Nothing Special   »   [go: up one dir, main page]

Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

An ancestral mitochondrial DNA resembling a eubacterial genome in miniature

Abstract

Mitochondria, organelles specialized in energy conservation reactions in eukaryotic cells, have evolved from eubacteria-like endo-symbionts 1–3 whose closest known relatives are the rickettsial group of α-proteobacteria 4,5. Because characterized mitochondrial genomes vary markedly in structure3, it has been impossible to infer from them the initial form of the proto-mitochondrial genome. This would require the identification of minimally derived mitochondrial DNAs that better reflect the ancestral state. Here we describe such a primitive mitochondrial genome, in the freshwater protozoon Reclinomonas americana6. This protist displays ultrastructural characteristics that ally it with the retortamonads7,8, a protozoan group that lacks mitochondria8,9. R. americana mtDNA (69,034 base pairs) contains the largest collection of genes (97) so far identified in any mtDNA, including genes for 5S ribosomal RNA, the RNA component of RNase P, and at least 18 proteins not previously known to be encoded in mitochondria. Most surprising are four genes specifying a multisubunit, eubacterial-type RNA polymerase. Features of gene content together with eubacterial characteristics of genome organization and expression not found before in mitochondrial genomes indicate that R. americana mtDNA more closely resembles the ancestral proto-mitochondrial genome than any other mtDNA investigated to date.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Margulis, L. Origin of Eukaryotic Cells (Yale Univ. Press, New Haven, CT, 1970).

    Google Scholar 

  2. Gray, M. W. & Doolittle, W. F. Has the endosymbiont hypothesis been proven? Microbiol. Rev. 46, 1–42 (1982).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Gray, M. W. The endosymbiont hypothesis revisited. Int. Rev. Cytol. 141, 233–357 (1992).

    Article  CAS  Google Scholar 

  4. Yang, D., Oyaizu, Y., Oyaizu, H., Olsen, G. J. & Woese, C. R. Mitochondrial origins. Proc. Natl Acad. Sci. USA 82, 4443–4447 (1985).

    Article  ADS  CAS  Google Scholar 

  5. Gray, M. W. & Spencer, D. F. in Evolution of Microbial Life (eds Roberts, D. McL, Sharp, P., Alderson, G. & Collins, M.) 109–126 (Cambridge Univ. Press, 1996).

    Google Scholar 

  6. Flavin, M. & Nerad, T. A. Reclinomonas americana N. G., N. Sp., a new freshwater heterotrophic flagellate. J. Euk. Microbiol. 40, 172–179 (1993).

    Article  CAS  Google Scholar 

  7. O'Kelly, C. J. The jakobid flagellates: structural features of Jakoba, Reclinomonas and Histiona and implications for the early diversification of eukaryotes. J. Euk. Microbiol. 40, 627–636 (1993).

    Article  Google Scholar 

  8. Brugerolle, G. & Mignot, J.-P. in Handbook of Protoctista (eds Margulis, L., Corliss, J. O., Melkonian, M. & Chapman, D. J.) 259–265 (Jones and Bartlett, Boston, 1990).

    Google Scholar 

  9. Cavalier-Smith, T. Eukaryotes with no mitochondria. Nature 326, 332–333 (1987).

    Article  ADS  CAS  Google Scholar 

  10. Lang, B. F., Goff, L. J. & Gray, M. W. A 5 S rRNA gene is present in the mitochondrial genome of the protist Reclinomonas americana but is absent from red algal mitochondrial DNA. J. Mol. Biol. 261, 607–613 (1996).

    Article  CAS  Google Scholar 

  11. Gray, M. W. in The Molecular Biology of Plant Mitochondria (eds Levings, C. S. III & Vasil, I. K.) 635–659 (Kluwer Academic, Dordrecht, The Netherlands, 1995).

    Book  Google Scholar 

  12. Wolff, G., Plante, I., Lang, B. F., Kück, U. & Burger, G. Complete sequence of the mitochondrial DNA of the chlorophyte alga Prototheca wickerhamii. J. Mol. Biol. 237, 75–86 (1994).

    Article  CAS  Google Scholar 

  13. Masters, B. S., Stohl, L. L. & Clayton, D. A. Yeast mitochondrial RNA polymerase is homologous to those encoded by bacteriophages T3 and T7. Cell 51, 89–99 (1987).

    Article  CAS  Google Scholar 

  14. Chen, B., Kubelik, A. R., Mohr, S. & Breitenberger, C. A. Cloning and characterization of the Neurospora crassa cyt-5 gene. A nuclear-coded mitochondrial RNA polymerase with polyglutamine repeat. J. Biol. Chem. 271, 6537–6544 (1996).

    Article  CAS  Google Scholar 

  15. Bogorad, L. in The Molecular Biology of Plastids (eds Bogorad, L. & Vasil, I. K.) 93–124 (Academic, San Diego, 1991).

    Book  Google Scholar 

  16. Reith, M. Molecular biology of rhodophyte and chromophyte plastids. Annu. Rev. Plant Physiol. Plant Mol. Biol. 46, 549–575 (1995).

    Article  CAS  Google Scholar 

  17. Cermakian, N., Ikeda, T. M., Cedergren, R. & Gray, M. W. Sequences homologous to yeast mitochondrial and bacteriophage T3 and T7 RNA polymerases are widespread throughout the eukaryotic lineage. Nucleic Acids Res. 24, 648–654 (1996).

    Article  CAS  Google Scholar 

  18. Ito, K. Protein translocation genetics. Adv. Cell. Mol. Biol. Membr. Organelles 4, 35–60 (1995).

    Article  CAS  Google Scholar 

  19. Glick, B. S. & von Heijne, G. Saccharomyces cerevisiae mitochondria lack a bacterial-type Sec machinery. Prot. Sci. 5, 2651–2652 (1996).

    Article  CAS  Google Scholar 

  20. Oda, K. et al. Gene organization deduced from the complete sequence of liverwort Marchantia polymorpha mitochondrial DNA. A primitive form of plant mitochondrial genome. J. Mol. Biol. 223, 1–7(1992).

    Article  CAS  Google Scholar 

  21. Burger, G., Plante, I., Lonergan, K. M. & Gray, M. W. The mitochondrial DNA of the amoeboid protozoon, Acanthamoeba castellanii: complete sequence, gene content and genome organization. J. Mol. Biol. 245, 522–537 (1995).

    Article  CAS  Google Scholar 

  22. Burger, G., Lang, B. F., Reith, M. & Gray, M. W. Genes encoding the same three subunits of respiratory complex II are present in the mitochondrial DNA of two phylogenetically distant eukaryotes. Proc. Natl Acad. Sci. USA 93, 2328–2332 (1996).

    Article  ADS  CAS  Google Scholar 

  23. Gray, M. W. Origin and evolution of organelle genomes. Curr. Opin. Genet. Dev. 3, 884–890 (1993).

    Article  CAS  Google Scholar 

  24. Shine, J. & Dalgarno, L. The 3′-terminal sequence of Escherichia coli 16S ribosomal RNA: complementarity to nonsense triplets and ribosome binding sites. Proc. NatlAcad. Sci. USA 71, 1342–1346 (1974).

    Article  ADS  CAS  Google Scholar 

  25. Wise, C. A. & Martin, N. C. Dramatic size variation of yeast mitochonodrial RNAs suggests that RNase P RNAs can be quite small. J. Biol. Chem. 266, 19154–19157 (1991).

    CAS  PubMed  Google Scholar 

  26. Lee, Y. C., Lee, B. J. & Kang, H. S. The RNA component of mitochondrial ribonuclease P from Aspergillus nidulans. Eur. J. Biochem. 235, 297–303 (1996).

    Article  CAS  Google Scholar 

  27. Darr, S. C., Brown, J. W. & Pace, N. R. The varieties of ribonuclease P. Trends Biochem. Sci. 17, 178–182 (1992).

    Article  CAS  Google Scholar 

  28. Siegel, R. W., Banta, A. B., Haas, E. S., Brown, J. W. & Pace, N. R. Mycoplasma fermentans simplifies our view of the catalytic core of ribonuclease P RNA. RNA 2, 452–462 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Fraser, C. M. et al. The minimal gene complement of Mycoplasma genitalium. Science 270, 397–403 (1995).

    Article  ADS  CAS  Google Scholar 

  30. Fleischmann, R. D. et al. Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science 269, 496–512 (1995).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lang, B., Burger, G., O'Kelly, C. et al. An ancestral mitochondrial DNA resembling a eubacterial genome in miniature. Nature 387, 493–497 (1997). https://doi.org/10.1038/387493a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/387493a0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing