Nothing Special   »   [go: up one dir, main page]

You seem to have javascript disabled. Please note that many of the page functionalities won't work as expected without javascript enabled.
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = primal simplex algorithm

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 465 KiB  
Article
Experiments with Active-Set LP Algorithms Allowing Basis Deficiency
by Pablo Guerrero-García and Eligius M. T. Hendrix
Computers 2023, 12(1), 3; https://doi.org/10.3390/computers12010003 - 23 Dec 2022
Viewed by 1481
Abstract
An interesting question for linear programming (LP) algorithms is how to deal with solutions in which the number of nonzero variables is less than the number of rows of the matrix in standard form. An approach is that of basis deficiency-allowing (BDA) simplex [...] Read more.
An interesting question for linear programming (LP) algorithms is how to deal with solutions in which the number of nonzero variables is less than the number of rows of the matrix in standard form. An approach is that of basis deficiency-allowing (BDA) simplex variations, which work with a subset of independent columns of the coefficient matrix in standard form, wherein the basis is not necessarily represented by a square matrix. We describe one such algorithm with several variants. The research question deals with studying the computational behaviour by using small, extreme cases. For these instances, we must wonder which parameter setting or variants are more appropriate. We compare the setting of two nonsimplex active-set methods with Holmström’s TomLab LpSimplex v3.0 commercial sparse primal simplex commercial implementation. All of them update a sparse QR factorization in Matlab. The first two implementations require fewer iterations and provide better solution quality and running time. Full article
(This article belongs to the Special Issue Computational Science and Its Applications 2022)
Show Figures

Figure 1

Figure 1
<p>Concluding graph of the article, with references Gill et al. [<a href="#B44-computers-12-00003" class="html-bibr">44</a>], Hall and McKinnon [<a href="#B45-computers-12-00003" class="html-bibr">45</a>], Mészáros [<a href="#B46-computers-12-00003" class="html-bibr">46</a>], Stojković and Stanimirović [<a href="#B47-computers-12-00003" class="html-bibr">47</a>], Powell [<a href="#B48-computers-12-00003" class="html-bibr">48</a>], Klee and Minty [<a href="#B52-computers-12-00003" class="html-bibr">52</a>], Paparrizos et al. [<a href="#B53-computers-12-00003" class="html-bibr">53</a>], Goldfarb [<a href="#B54-computers-12-00003" class="html-bibr">54</a>], Clausen [<a href="#B55-computers-12-00003" class="html-bibr">55</a>], Andrus and Schäferkotter [<a href="#B60-computers-12-00003" class="html-bibr">60</a>], Quandt and Kuhn [<a href="#B61-computers-12-00003" class="html-bibr">61</a>], Chen et al. [<a href="#B62-computers-12-00003" class="html-bibr">62</a>], Guerrero-García and Santos-Palomo [<a href="#B37-computers-12-00003" class="html-bibr">37</a>] and Guerrero-García and Hendrix [<a href="#B17-computers-12-00003" class="html-bibr">17</a>].</p>
Full article ">
21 pages, 984 KiB  
Article
Predicting the Execution Time of the Primal and Dual Simplex Algorithms Using Artificial Neural Networks
by Sophia Voulgaropoulou, Nikolaos Samaras and Nikolaos Ploskas
Mathematics 2022, 10(7), 1038; https://doi.org/10.3390/math10071038 - 24 Mar 2022
Cited by 2 | Viewed by 1886
Abstract
Selection of the most efficient algorithm for a given set of linear programming problems has been a significant and, at the same time, challenging process for linear programming solvers. The most widely used linear programming algorithms are the primal simplex algorithm, the dual [...] Read more.
Selection of the most efficient algorithm for a given set of linear programming problems has been a significant and, at the same time, challenging process for linear programming solvers. The most widely used linear programming algorithms are the primal simplex algorithm, the dual simplex algorithm, and the interior point method. Interested in algorithm selection processes in modern mathematical solvers, we had previously worked on using artificial neural networks to formulate and propose a regression model for the prediction of the execution time of the interior point method on a set of benchmark linear programming problems. Extending our previous work, we are now examining a prediction model using artificial neural networks for the performance of CPLEX’s primal and dual simplex algorithms. Our study shows that, for the examined set of benchmark linear programming problems, a regression model that can accurately predict the execution time of these algorithms could not be formed. Therefore, we are proceeding further with our analysis, treating the problem as a classification one. Instead of attempting to predict exact values for the execution time of primal and dual simplex algorithms, our models estimate classes, expressed as time ranges, under which the execution time of each algorithm is expected to fall. Experimental results show a good performance of the classification models for both primal and dual methods, with the relevant accuracy score reaching 0.83 and 0.84, respectively. Full article
(This article belongs to the Section Computational and Applied Mathematics)
Show Figures

Figure 1

Figure 1
<p>Regression model for interior point method—tuning the number of neurons (1 hidden layer).</p>
Full article ">Figure 2
<p>Regression model for interior point method—tuning the activation function.</p>
Full article ">Figure 3
<p>Regression model for primal method—tuning the number of neurons in hidden layers.</p>
Full article ">Figure 4
<p>Regression model for primal method—tuning the activation function.</p>
Full article ">Figure 5
<p>Regression model for dual method—tuning the number of neurons in hidden layers.</p>
Full article ">Figure 6
<p>Regression model for dual method—tuning the activation function.</p>
Full article ">Figure 7
<p>Classification model for primal method—tuning the number of hidden layers and neurons (<span class="html-italic">tanh</span> activation function, <span class="html-italic">lbfgs</span> solver).</p>
Full article ">Figure 8
<p>Classification model for primal method—tuning the activation function and solver (2 hidden layers, 100 neurons each).</p>
Full article ">Figure 9
<p>Classification model for primal method—testing different classification algorithms (1 hidden layer, <span class="html-italic">tanh</span> activation function, <span class="html-italic">lbfgs</span> solver).</p>
Full article ">Figure 10
<p>Classification model for dual method—tuning the number of hidden layers and neurons (<span class="html-italic">relu</span> activation function, <span class="html-italic">lbfgs</span> solver).</p>
Full article ">Figure 11
<p>Classification model for dual method—tuning the activation function and solver (2 hidden layers, 100 neurons each).</p>
Full article ">Figure 12
<p>Classification model for dual method—testing different classification algorithms.</p>
Full article ">
41 pages, 24916 KiB  
Article
A Massively Parallel Hybrid Finite Volume/Finite Element Scheme for Computational Fluid Dynamics
by Laura Río-Martín, Saray Busto and Michael Dumbser
Mathematics 2021, 9(18), 2316; https://doi.org/10.3390/math9182316 - 18 Sep 2021
Cited by 16 | Viewed by 4042
Abstract
In this paper, we propose a novel family of semi-implicit hybrid finite volume/finite element schemes for computational fluid dynamics (CFD), in particular for the approximate solution of the incompressible and compressible Navier-Stokes equations, as well as for the shallow water equations on staggered [...] Read more.
In this paper, we propose a novel family of semi-implicit hybrid finite volume/finite element schemes for computational fluid dynamics (CFD), in particular for the approximate solution of the incompressible and compressible Navier-Stokes equations, as well as for the shallow water equations on staggered unstructured meshes in two and three space dimensions. The key features of the method are the use of an edge-based/face-based staggered dual mesh for the discretization of the nonlinear convective terms at the aid of explicit high resolution Godunov-type finite volume schemes, while pressure terms are discretized implicitly using classical continuous Lagrange finite elements on the primal simplex mesh. The resulting pressure system is symmetric positive definite and can thus be very efficiently solved at the aid of classical Krylov subspace methods, such as a matrix-free conjugate gradient method. For the compressible Navier-Stokes equations, the schemes are by construction asymptotic preserving in the low Mach number limit of the equations, hence a consistent hybrid FV/FE method for the incompressible equations is retrieved. All parts of the algorithm can be efficiently parallelized, i.e., the explicit finite volume step as well as the matrix-vector product in the implicit pressure solver. Concerning parallel implementation, we employ the Message-Passing Interface (MPI) standard in combination with spatial domain decomposition based on the free software package METIS. To show the versatility of the proposed schemes, we present a wide range of applications, starting from environmental and geophysical flows, such as dambreak problems and natural convection, over direct numerical simulations of turbulent incompressible flows to high Mach number compressible flows with shock waves. An excellent agreement with exact analytical, numerical or experimental reference solutions is achieved in all cases. Most of the simulations are run with millions of degrees of freedom on thousands of CPU cores. We show strong scaling results for the hybrid FV/FE scheme applied to the 3D incompressible Navier-Stokes equations, using millions of degrees of freedom and up to 4096 CPU cores. The largest simulation shown in this paper is the well-known 3D Taylor-Green vortex benchmark run on 671 million tetrahedral elements on 32,768 CPU cores, showing clearly the suitability of the presented algorithm for the solution of large CFD problems on modern massively parallel distributed memory supercomputers. Full article
(This article belongs to the Special Issue Modeling and Numerical Analysis of Energy and Environment 2021)
Show Figures

Figure 1

Figure 1
<p>Construction of face-type dual elements from a 2D triangular mesh. (<b>Left</b>) primal elements <math display="inline"><semantics> <msub> <mi>T</mi> <mi>k</mi> </msub> </semantics></math>, <math display="inline"><semantics> <msub> <mi>T</mi> <mi>l</mi> </msub> </semantics></math>, <math display="inline"><semantics> <msub> <mi>T</mi> <mi>m</mi> </msub> </semantics></math> with vertex <math display="inline"><semantics> <mrow> <msub> <mi>V</mi> <mi>n</mi> </msub> <mo>,</mo> <mspace width="0.166667em"/> <mi>n</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo>…</mo> <mo>,</mo> <mn>5</mn> </mrow> </semantics></math>. (<b>Center</b>) dual interior cells <math display="inline"><semantics> <msub> <mi>C</mi> <mi>i</mi> </msub> </semantics></math>, <math display="inline"><semantics> <msub> <mi>C</mi> <mi>j</mi> </msub> </semantics></math> (shadowed in grey); white triangles correspond to boundary cells. (<b>Right</b>) boundary face, <math display="inline"><semantics> <msub> <mi mathvariant="normal">Γ</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> </semantics></math> (highlighted in red), between the dual elements <math display="inline"><semantics> <msub> <mi>C</mi> <mi>i</mi> </msub> </semantics></math> and <math display="inline"><semantics> <msub> <mi>C</mi> <mi>j</mi> </msub> </semantics></math>.</p>
Full article ">Figure 2
<p>Staggered dual mesh in 3D. (<b>Left</b>) interior finite volume. (<b>Right</b>) boundary finite volume.</p>
Full article ">Figure 3
<p>(<b>Left</b>) Split-Cartesian mesh of <math display="inline"><semantics> <msup> <mn>32</mn> <mn>3</mn> </msup> </semantics></math> hexahedra and <math display="inline"><semantics> <msup> <mn>2</mn> <mn>3</mn> </msup> </semantics></math> MPI ranks. (<b>Right</b>) Detail of the division of hexahedra into tetrahedra.</p>
Full article ">Figure 4
<p>(<b>Left</b>) Wall-clock time as a function of the processor number to solve the TGV benchmark with 83,886,080 primal elements. (<b>Right</b>) Efficiency.</p>
Full article ">Figure 5
<p>Speedup graph (<b>left</b>) comparing the measured and the ideal wall-clock time from 16 to 4096 CPUs, and efficiency graph (<b>right</b>) considering three different meshes: <math display="inline"><semantics> <mrow> <msup> <mn>64</mn> <mn>3</mn> </msup> <mo>×</mo> <mn>5</mn> </mrow> </semantics></math> tetrahedra (in blue), <math display="inline"><semantics> <mrow> <msup> <mn>128</mn> <mn>3</mn> </msup> <mo>×</mo> <mn>5</mn> </mrow> </semantics></math> tetrahedra (in green), and <math display="inline"><semantics> <mrow> <msup> <mn>256</mn> <mn>3</mn> </msup> <mo>×</mo> <mn>5</mn> </mrow> </semantics></math> tetrahedra (in cyan).</p>
Full article ">Figure 6
<p>Scaled speedup of a parallel simulation of the TGV benchmark. The number of elements per processor remains constant.</p>
Full article ">Figure 7
<p>Comparative of the wall-clock time (<b>left</b>) and the efficiency (<b>right</b>) considering the hybrid FV/FE method (solid blue line), finite volumes (dashed red line) and finite elements (dash-dotted cyan line) to solve the TGV benchmark with <math display="inline"><semantics> <mrow> <mn>5</mn> <mo>×</mo> <msup> <mn>256</mn> <mn>3</mn> </msup> <mo>=</mo> </mrow> </semantics></math> 83,886,080 primal elements.</p>
Full article ">Figure 8
<p>Three-dimensional Taylor-Green vortex with <math display="inline"><semantics> <mrow> <mi>R</mi> <mi>e</mi> <mo>=</mo> <mn>100</mn> </mrow> </semantics></math>. Pressure isosurfaces at time <math display="inline"><semantics> <mrow> <mi>t</mi> <mo>=</mo> <mn>10</mn> </mrow> </semantics></math> for <math display="inline"><semantics> <mrow> <mi>p</mi> <mo>∈</mo> <mfenced separators="" open="[" close="]"> <mo>−</mo> <mn>0.1</mn> <mo>,</mo> <mn>0.4</mn> </mfenced> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mo>Δ</mo> <mi>p</mi> <mo>=</mo> <mn>0.025</mn> </mrow> </semantics></math> (<b>left</b>) and 1D plot of the total kinetic energy dissipation rate compared against the DNS data in [<a href="#B93-mathematics-09-02316" class="html-bibr">93</a>] (<b>right</b>).</p>
Full article ">Figure 9
<p>Three-dimensional Taylor-Green vortex with <math display="inline"><semantics> <mrow> <mi>R</mi> <mi>e</mi> <mo>=</mo> <mn>200</mn> </mrow> </semantics></math>. Pressure isosurfaces at time <math display="inline"><semantics> <mrow> <mi>t</mi> <mo>=</mo> <mn>10</mn> </mrow> </semantics></math> for <math display="inline"><semantics> <mrow> <mi>p</mi> <mo>∈</mo> <mfenced separators="" open="[" close="]"> <mo>−</mo> <mn>0.1</mn> <mo>,</mo> <mn>0.4</mn> </mfenced> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mo>Δ</mo> <mi>p</mi> <mo>=</mo> <mn>0.025</mn> </mrow> </semantics></math> (<b>left</b>) and 1D plot of the total kinetic energy dissipation rate compared against the DNS data in [<a href="#B93-mathematics-09-02316" class="html-bibr">93</a>] (<b>right</b>).</p>
Full article ">Figure 10
<p>Three-dimensional Taylor-Green vortex with <math display="inline"><semantics> <mrow> <mi>R</mi> <mi>e</mi> <mo>=</mo> <mn>400</mn> </mrow> </semantics></math>. Pressure isosurfaces at time <math display="inline"><semantics> <mrow> <mi>t</mi> <mo>=</mo> <mn>10</mn> </mrow> </semantics></math> for <math display="inline"><semantics> <mrow> <mi>p</mi> <mo>∈</mo> <mfenced separators="" open="[" close="]"> <mo>−</mo> <mn>0.1</mn> <mo>,</mo> <mn>0.4</mn> </mfenced> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mo>Δ</mo> <mi>p</mi> <mo>=</mo> <mn>0.025</mn> </mrow> </semantics></math> (<b>left</b>) and 1D plot of the total kinetic energy dissipation rate compared against the DNS data in [<a href="#B93-mathematics-09-02316" class="html-bibr">93</a>] (<b>right</b>).</p>
Full article ">Figure 11
<p>Three-dimensional Taylor-Green vortex with <math display="inline"><semantics> <mrow> <mi>R</mi> <mi>e</mi> <mo>=</mo> <mn>800</mn> </mrow> </semantics></math>. Pressure isosurfaces at time <math display="inline"><semantics> <mrow> <mi>t</mi> <mo>=</mo> <mn>10</mn> </mrow> </semantics></math> for <math display="inline"><semantics> <mrow> <mi>p</mi> <mo>∈</mo> <mfenced separators="" open="[" close="]"> <mo>−</mo> <mn>0.1</mn> <mo>,</mo> <mn>0.4</mn> </mfenced> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mo>Δ</mo> <mi>p</mi> <mo>=</mo> <mn>0.025</mn> </mrow> </semantics></math> (<b>left</b>) and 1D plot of the total kinetic energy dissipation rate compared against the DNS data in [<a href="#B93-mathematics-09-02316" class="html-bibr">93</a>] (<b>right</b>).</p>
Full article ">Figure 12
<p>Three-dimensional Taylor-Green vortex with <math display="inline"><semantics> <mrow> <mi>R</mi> <mi>e</mi> <mo>=</mo> <mn>1600</mn> </mrow> </semantics></math>. Pressure isosurfaces at time <math display="inline"><semantics> <mrow> <mi>t</mi> <mo>=</mo> <mn>10</mn> </mrow> </semantics></math> (<b>left</b>) and 1D plot of the total kinetic energy dissipation rate compared against the DNS data in [<a href="#B93-mathematics-09-02316" class="html-bibr">93</a>] (<b>right</b>).</p>
Full article ">Figure 13
<p>Streamlines and velocity contour colors (m/s) for the three–dimensional lid–driven cavity at <math display="inline"><semantics> <mrow> <mi>R</mi> <mi>e</mi> <mo>=</mo> <mn>400</mn> </mrow> </semantics></math> (<b>left</b>) and <math display="inline"><semantics> <mrow> <mi>R</mi> <mi>e</mi> <mo>=</mo> <mn>1000</mn> </mrow> </semantics></math> (<b>right</b>) at time <math display="inline"><semantics> <mrow> <mi>t</mi> <mo>=</mo> <mn>40</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 14
<p>1D cuts through the numerical solution for the 3D lid–driven cavity at time <math display="inline"><semantics> <mrow> <mi>t</mi> <mo>=</mo> <mn>40</mn> </mrow> </semantics></math> and comparison with available numerical reference solutions in [<a href="#B48-mathematics-09-02316" class="html-bibr">48</a>,<a href="#B94-mathematics-09-02316" class="html-bibr">94</a>]. (<b>Left</b>) <math display="inline"><semantics> <mrow> <mi>R</mi> <mi>e</mi> <mo>=</mo> <mn>400</mn> </mrow> </semantics></math>. (<b>Right</b>) <math display="inline"><semantics> <mrow> <mi>R</mi> <mi>e</mi> <mo>=</mo> <mn>1000</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 15
<p>Comparison of the temperature field obtained using the weakly compressible scheme (<b>left</b>) and the all Mach number solver. From <b>top</b> to <b>bottom</b>: <math display="inline"><semantics> <mrow> <mi>t</mi> <mo>=</mo> <mn>0.5</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>t</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>t</mi> <mo>=</mo> <mn>1.5</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 16
<p>Temperature contours at plane <math display="inline"><semantics> <mrow> <mi>x</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math> and isosurfaces <math display="inline"><semantics> <mrow> <mi>T</mi> <mo>∈</mo> <mfenced separators="" open="{" close="}"> <mn>410</mn> <mo>,</mo> <mn>420</mn> <mo>,</mo> <mn>430</mn> </mfenced> </mrow> </semantics></math> for the 3D rising bubble. From <b>top left</b> to <b>bottom right</b>: <math display="inline"><semantics> <mrow> <mi>t</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>t</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>t</mi> <mo>=</mo> <mn>2</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>t</mi> <mo>=</mo> <mn>3</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>t</mi> <mo>=</mo> <mn>4</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>t</mi> <mo>=</mo> <mn>5</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 17
<p>Mach contours and velocity vectors at plane <math display="inline"><semantics> <mrow> <mi>x</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math> for the 3D rising bubble. From <b>left</b> to <b>right</b>: <math display="inline"><semantics> <mrow> <mi>t</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>t</mi> <mo>=</mo> <mn>3</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>t</mi> <mo>=</mo> <mn>5</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 18
<p>Sound field generated by the weakly compressible flow around a circular cylinder at time <math display="inline"><semantics> <mrow> <mi>t</mi> <mo>=</mo> <mn>900</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 19
<p>Time series of the velocity component <math display="inline"><semantics> <mrow> <msub> <mi>v</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <msub> <mi mathvariant="bold">x</mi> <mi>p</mi> </msub> <mo>,</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> at <math display="inline"><semantics> <mrow> <msub> <mi mathvariant="bold">x</mi> <mi>p</mi> </msub> <mo>=</mo> <mrow> <mo>(</mo> <mn>10</mn> <mo>,</mo> <mn>0</mn> <mo>)</mo> </mrow> </mrow> </semantics></math> in the time interval <math display="inline"><semantics> <mrow> <mi>t</mi> <mo>∈</mo> <mo>[</mo> <mn>600</mn> <mo>,</mo> <mn>900</mn> <mo>]</mo> </mrow> </semantics></math>. The resulting Strouhal number is <math display="inline"><semantics> <mrow> <mi>S</mi> <mi>t</mi> <mo>=</mo> <mn>0.179</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 20
<p>Temporal evolution of the density contours of the 2D compressible Kelvin–Helmholtz instability at times <math display="inline"><semantics> <mrow> <mi>t</mi> <mo>=</mo> <mn>4</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>t</mi> <mo>=</mo> <mn>5</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>t</mi> <mo>=</mo> <mn>6</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>t</mi> <mo>=</mo> <mn>7</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>t</mi> <mo>=</mo> <mn>8</mn> </mrow> </semantics></math>, from <b>top</b> to <b>bottom</b>. Three periods of the periodic domain in the <math display="inline"><semantics> <mrow> <mi>x</mi> <mo>−</mo> </mrow> </semantics></math>direction are shown.</p>
Full article ">Figure 20 Cont.
<p>Temporal evolution of the density contours of the 2D compressible Kelvin–Helmholtz instability at times <math display="inline"><semantics> <mrow> <mi>t</mi> <mo>=</mo> <mn>4</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>t</mi> <mo>=</mo> <mn>5</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>t</mi> <mo>=</mo> <mn>6</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>t</mi> <mo>=</mo> <mn>7</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>t</mi> <mo>=</mo> <mn>8</mn> </mrow> </semantics></math>, from <b>top</b> to <b>bottom</b>. Three periods of the periodic domain in the <math display="inline"><semantics> <mrow> <mi>x</mi> <mo>−</mo> </mrow> </semantics></math>direction are shown.</p>
Full article ">Figure 21
<p>Riemann problems solved on a regular unstructured 3D mesh composed of <math display="inline"><semantics> <mrow> <mn>5</mn> <mo>×</mo> <mn>512</mn> <mo>×</mo> <mn>32</mn> <mo>×</mo> <mn>32</mn> </mrow> </semantics></math> primal simplex elements. <b>Top</b> row: results obtained for the Sod shock tube at time <math display="inline"><semantics> <mrow> <mi>t</mi> <mo>=</mo> <mn>0.2</mn> </mrow> </semantics></math>. <b>Bottom</b> row: results obtained for the Riemann problem RP4 of Toro at time <math display="inline"><semantics> <mrow> <mi>t</mi> <mo>=</mo> <mn>0.0035</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 22
<p>Sketch of the computational domain for the 3D dambreak on a dry plane test case including the position of the wave gauges.</p>
Full article ">Figure 23
<p>Water surface for the dambreak over a plane dry bed obtained at times <math display="inline"><semantics> <mrow> <mi>t</mi> <mo>∈</mo> <mfenced separators="" open="{" close="}"> <mn>0.1</mn> <mo>,</mo> <mn>0.2</mn> <mo>,</mo> <mn>0.3</mn> <mo>,</mo> <mn>0.5</mn> <mo>,</mo> <mn>1.0</mn> <mo>,</mo> <mn>2.0</mn> </mfenced> </mrow> </semantics></math>, from <b>top left</b> to <b>bottom right</b>. The last figure also depicts the MPI partition of the computational domain considered to run the simulation on 2400 CPU cores of the SuperMUC-NG supercomputer.</p>
Full article ">Figure 24
<p>Time evolution of the free surface elevation obtained at wave gauges 0, <math display="inline"><semantics> <mrow> <mo>−</mo> <mn>2</mn> </mrow> </semantics></math> A, <math display="inline"><semantics> <mrow> <mo>−</mo> <mn>3</mn> </mrow> </semantics></math> A, <math display="inline"><semantics> <mrow> <mo>−</mo> <mn>5</mn> </mrow> </semantics></math> A, 1 A and 8 A for the dambreak over a plane dry bed. Hybrid FV/FE scheme applied to the shallow water equations (blue line); experimental results of Fraccarollo and Toro [<a href="#B102-mathematics-09-02316" class="html-bibr">102</a>] (squares); explicit Godunov-type finite volume scheme (red line); fully nonhydrostatic 3D SPH scheme [<a href="#B103-mathematics-09-02316" class="html-bibr">103</a>] (black dashed line); 3D diffuse interface method [<a href="#B104-mathematics-09-02316" class="html-bibr">104</a>] (black line).</p>
Full article ">Figure 25
<p>Computational domain and wave gauges locations for the 3D CADAM test case.</p>
Full article ">Figure 26
<p>Free surface elevation of the CADAM test case obtained at times <math display="inline"><semantics> <mrow> <mi>t</mi> <mo>∈</mo> <mfenced separators="" open="{" close="}"> <mn>0.5</mn> <mo>,</mo> <mn>1.0</mn> <mo>,</mo> <mn>2.5</mn> <mo>,</mo> <mn>4.0</mn> <mo>,</mo> <mn>6.0</mn> <mo>,</mo> <mn>8.0</mn> </mfenced> </mrow> </semantics></math>. Right bottom figure also depicts the MPI partition obtained using METIS and used to run the test on 2400 CPU cores of SuperMUC-NG supercomputer.</p>
Full article ">Figure 27
<p>Time evolution of the free surface at wave gauges G1, G3, G4, G5, G7, G8 (from <b>left top</b> to <b>right bottom</b>) for CADAM benchmark. Hybrid FV/FE scheme applied to the shallow water equations run in 2400 CPU cores (blue line); experimental results of Fraccarollo and Toro [<a href="#B102-mathematics-09-02316" class="html-bibr">102</a>] (squares); explicit Godunov-type finite volume scheme (red line); fully nonhydrostatic 3D SPH scheme [<a href="#B106-mathematics-09-02316" class="html-bibr">106</a>] (black dashed line); 3D diffuse interface method [<a href="#B104-mathematics-09-02316" class="html-bibr">104</a>] (black line).</p>
Full article ">
27 pages, 1087 KiB  
Article
Linear Programming and Fuzzy Optimization to Substantiate Investment Decisions in Tangible Assets
by Marcel-Ioan Boloș, Ioana-Alexandra Bradea and Camelia Delcea
Entropy 2020, 22(1), 121; https://doi.org/10.3390/e22010121 - 19 Jan 2020
Cited by 4 | Viewed by 3825
Abstract
This paper studies the problem of tangible assets acquisition within the company by proposing a new hybrid model that uses linear programming and fuzzy numbers. Regarding linear programming, two methods were implemented in the model, namely: the graphical method and the primal simplex [...] Read more.
This paper studies the problem of tangible assets acquisition within the company by proposing a new hybrid model that uses linear programming and fuzzy numbers. Regarding linear programming, two methods were implemented in the model, namely: the graphical method and the primal simplex algorithm. This hybrid model is proposed for solving investment decision problems, based on decision variables, objective function coefficients, and a matrix of constraints, all of them presented in the form of triangular fuzzy numbers. Solving the primal simplex algorithm using fuzzy numbers and coefficients, allowed the results of the linear programming problem to also be in the form of fuzzy variables. The fuzzy variables compared to the crisp variables allow the determination of optimal intervals for which the objective function has values depending on the fuzzy variables. The major advantage of this model is that the results are presented as value ranges that intervene in the decision-making process. Thus, the company’s decision makers can select any of the result values as they satisfy two basic requirements namely: minimizing/maximizing the objective function and satisfying the basic requirements regarding the constraints resulting from the company’s activity. The paper is accompanied by a practical example. Full article
Show Figures

Figure 1

Figure 1
<p>The triangular fuzzy number <span class="html-italic">C</span> used in fuzzy modeling.</p>
Full article ">Figure 2
<p>The graphical solution of the linear programming method.</p>
Full article ">Figure 3
<p>The flow chart of problem solving using simplex algorithms with fuzzy coefficients.</p>
Full article ">
Back to TopTop