Abstract
Progress in the culturing of microorganisms that are important to ocean ecology has recently accelerated, and technology has been a factor in these advances. However, rather than a single technological breakthrough, a combination of methods now enable microbiologists to screen large numbers of cultures and manipulate cells that are growing at the low biomass densities that are characteristic of those found in seawater. The value of ribosomal RNA databases has been reaffirmed, as they provide nucleic-acid probes for screening to identify important new species in culture. The new cultivation approaches have focused on specific targets that ecological studies suggest are significant for geochemical transformations, such as SAR11. Here, we review how to cultivate marine oligotrophs and why it is worth the effort.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Rusch, D. B. et al. The Sorcerer II Global Ocean Sampling Expedition: northwest Atlantic through eastern tropical Pacific. PLoS Biol. 5, 398–431 (2007).
Yooseph, S. et al. The Sorcerer II Global Ocean Sampling Expedition: expanding the universe of protein families. PLoS Biol. 5, 432–466 (2007).
Morita, R. Y. Starvation — survival of heterotrophs in the marine environment. Adv. Microb. Ecol. 6, 171–198 (1982).
ZoBell, C. E. Studies on marine bacteria. J. Mar. Res. 4, 42–75 (1941).
Ishida, Y. & Kadota, H. Growth patterns and substrate requirements of naturally occurring obligate oligotrophs. Microb. Ecol. 7, 123–130 (1981).
Poindexter, J. S. Oligotrophy: feast and famine. Adv. Microb. Ecol. 5, 63–89 (1981).
Button, D. K. Biochemical basis for the whole-cell uptake kinetics: specific affinity, oligotrophic capacity, and the meaning of the Michaelis constant. Appl. Environ. Microbiol. 57, 2033–2038 (1991).
Button, D. K., Schut, F., Quang, P., Martin, R. & Robertson, B. R. Viability and isolation of marine bacteria by dilution culture: theory, procedures, and initial results. Appl. Environ. Microbiol. 59, 881–891 (1993).
Schut, F. et al. Isolation of typical marine bacteria by dilution culture: growth, maintenance, and characteristics of isolates under laboratory conditions. Appl. Environ. Microbiol. 59, 2150–2161 (1993).
Carlson, C. A. et al. Effect of nutrient amendments on bacterioplankton production, community structure, and DOC utilization in the northwestern Sargasso Sea. Aquat. Microb. Ecol. 30, 19–36 (2002).
Zengler, K. et al. Cultivating the uncultured. Proc. Natl Acad. Sci. USA 99, 15681–15686 (2002).
Kaeberlein, T., Lewis, K. & Epstein, S. S. Isolating “uncultivable” microorganisms in pure culture in a simulated natural environment. Science 296, 1127–1129 (2002).
de Bruyn, J. C., Boogerd, F. C., Bos, P. & Kuenen, J. G. Floating filters, a novel technique for isolation and enumeration of fastidious, acidophilic, iron-oxidizing, autotrophic bacteria. Appl. Environ. Microbiol. 56, 2891–2894 (1990).
Ferrari, B. C., Binnerup, S. J. & Gillings, M. Microcolony cultivation on a soil substrate membrane system selects for previously uncultured soil bacteria. Appl. Environ. Microbiol. 71, 8714–8720 (2005).
Ziegler, M., Lange, M. & Dott, W. Isolation and morphological and cytological characterization of filamentous bacteria from bulking sludge. Water Res. 24, 1437–1451 (1990).
Eilers, H. et al. Isolation of novel pelagic bacteria from the German bight and their seasonal contributions to surface picoplankton. Appl. Environ. Microbiol. 67, 5134–5142 (2001).
Schlegel, H. G. & Jannasch, H. W. Enrichment cultures. Annu. Rev. Microbiol. 21, 49–70 (1967).
Renesto, P. et al. Genome-based design of a cell-free culture medium for Tropheryma whipplei. Lancet 362, 447–449 (2003).
Tyson, G. W. et al. Community structure and metabolism through reconstruction of microbial genomes from the environment. Nature 428, 37–43 (2004).
Rappé, M. S., Connon, S. A., Vergin, K. L. & Giovannoni, S. J. Cultivation of the ubiquitous SAR11 marine bacterioplankton clade. Nature 418, 630–633 (2002).
Stingl, U., Tripp, H. J. & Giovannoni, S. J. Improvements of high-throughput culturing yielded novel SAR11 strains and other abundant marine bacteria from the Oregon coast and the Bermuda Atlantic Time series study Site (BATS). ISME J. (in the press).
Konneke, M. et al. Isolation of an autotrophic ammonia-oxidizing marine archaeon. Nature 437, 543–546 (2005).
Morris, R. M., Rappé, M. S., Urbach, E., Connon, S. A. & Giovannoni, S. J. Prevalence of the Chloroflexi-related SAR202 bacterioplankton cluster throughout the mesopelagic zone and deep ocean. Appl. Environ. Microbiol. 70, 2836–2842 (2004).
Eilers, H., Pernthaler, J., Glockner, F. O. & Amann, R. Culturability and in situ abundance of pelagic bacteria from the North Sea. Appl. Environ. Microbiol. 66, 3044–3051 (2000).
Béjà, O. et al. Bacterial rhodopsin: evidence for a new type of phototrophy in the sea. Science 289, 1902–1906 (2000).
Béjà, O., Spudich, E. N., Spudich, J. L., Leclerc, M. & DeLong, E. F. Proteorhodopsin phototrophy in the ocean. Nature 411, 786–789 (2001).
Gomez-Consarnau, L. et al. Light stimulates growth of proteorhodopsin-containing marine Flavobacteria. Nature 445, 210–213 (2007).
Giovannoni, S. J. et al. Proteorhodopsin in the ubiquitous marine bacterium SAR11. Nature 438, 82–85 (2005).
Stingl, U., Vergin, K. L. & Giovannoni, S. J. The SAR92 clade: an abundant coastal clade of culturable marine bacteria possessing proteorhodopsin. Appl. Environ. Microbiol. 73, 2290–2296 (2007).
Schwalbach, M. S., Brown, M. & Fuhrman, J. A. Impact of light on marine bacterioplankton community structure. Aquat. Microb. Ecol. 39, 235–245 (2005).
Jensen, P. R., Williams, P. G., Oh, D. C., Zeigler, L. & Fenical, W. Species-specific secondary metabolite production in marine actinomycetes of the genus Salinispora. Appl. Environ. Microbiol. 73, 1146–1152 (2007).
Schmid, M. C. et al. Anaerobic ammonium-oxidizing bacteria in marine environments: widespread occurrence but low diversity. Environ. Microbiol. 9, 1476–1484 (2007).
Miller, T. R. & Belas, R. Motility is involved in Silicibacter sp. TM1040 interaction with dinoflagellates. Environ. Microbiol. 8, 1648–1659 (2006).
Van Baalen, C. Studies on marine blue-green algae. Bot. Marina 4, 129–139 (1962).
Waterbury, J. B., Watson, S. W., Guillard, R. R. & Brane, L. E. Widespread occurrence of unicellular, marine, planktonic cyanobacterium. Nature 277, 293–294 (1979).
Chisholm, S. W. et al. A novel free-living prochorophyte abundant in oceanic euphotic zone. Nature 334, 340–343 (1988).
Chisholm, S. W. et al. Prochlorococcus marinus nov. gen. nov. sp.: an oxyphototrophic marine prokaryote containing divinyl chlorophyll a and b. Arch. Microbiol. 157, 297–300 (1992).
Morris, R. M. et al. SAR11 clade dominates ocean surface bacterioplankton communities. Nature 420, 806–810 (2002).
Giovannoni, S. J. et al. Genome streamlining in a cosmopolitan oceanic bacterium. Science 309, 1242–1245 (2005).
Stephens, R. S. et al. Genome sequence of an obligate intracellular pathogen of humans. Science 282, 754–758 (1998).
Wu, M. et al. Phylogenomics of the reproductive parasite Wolbachia pipientis wMel: a streamlined genome overrun by mobile genetic elements. PLoS Biol. 2, e69 (2004).
Moran, M. A. et al. Ecological genomics of marine Roseobacters. Appl. Environ. Microbiol. 73, 4559–4569 (2007).
Godoy, F. et al. Sphingopyxis chilensis sp. nov., a chlorophenol-degrading bacterium that accumulates polyhydroxyalkanoate, and transfer of Sphingomonas alaskensis to Sphingopyxis alaskensis comb. nov. Int. J. Syst. Evol. Microbiol. 53, 473–477 (2003).
Button, D. K. & Robertson, B. R. in Handbook of Methods in Aquatic Microbiology (eds Kemp, P. F., Sherr, B. F., Sherr, E. B. & Cole, J. J.) 163–173 (Lewis Publishers, Boca Raton, 1993).
Eguchi, M. et al. Sphingomonas alaskensis strain AFO1, an abundant oligotrophic ultramicrobacterium from the North Pacific. Appl. Environ. Microbiol. 67, 4945–4954 (2001).
Cavicchioli, R., Ostrowski, M., Fegatella, F., Goodchild, A. & Guixa-Boixereu, N. Life under nutrient limitation in oligotrophic marine environments: an eco/physiological perspective of Sphingopyxis alaskensis (formerly Sphingomonas alaskensis). Microb. Ecol. 45, 203–217 (2003).
Fegatella, F., Lim, J., Kjelleberg, S. & Cavicchioli, R. Implications of rRNA operon copy number and ribosome content in the marine oligotrophic ultramicrobacterium Sphingomonas sp. strain RB2256. Appl. Environ. Microbiol. 64, 4433–4438 (1998).
Fegatella, F., Ostrowski, M. & Cavicchioli, R. An assessment of protein profiles from the marine oligotrophic ultramicrobacterium, Sphingomonas sp. strain RB2256. Electrophoresis 20, 2094–2098 (1999).
Ostrowski, M., Cavicchioli, R., Blaauw, M. & Gottschal, J. C. Specific growth rate plays a critical role in hydrogen peroxide resistance of the marine oligotrophic ultramicrobacterium Sphingomonas alaskensis strain RB2256. Appl. Environ. Microbiol. 67, 1292–1299 (2001).
Cho, J. C. & Giovannoni, S. J. Cultivation and growth characteristics of a diverse group of oligotrophic marine Gammaproteobacteria. Appl. Environ. Microbiol. 70, 432–440 (2004).
Cho, J. C. et al. Polyphyletic photosynthetic reaction centre genes in oligotrophic marine Gammaproteobacteria. Environ. Microbiol. 9, 1456–1463 (2007).
Fuchs, B. M. et al. Characterization of a marine gammaproteobacterium capable of aerobic anoxygenic photosynthesis. Proc. Natl Acad. Sci. USA 104, 2891–2896 (2007).
Speksnijder, A. G. C. L. et al. Microvariation artifacts introduced by PCR and cloning of closely related 16S rRNA gene sequences. Appl. Environ. Microbiol. 67, 469–472 (2001).
Dufresne, A. et al. Genome sequence of the cyanobacterium Prochlorococcus marinus SS120, a nearly minimal oxyphototrophic genome. Proc. Natl Acad. Sci. USA 100, 10020–10025 (2003).
Rocap, G. et al. Genome divergence in two Prochlorococcus ecotypes reflects oceanic niche differentiation. Nature 424, 1042–1047 (2003).
Raes, J., Korbel, J. O., Lercher, M. J., von Mering, C. & Bork, P. Prediction of effective genome size in metagenomic samples. Genome Biol. 8, R10 (2007).
Pommier, T. et al. Global patterns of diversity and community structure in marine bacterioplankton. Mol. Ecol. 16, 867–880 (2007).
Rappé, M. S. & Giovannoni, S. J. The uncultured microbial majority. Annu. Rev. Microbiol. 57, 369–394 (2003).
Morris, R. M., Cho, J. C., Rappé, M. S., Vergin, K. L. & Carlson, C. A. Bacterioplankton responses to deep seasonal mixing in the Sargasso Sea. Limnol. Oceanogr 50, 382–391 (2005).
Rocap, G., Distel, D. L., Waterbury, J. B. & Chisholm, S. W. Resolution of Prochlorococcus and Synechococcus ecotypes by using 16S–23S ribosomal DNA internal transcribed spacer sequences. Appl. Environ. Microbiol. 68, 1180–1191 (2002).
Button, D. K., Robertson, B., Gustafson, E. & Zhao, X. Experimental and theoretical bases of specific affinity, a cytoarchitecture-based formulation of nutrient collection proposed to supercede the Michaelis-Menten paradigm of microbial kinetics. Appl. Environ. Microbiol. 70, 5511–5521 (2004).
Azam, F. Microbial control of oceanic carbon flux: the plot thickens. Science 280, 694–696 (1998).
Kuznetsov, S. I., Dubinina, G. A. & Lapteva, N. A. Biology of oligotrophic bacteria. Annu. Rev. Microbiol. 33, 377–387 (1979).
Carlson, C. A. & Ducklow, H. W. Growth of bacterioplankton and consumption of dissolved organic carbon in the Sargasso Sea. Aquat. Microb. Ecol. 10, 69–85 (1996).
Connon, S. A. & Giovannoni, S. J. High-throughput methods for culturing microorganisms in very-low-nutrient media yield diverse new marine isolates. Appl. Environ. Microbiol. 68, 3878–3885 (2002).
Acknowledgements
This paper was supported by National Science Foundation grant DEB-0207085 and by a grant from the Gordon and Betty Moore Foundation.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
Stephen Giovannoni and Oregon State University hold United States patent 6,951,714 (High Througput Microbial Culturing), which is licensed to Diversa Corporation. To the best of our knowledge this technology is not currently being applied commercially, and the statements made in our manuscript will not result in financial gain.
Related links
Related links
DATABASES
Entrez Genome
Entrez Genome Project
Candidatus Pelagibacter ubique
Nitrosopumilus maritimus SCM-1
FURTHER INFORMATION
Glossary
- Bacterioplankton
-
The bacteria that inhabit the water column of lakes and oceans, either freely suspended or attached to particles.
- Euphotic zone
-
A transitional region of the water column where light levels are low and labile organic matter is in even shorter supply than at the surface, but where macronutrients, such as iron, phosphorous and reduced forms of nitrogen, are readily available.
- Heterotrophic
-
The acquisition of metabolic energy by the consumption of living or dead organic matter.
- Oligotrophic
-
An aquatic environment that has low levels of nutrients and algal photosynthetic production (for example, high mountain lakes or the open ocean).
- Pelagic
-
Relating to or occurring in the water column.
- Tangential flow filtration
-
A technique that re-circulates the retentate (the part of a solution that does not cross the membrane) along a membrane surface that is only permeable to water and low-molecular-weight compounds.
Rights and permissions
About this article
Cite this article
Giovannoni, S., Stingl, U. The importance of culturing bacterioplankton in the 'omics' age. Nat Rev Microbiol 5, 820–826 (2007). https://doi.org/10.1038/nrmicro1752
Issue Date:
DOI: https://doi.org/10.1038/nrmicro1752