CAS  PubMed  Google Scholar 

  • Singh AB, Harris RC . (2004). Epidermal growth factor receptor activation differentially regulates claudin expression and enhances transepithelial resistance in Madin-Darby canine kidney cells. J Biol Chem 279: 3543–3552.

    CAS  PubMed  Google Scholar 

  • Song B, Zhao M, Forrester JV, McCaig CD . (2002). Electrical cues regulate the orientation and frequency of cell division and the rate of wound healing in vivo. Proc Natl Acad Sci USA 99: 13577–13582.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sonoda N, Furuse M, Sasaki H, Yonemura S, Katahira J, Horiguchi Y et al. (1999). Clostridium perfringens enterotoxin fragment removes specific claudins from tight junction strands: evidence for direct involvement of claudins in tight junction barrier. J Cell Biol 147: 195–204.

    PubMed  PubMed Central  Google Scholar 

  • Staehelin LA . (1973). Further observation on the fine structure of freeze-cleaved tight junctions. J Cell Sci 13: 763–786.

    CAS  PubMed  Google Scholar 

  • Tamura A, Kitano Y, Hata M, Katsuno T, Moriwaki K, Sasaki H et al. (2008). Megaintestinein claudin-15-deficient mice. Gastroenterology 134: 523–534.

    CAS  PubMed  Google Scholar 

  • Tatum R, Zhang Y, Lu Q, Kim K, Jeansonne BG, Chen YH . (2007). WNK4 phosphorylates ser(206) of claudin-7 and promotes paracellular Cl(-) permeability. FEBS Lett 581: 3887–3891.

    CAS  PubMed  Google Scholar 

  • Toivola DM, Krishnan S, Binder HJ, Singh SK, Omary MB . (2004). Keratins modulate colonocyte electrolyte transport via protein mistargeting. J Cell Biol 164: 911–921.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tsukita Sh, Tsukita Sa . (1989). Isolation of cell-to-cell adherens junctions from rat liver. J Cell Biol 108: 31–41.

    CAS  PubMed  Google Scholar 

  • Tsukita Sh, Furuse M . (1999). Occludin and claudins in tight-junction strands: leading or supporting players? Trends Cell Biol 9: 268–273.

    CAS  PubMed  Google Scholar 

  • Tsukita Sh, Furuse M . (2000). Pores in the wall: claudins constitute tight junction strands containing aqueous pores. J Cell Biol 149: 13–16.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tsukita Sh, Furuse M, Itoh M . (2001). Multifunctional strands in tight junctions. Nat Rev Mol Cell Biol 2: 285–293.

    CAS  PubMed  Google Scholar 

  • Turk E, Zabel B, Mundlos S, Dyer J, Wright EM . (1991). Glucose galactose malabsorption caused by a defect in the Na+/glucose cotransporter. Nature 350: 354–356.

    CAS  PubMed  Google Scholar 

  • Umeda K, Ikenouchi J, Katahira-Tayama S, Furuse K, Sasaki H, Nakayama M et al. (2006). ZO-1 and ZO-2 independently determine where claudins are polymerized in tight-junction strand formation. Cell 126: 741–754.

    CAS  PubMed  Google Scholar 

  • Van Itallie CM, Fanning AS, Anderson JM . (2003). Reversal of charge selectivity in cation or anion-selective epithelial lines by expression of different claudins. Am J Physiol Renal Physiol 285: 1078–1084.

    Google Scholar 

  • Van Itallie CM, Anderson JM . (2006a). Claudins and epithelial paracellular transport. Annu Rev Physiol 68: 403–429.

    CAS  PubMed  Google Scholar 

  • Van Itallie CM, Rogan S, Yu A, Vidal LS, Holmes J, Anderson JM . (2006b). Two splice variants of claudin-10 in the kidney create paracellular pores with different ion selectivities. Am J Physiol Renal Physiol 291: 1288–1299.

    Google Scholar 

  • Van Itallie CM, Holmes J, Bridges A, Gookin JL, Coccaro MR, Proctor W et al. (2008). The density of small tight junction pores varies among cell types and is increased by expression of claudin-2. J. Cell Sci 121: 298–305.

    CAS  PubMed  Google Scholar 

  • Verkleij AJ . (1984). Lipidic intramembranous particles. Biochim Biophys Acta 779: 43–63.

    CAS  PubMed  Google Scholar 

  • Vermeer PD, Einwalter LA, Moninger TO, Rokhlina T, Kern JA, Zabner J et al. (2003). Segregation of receptor and ligand regulates activation of epithelial growth factor receptor. Nature 422: 322–326.

    CAS  PubMed  Google Scholar 

  • Xu J, Kausalya PJ, Phua DC, Ali SM, Hossain Z, Hunziker W . (2008). Early embryonic lethality of mice lacking ZO-2, but not ZO-3, reveals critical and nonredundant roles for individual zonula occludens proteins in mammalian development. Mol Cell Biol 28: 1669–1678.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yap AS, Mullin JM, Stevenson BR . (1998). Molecular analyses of tight junction physiology: insights and paradoxes. J Membr Biol 163: 159–167.

    CAS  PubMed  Google Scholar 

  • Watson CJ, Rowland M, Warhurst G . (2001). Functional modeling of tight junctions in intestinal cell monolayers using polyethylene glycol oligomers. Am J Physiol Cell Physiol 281: 388–397.

    Google Scholar 

  • Wattenhofer M, Reymond A, Falciola V, Charollais A, Caille D, Borel C et al. (2005). Different mechanisms preclude mutant CLDN14 proteins from forming tight junctions in vitro. Human Mutat 25: 543–544.

    CAS  Google Scholar 

  • Wu VM, Schulte J, Hirschi A, Tepass U, Beitel GJ . (2004). Sinuous is a Drosophila claudin required for septate junction organization and epithelial tube size control. J Cell Biol 164: 313–323.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S Tsukita.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsukita, S., Yamazaki, Y., Katsuno, T. et al. Tight junction-based epithelial microenvironment and cell proliferation. Oncogene 27, 6930–6938 (2008). https://doi.org/10.1038/onc.2008.344

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2008.344

Keywords

This article is cited by

Search

Quick links