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Thyroid cancer is the most common malignant tumor of the endocrine system. The most frequent type of
thyroid malignancy is papillary carcinoma. These tumors frequently have genetic alterations leading to the
activation of the mitogen-activated protein kinase (MAPK) signaling pathway. Most common mutations in
papillary carcinomas are point mutations of the BRAF and RAS genes and RET/PTC rearrangement. These
genetic alterations are found in 470% of papillary carcinomas and they rarely overlap in the same tumor. Most
frequent alterations in follicular carcinomas, the second most common type of thyroid malignancy, include RAS
mutations and PAX8-PPARc rearrangement. RET point mutations are crucial for the development of medullary
thyroid carcinomas. Many of these mutations, particularly those leading to the activation of the MAPK pathway,
are being actively explored as therapeutic targets for thyroid cancer. A number of compounds have been
studied and showed antitumor effects in preclinical studies and are being tested in ongoing clinical trials.
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Thyroid cancer is the most common malignant
tumor of the endocrine system and accounts for
approximately 1% of all newly diagnosed cancer
cases.1 The most frequent type of thyroid malig-
nancy is papillary carcinoma, which constitutes
B80% of all cases. Papillary carcinomas frequently
have genetic alterations leading to the activation
of the mitogen-activated protein kinase (MAPK)
signaling pathway (Figure 1). Those include RET/
PTC rearrangement and point mutations of the
BRAF and RAS genes. Mutations involving one of
these genes are found in 470% of papillary
carcinomas and they rarely overlap in the same
tumor2–4 (Table 1). Frequent genetic alterations in
follicular carcinomas, the second most common
type of thyroid malignancy, include RAS mutations
and PAX8-PPARg rearrangement. RET point muta-
tions are crucial for the development of medullary
thyroid carcinomas. Many of these mutations,
particularly those leading to the activation of the
MAPK pathway, are being actively explored as
therapeutic targets for thyroid cancer.

BRAF

BRAF serine-threonine kinase belongs to the family
of RAF proteins, which are intracellular effectors of
the MAPK signaling cascade. Upon activation
triggered by RAS binding and protein recruitment
to the cell membrane, these kinases phosphorylate
and activate MEK, which in turn activates ERK and
consequent effectors of the MAPK cascade.

Point mutations of the BRAF gene are found in
B45% of thyroid papillary carcinomas.2,5 Virtually
all point mutations involve nucleotide 1799 and
result in a valine-to-glutamate substitution at resi-
due 600 (V600E).6,7 BRAF V600E mutation leads to
constitutive activation of BRAF kinase and the
mechanism of activations has been recently eluci-
dated. In the dephosphorylated, wild-type BRAF
protein, the hydrophobic interactions between the
activation loop and the ATP binding site maintain
the protein in an inactive conformation. The V600E
substitution disrupts these interactions and allows
the formation of new interactions that keep the
protein in a catalytically competent conformation,
resulting in continuous phosphorylation of MEK.8

BRAF mutations are highly prevalent in papillary
carcinomas with classical histology and in the tall
cell variant, but are rare in the follicular variant.6,9 In
many studies, the presence of BRAF mutation has
been found to correlate with aggressive tumor
characteristics such as extrathyroidal extension,
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and lymph node or distant metastases.10–12 Impor-
tantly, BRAF V600E has been found to be an
independent predictor of tumor recurrence even in
patients with stage I–II of the disease.12,13 BRAF
mutations have also been associated with the
decreased ability of tumors to trap radioiodine and
treatment failure of the recurrent disease, which
may be due to the dysregulation of function of the
sodium iodide symporter (NIS) and other genes
metabolizing iodide in thyroid follicular cells.12,14

Other and rare mechanisms of BRAF activation in
papillary thyroid cancer include K601E point
mutation, small in-frame insertions or deletions
surrounding codon 600,15–17 and AKAP9-BRAF
rearrangement, which is more common in papillary
carcinomas associated with radiation exposure.18

In addition to papillary carcinomas, BRAF is
found mutated in thyroid anaplastic and poorly
differentiated carcinomas, typically in those
tumors that also contain areas of well-differentiated

papillary carcinoma.10,11,19 In these tumors, BRAF
mutation is detectable in both well-differentiated
and poorly differentiated or anaplastic tumor areas,
providing evidence that it occurs early in tumor-
igenesis.

RET/PTC

The RET proto-oncogene codes for a cell membrane
receptor tyrosine kinase. In the thyroid gland, RET is
highly expressed in parafollicular C-cells but not in
follicular cells, where it can be activated by
chromosomal rearrangement known as RET/PTC
rearrangement.20,21 In RET/PTC, the 30 portion of
the RET gene is fused to the 50 portion of various
unrelated genes. At least 11 types of RET/PTC have
been reported to date, all formed by the RET fusion
to different partners.22,23 The two most common
rearrangement types, RET/PTC1 and RET/PTC3,
account for the vast majority of all rearrangements
found in papillary carcinomas. RET/PTC1 is formed
by fusion with the H4 (D10S170) gene, and RET/
PTC3 by fusion with the NCOA4 (ELE1) gene.21,24

The fusion leaves intact the TK domain of the RET
receptor and enables the RET/PTC oncoprotein
to bind SHC and activate the RAS–RAF–MAPK
cascade.25

RET/PTC is tumorigenic in thyroid follicular
cells, as it transforms thyroid cells in culture26 and
gives rise to thyroid carcinomas in transgenic
mice.27–29 Several studies suggest that the oncogenic
effects of RET/PTC require signaling along the
MAPK pathway and the presence of the functional
BRAF kinase.25,30,31 Indeed, BRAF silencing in
cultured thyroid cells reverses the RET/PTC-
induced effects such as ERK phosphorylation,
inhibition of thyroid-specific gene expression, and
increased cell proliferation.30,31

RET/PTC is found on average in B20% of adult
sporadic papillary carcinomas, although its preva-
lence is highly variable between different observa-
tions.22,23 In general, RET/PTC incidence is higher in
tumors from patients with a history of radiation
exposure and in pediatric populations. The distri-
bution of RET/PTC rearrangement within each
tumor may vary from involving almost all neoplastic
cells (clonal RET/PTC) to being detected only in a
small fraction of tumor cells (non-clonal RET/
PTC).32,33 The heterogeneity may be of a potential
problem for the RET receptor-targeted therapy, since
tumors with non-clonal RET/PTC frequently have
other genetic alterations and may not respond to
RET inhibitors in the same way as tumors harboring
the clonal rearrangement.

Papillary carcinomas with RET/PTC rearrange-
ments typically present at younger age and have a
high rate of lymph node metastases, classic papil-
lary histology, and possibly more favorable prog-
nosis, particularly those harboring RET/PTC1.9 In
tumors arising after radiation exposure, RET/PTC1
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Figure 1 MAPK signaling pathway is physiologically activated by
binding of growth factors to receptor tyrosine kinases (RTKs),
such as RET and NTRK, resulting in receptor dimerization and
activation via autophosphorylation of tyrosine residues in the
intracellular domain. The activated receptor, through a series of
adaptor proteins, leads to activation of RAS located at the inner
face of the plasma membrane. The activated RAS binds to and
recruits RAF proteins (mainly BRAF in thyroid follicular cells) to
the plasma membrane. Activated BRAF phosphorylates and
activate the MAPK/ERK kinase (MEK), which in turn phospho-
rylates and activates the extracellular signal-regulated kinase
(ERK). Activated ERK translocates into the nucleus, where it
regulates transcription of the genes involved in cell differentia-
tion, proliferation, and survival. Alterations of this pathway in
thyroid cancer can occur at different levels as a result of point
mutation or rearrangement involving the RET, RAS, and BRAF
genes.
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was found to be associated with classic papillary
histology, whereas RET/PTC3 type was more com-
mon in the solid variants.34

RAS

The RAS genes (H-RAS, K-RAS, and N-RAS) encode
highly related G-proteins that are located at the
inner surface of the cell membrane and play a
central role in the intracellular transduction
of signals arising from cell membrane receptors
tyrosine kinase and G-protein-coupled receptors. In
its inactive state, RAS protein is bound to guanosine
diphosphate (GDP). Upon activation, it releases GDP
and binds guanosine triphosphate (GTP), activating
the MAPK and other signaling pathway, such as
PI3K/AKT. Normally, the activated RAS-GTP pro-
tein becomes quickly inactive due to its intrinsic
guanosine triphosphatase (GTPase) activity and the
action of cytoplasmic GTPase-activating proteins,
which catalyze the conversion of the active GTP
form to the inactive GDP-bound form. In many
human neoplasms, point mutations occur in the
discrete domains of the RAS gene, which result in
either an increased affinity for GTP (mutations in
codons 12 and 13) or inactivation of the autocataly-
tic GTPase function (mutations in codon 61). As a
result, the mutant protein becomes permanently
switched in the active position and constitutively
activates its downstream signaling pathways.

Point mutations of RAS occur with variable
frequency in all types of thyroid follicular
cell-derived tumors. In papillary carcinomas, RAS
mutations are relatively infrequent, as they occur in
B10% of tumors.35,36 Papillary carcinomas with
RAS mutations almost always have the follicular
variant histology; this mutation also correlates with
significantly less prominent nuclear features of
papillary carcinoma, more frequent encapsulation,
and low rate of lymph node metastases.9,37 Some
studies have reported the association between RAS
mutations and more aggressive behavior of papillary
carcinoma and with higher frequency of distant
metastases.38 In follicular thyroid carcinomas, RAS
mutations are found in 40–50% of tumors39–41 and
may also correlate with tumor dedifferentiation and
less favorable prognosis.42,43 RAS mutations may
predispose to tumor dedifferentiation, as they are
found with high prevalence in anaplastic (undiffer-
entiated) thyroid carcinomas. This may be due to the
effect of mutant RAS to promote chromosomal
instability, which has been documented in the in
vitro setting.44,45 RAS mutations, however, are not
specific for thyroid malignancy and also occur in
benign follicular adenomas.

PAX8-PPARc

PAX8-PPARg rearrangement results from the trans-
location t(2;3)(q13;p25) that leads to the fusion
between the PAX8 gene, which encodes a paired
domain transcription factor, and the peroxisome
proliferator-activated receptor (PPARg) gene.46

PAX8-PPARg occurs in B35% of conventional
follicular carcinomas, and with lower prevalence
in oncocytic (Hurthle cell) carcinomas.47–49 Tumors
harboring PAX8-PPARg tend to present at a younger
age, be smaller in size, and more frequently have
vascular invasion. The rearrangement results in
overexpression of the PPARg protein that can be
detected by immunohistochemistry.46,50

The mechanisms of cell transformation induced
by PAX8-PPARg are not fully understood. Some
evidence has been presented for inhibition of
normal PPARg function via a dominant-negative
effect of the PAX8-PPARg protein on wild-type
PPARg.46,51 Other studies have found the activation
of known PPAR target genes in tumors harboring
PAX8-PPARg, arguing against the dominant-negative
effect.52 Other possible mechanisms include dereg-
ulation of PAX8 function, known to be critical for
thyroid cell differentiation, and activation of a set of
genes related to neither wild-type PPARg nor wild-
type PAX8 pathways.52,53

PAX8-PPARg rearrangements and RAS point mu-
tations rarely overlap in the same tumor, suggesting
that follicular carcinomas may develop via at least
two distinct molecular pathway, initiated by either
PAX8-PPARg or RAS mutation.48

Table 1 Average prevalence of mutations in thyroid cancer

Tumor type Prevalence (%)

Papillary carcinoma
BRAF 45
RET/PTC 20
RAS 10
TRK o5

Follicular carcinoma
RAS 45
PAX8-PPARg 35
PIK3CA o10
PTEN o10

Medulllary carcinoma
Familial forms of RET 495
Sporadic RET 50

Poorly differentiated carcinoma
RAS 35
b-Catenin (CTNNB1) 20
TP53 20
BRAF 15

Anaplastic carcinoma
TP53 70
b-Catenin (CTNNB1) 65
RAS 55
BRAF 20
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RET point mutations

Alteration of the RET proto-oncogene plays a causal
role in the familial forms of medullary thyroid
carcinoma and has also been found in sporadic
forms of the disease. In medullary carcinomas, RET
is activated by point mutation, in contrast to its
activation by chromosomal rearrangement in papil-
lary thyroid carcinomas. Germline mutations in the
discrete functional regions of RET are found in
almost all patients with familial forms of medullary
carcinoma. In MEN 2A and familial medullary
carcinoma, mutations are typically located in one
of five cysteine codons within the cysteine-rich
extracellular domain.54 Almost 90% of MEN 2A
mutations affect codon 634, whereas in familial
medullary carcinoma they are more evenly distrib-
uted along the cysteine-rich region.55 These muta-
tions result in unpairing of cysteine residues in the
extracellular domain, leading to the formation of
disulfide bonds between two mutated receptor
molecules and ligand-independent dimerization
and constitutive activation of RET kinase.56 In
MEN 2B, the majority of germline mutations occur
in codon 918 in the intracellular tyrosine kinase
domain of RET. This mutation is believed to alter the
substrate specificity of RET kinase, resulting in
phosphorylation of unusual intracellular proteins.56

In sporadic medullary carcinomas, somatic muta-
tions of RET are found in 20–80% of cases.57,58 The
vast majority of these affect codon 918, although
they have also been identified in few other regions
of the gene. Some of these somatic mutations have
heterogeneous distribution within the tumor or are
detected only in a subset of metastatic nodules,
raising concerns that they may not be essential for
carcinogenesis.58

Targeted therapies

Well-differentiated papillary and follicular carcino-
mas typically have indolent behavior and can be
effectively treated by surgery followed by radio-
iodine therapy. However, tumors that lose differ-
entiation and therefore the ability to trap
radioiodine or unresectable follicular cell-derived
tumors together with C-cell-derived medullary car-
cinomas do not respond to radioiodine treatment
and usually have a much less favorable prognosis.
These tumors are obvious candidates for alternative
therapeutic approaches such as molecularly targeted
therapy.

Several small-molecule tyrosine kinase inhibitors
directed toward RET kinase have been tested in
preclinical and clinical studies. ZD6474, an orally
active low-molecular-weight receptor tyrosine
kinase inhibitor, is a potent inhibitor of the vascular
endothelial growth factor receptor 2 (VEGFR-2) and
effectively blocks RET tyrosine kinase.59 ZD6474 has
been shown to block phosphorylation and signaling
from RET/PTC3 and RET carrying the most common

MEN2A and MEN2B mutations in vitro, to induce
growth arrest of human papillary carcinoma cell
lines carrying RET/PTC1 and to prevent tumor
growth in nude mice after injection of RET/PTC3-
transformed fibroblasts or RET mutation-positive
medullary carcinoma cells.60,61

Some evidence of response to ZD6474 therapy has
been reported in patients with metastatic familial
medullary carcinoma in clinical trials.59 A multi-
center phase II double-blinded study is currently
open to compare the efficacy of ZD6474 (ZACTIMAt
AstraZeneca Pharmaceuticals, DE, USA) vs placebo
in patients with unresectable locally advanced
or metastatic medullary carcinoma. This large
and well-controlled study is expected to provide
conclusive evidence for the therapeutic efficacy of
this compound in inherited and sporadic medullary
thyroid carcinomas.

Since antitumor activity of ZD6474 is likely due to
a combination of its anti-RET activity and antiangio-
genic activity mediated by blocking VEGFR, it will
be of importance to find whether the extent of the
therapeutic response to ZD6474 depends on the
presence of RET mutation and its type. In preclinical
studies, ZD6474 has been shown to inhibit most of
the mutated variants of RET, except for the V804L
and V804M mutations.62 V804 in the RET protein
corresponds to the gate-keeper residues of ABL,
PDGFR, c-KIT, and EGFR kinases, and mutations at
these residues are known to confer resistance to
various inhibitors.63 These results suggest that RET
V804L and V804M mutations in medullary carcino-
mas may mediate primary resistance to ZD6474.62

Two other small-molecule tyrosine kinase inhibi-
tors, the pyrazolopyrimidine compounds PP1 and
PP2, have been tested in preclinical studies and
found to be effective in therapeutic concentrations
in blocking RET/PTC signaling in vivo and abolish-
ing its tumorigenic effects in experimental ani-
mals.64,65 A multikinase inhibitor SU12248
(Sunitinib) has been shown to effectively inhibit
signaling from RET/PTC kinase in the experimental
models and has been progressed to phase II clinical
trial in radioiodine-refractory, unresectable differ-
entiated thyroid cancer and medullary thyroid
cancer.66

Various BRAF inhibitors have been identified and
tested as potential therapeutic agents. They would
be particularly valuable for thyroid cancer treatment
due to the high frequency of BRAF mutation in
these tumors and its association with tumor ded-
ifferentiation and resistance to the conventional
radioiodine therapy. Moreover, since in the signal-
ing cascade, BRAF is downstream of RET and RAS,
BRAF inhibitors may be potentially effective in
tumors with other mutations affecting this signaling
pathway

BAY 43-9006 is a multikinase inhibitor with
potent activity against RAF, VEGFR-2, VEGFR-3,
PDGFRb, FLT-3, and c-KIT kinases.67 Orally admi-
nistered BAY 43-9006 has shown strong antitumor
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effect in xenograft models of several types of cancer,
and this effect is believed to be due to inhibition of
MAPK signaling by blocking RAF and of angiogen-
esis by blocking VEGFR-2, VEGFR-3, and other
kinases involved in tumor neovascularization.67

Importantly for the thyroid cancer field, BAY
43-9006 effectively blocks the wild-type BRAF and
the mutant V600E BRAF kinase activity, although its
effect on V600E BRAF is slightly less potent than on
the wild-type BRAF kinase.8,67 BAY 43-9006 inhibits
the BRAF signaling and growth of all thyroid cell
lines carrying the mutant BRAF.68 It impaired the
growth of the anaplastic carcinoma cell line xeno-
grafts in nude mice, and large areas of necrosis were
found in the xenografts after the treatment of
animals for 5 days.68 The inhibition of growth was
mainly a cytostatic effect due to the cell arrest in G1
phase, and more profound cell death could be
mediated by the inhibition of other kinases, espe-
cially those involved in angiogenesis. More recently,
the therapeutic effect of BAY 43-9006 has also been
found on cells carrying the activated forms of RET,
including RET/PTC.69

BAY 43-9006 has been tested in clinical trials for
several cancer types, including thyroid cancer.
Preliminary results of the trial in patients with
progressive papillary carcinoma have shown mini-
mal or partial response in some patients.70,71 How-
ever, the complete results of this study as well other
ongoing phase II trials of BAY 43-9006 (Sorafenib) in
anaplastic thyroid carcinoma and metastatic medul-
lary thyroid carcinoma are yet to be released. It will
be important to find whether the response to BAY
43-9006 correlates with tumor phenotype and pre-
sence of BRAF or other mutations.

The effects of other inhibitors of RAF kinases,
AAL-881 and LBT-613, have been explored in
thyroid cells in preclinical studies.72 Both com-
pounds were found to block MAPK signaling and
growth of rat thyroid cells and human thyroid tumor
cell lines harboring the V600E BRAF and RET/PTC1.
Suppression of the growth of BRAF mutant
tumor xenografts in nude mice was also noted.
However, some of these anticancer effects may be
due to off-target effects, since they also occurred
in the absence of inhibition of MEK and ERK
phosphorylation.72,73

Additional and potentially very effective thera-
peutic targets along the MAPK pathway are located
downstream of BRAF. A non-ATP competitive MEK
inhibitor CI-1040 has been found to abrogate
tumor growth in BRAF mutant xenografts derived
from various tumor types and has progressed to
clinical trials.74

As the results of ongoing clinical trials are
expected to be available in the near future and
testing of novel kinase inhibitors continues, this
information is expected to allow more precise
assessment of the role of molecular inhibitors,
administered alone or in combination, in the
therapy of thyroid cancer.
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