Nothing Special   »   [go: up one dir, main page]

You seem to have javascript disabled. Please note that many of the page functionalities won't work as expected without javascript enabled.
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (11)

Search Parameters:
Keywords = symmetric line expansion

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 543 KiB  
Article
AHD-SLE: Anomalous Hyperedge Detection on Hypergraph Symmetric Line Expansion
by Yingle Li, Hongtao Yu, Haitao Li, Fei Pan and Shuxin Liu
Axioms 2024, 13(6), 387; https://doi.org/10.3390/axioms13060387 - 7 Jun 2024
Viewed by 899
Abstract
Graph anomaly detection aims to identify unusual patterns or structures in graph-structured data. Most existing research focuses on anomalous nodes in ordinary graphs with pairwise relationships. However, complex real-world systems often involve relationships that go beyond pairwise relationships, and insufficient attention is paid [...] Read more.
Graph anomaly detection aims to identify unusual patterns or structures in graph-structured data. Most existing research focuses on anomalous nodes in ordinary graphs with pairwise relationships. However, complex real-world systems often involve relationships that go beyond pairwise relationships, and insufficient attention is paid to hypergraph anomaly detection, especially anomalous hyperedge detection. Some existing methods for researching hypergraphs involve transforming hypergraphs into ordinary graphs for learning, which can result in poor detection performance due to the loss of high-order information. We propose a new method for Anomalous Hyperedge Detection on Symmetric Line Expansion (AHD-SLE). The SLE of a hypergraph is an ordinary graph with pairwise relationships and can be backmapped to the hypergraph, so the SLE is able to preserve the higher-order information of the hypergraph. The AHD-SLE first maps the hypergraph to the SLE; then, the information is aggregated by Graph Convolutional Networks (GCNs) in the SLE. After that, the hyperedge embedding representation is obtained through a backmapping operation. Finally, an anomaly function is designed to detect anomalous hyperedges using the hyperedge embedding representation. Experiments on five different types of real hypergraph datasets show that AHD-SLE outperforms the baseline algorithm in terms of Area Under the receiver operating characteristic Curve(AUC) and Recall metrics. Full article
(This article belongs to the Special Issue Mathematical Modelling of Complex Systems)
Show Figures

Figure 1

Figure 1
<p>Hypergraph expansions. (<b>a</b>) A hypergraph with 7 nodes and 3 hyperedges. (<b>b</b>) Star expansion. (<b>c</b>) Clique expansion. (<b>d</b>) Line expansion. (<b>e</b>) Symmetric line expansion.</p>
Full article ">Figure 2
<p>The bijection between node–hyperedge pairs and SLE graph nodes.</p>
Full article ">Figure 3
<p>Anomalous Hyperedge Detection method on hypergraph Symmetric Line Expansion.</p>
Full article ">Figure 4
<p>Impact of different anomalous proportions for anomaly detection. (<b>a</b>) is the impact on AUC, (<b>b</b>) is the impact on R@k.</p>
Full article ">Figure 5
<p>Impact of different <math display="inline"><semantics> <msub> <mi>w</mi> <mi>v</mi> </msub> </semantics></math> and <math display="inline"><semantics> <msub> <mi>w</mi> <mi>e</mi> </msub> </semantics></math> for detection performance. The x-axis is the value of the <math display="inline"><semantics> <msub> <mi>w</mi> <mi>v</mi> </msub> </semantics></math>. Accordingly, the <math display="inline"><semantics> <mrow> <msub> <mi>w</mi> <mi>e</mi> </msub> <mo>=</mo> <mn>2</mn> <mo>−</mo> <msub> <mi>w</mi> <mi>v</mi> </msub> </mrow> </semantics></math>. The y-axis in (<b>a</b>) is the AUC value under different <math display="inline"><semantics> <msub> <mi>w</mi> <mi>v</mi> </msub> </semantics></math>, and the y-axis in (<b>b</b>) is the R@k value under different <math display="inline"><semantics> <msub> <mi>w</mi> <mi>v</mi> </msub> </semantics></math>.</p>
Full article ">Figure 6
<p>Impact of different GCN hidden sizes for detection performance. (<b>a</b>) is the impact on AUC, (<b>b</b>) is the impact on R@k.</p>
Full article ">
16 pages, 4271 KiB  
Article
Combined Impact of the Lewis Number and Thermal Expansion on Laminar Flame Flashback in Tubes
by Kai Huang, Louis Benteux, Wenhu Han and Damir M. Valiev
Fluids 2024, 9(1), 28; https://doi.org/10.3390/fluids9010028 - 19 Jan 2024
Viewed by 1670
Abstract
The understanding of the boundary layer flame flashback (BLF) has considerably improved in recent decades, driven by the increasing focus on clean energy and the need to address the operational issues associated with flashback. This study investigates the influence of the Lewis number [...] Read more.
The understanding of the boundary layer flame flashback (BLF) has considerably improved in recent decades, driven by the increasing focus on clean energy and the need to address the operational issues associated with flashback. This study investigates the influence of the Lewis number (Le) on symmetric flame shapes under the critical conditions for a laminar boundary layer flashback in cylindrical tubes. It has been found that the transformation of the flame shape from a mushroom to a tulip happens in a tube of a given radius, as the thermal expansion coefficient and Le are modified. A smaller Lewis number results in a local increase in the burning rate at the flame tip, with the flame being able to propagate closer to the wall, which significantly increases the flashback propensity, in line with previous findings. In cases with a Lewis number smaller than unity, a higher thermal expansion results in a flame propagation happening closer to the wall, thus facing a weaker oncoming flow and, consequently, becoming more prone to flashback. For Le > 1, the effect of the increase in the thermal expansion coefficient on the flashback tendency is much less pronounced. Full article
(This article belongs to the Collection Challenges and Advances in Heat and Mass Transfer)
Show Figures

Figure 1

Figure 1
<p>Sketch of the numerical setup.</p>
Full article ">Figure 2
<p>Isolines of the normalized reaction rate <math display="inline"><semantics> <mover> <mi>w</mi> <mo>¯</mo> </mover> </semantics></math> at the critical condition for <math display="inline"><semantics> <mrow> <mi>L</mi> <mi>e</mi> <mo>=</mo> <mn>0.2</mn> <mo>–</mo> <mrow> <mn>1.4</mn> </mrow> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>R</mi> <mo>=</mo> <mn>5</mn> <mo>–</mo> <mn>20</mn> <msub> <mi>δ</mi> <mi>L</mi> </msub> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>θ</mi> <mo>=</mo> <mn>4</mn> </mrow> </semantics></math>, shown by blue and orange lines, representing <math display="inline"><semantics> <mrow> <mover> <mi>w</mi> <mo>¯</mo> </mover> <mo>=</mo> <mn>0.1</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mover> <mi>w</mi> <mo>¯</mo> </mover> <mo>=</mo> <mn>0.7</mn> </mrow> </semantics></math>, respectively. For each snapshot, the reaction rate is normalized with a respective maximum value.</p>
Full article ">Figure 3
<p>Critical velocity at tube axis <math display="inline"><semantics> <msub> <mi>U</mi> <mrow> <mi>m</mi> <mi>a</mi> <mi>x</mi> </mrow> </msub> </semantics></math> versus radius <span class="html-italic">R</span> at the critical condition for different <math display="inline"><semantics> <mrow> <mi>L</mi> <mi>e</mi> <mo>=</mo> <mn>0.2</mn> <mo>–</mo> <mrow> <mn>1.4</mn> </mrow> <mo>,</mo> <mspace width="4pt"/> <mi>θ</mi> <mo>=</mo> <mn>4</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 4
<p>Critical velocity at the tube axis <math display="inline"><semantics> <msub> <mi>U</mi> <mrow> <mi>m</mi> <mi>a</mi> <mi>x</mi> </mrow> </msub> </semantics></math> versus radius <span class="html-italic">R</span> for different thermal expansion coefficients (<math display="inline"><semantics> <mrow> <mi>θ</mi> <mo>=</mo> <mn>4</mn> <mo>,</mo> <mspace width="4pt"/> <mn>8</mn> <mo>,</mo> <mspace width="4pt"/> <mn>12</mn> <mo>,</mo> <mspace width="4pt"/> <mi>L</mi> <mi>e</mi> <mo>=</mo> <mn>0.4</mn> </mrow> </semantics></math>).</p>
Full article ">Figure 5
<p>Flame shape at different radii, (<b>a</b>) <math display="inline"><semantics> <mrow> <mi>R</mi> <mo>=</mo> <mn>11</mn> <msub> <mi>δ</mi> <mi>L</mi> </msub> </mrow> </semantics></math>, (<b>b</b>) <math display="inline"><semantics> <mrow> <mi>R</mi> <mo>=</mo> <mn>20</mn> <msub> <mi>δ</mi> <mi>L</mi> </msub> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>θ</mi> <mo>=</mo> <mn>4</mn> <mo>,</mo> <mspace width="4pt"/> <mn>8</mn> <mo>,</mo> <mspace width="4pt"/> <mn>12</mn> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <mrow> <mi>L</mi> <mi>e</mi> <mspace width="3.33333pt"/> <mo>=</mo> <mspace width="3.33333pt"/> <mn>0.4</mn> </mrow> <mo>,</mo> <mspace width="4pt"/> <mn>0.6</mn> <mo>,</mo> <mspace width="4pt"/> <mn>1.0</mn> <mo>,</mo> <mspace width="4pt"/> <mn>1.4</mn> </mrow> </semantics></math> at the critical condition. Blue, red, and black lines represent <math display="inline"><semantics> <mrow> <mover> <mi>w</mi> <mo>¯</mo> </mover> <mo>=</mo> <mn>0.1</mn> </mrow> </semantics></math> for <math display="inline"><semantics> <mrow> <mi>θ</mi> <mo>=</mo> <mn>4</mn> <mo>,</mo> <mspace width="4pt"/> <mn>8</mn> <mo>,</mo> <mspace width="4pt"/> <mn>12</mn> </mrow> </semantics></math>, respectively. Orange lines indicate <math display="inline"><semantics> <mrow> <mover> <mi>w</mi> <mo>¯</mo> </mover> <mo>=</mo> <mn>0.7</mn> </mrow> </semantics></math> for all cases. For each snapshot, the reaction rate is normalized via a respective maximum value.</p>
Full article ">Figure 6
<p>An integrated illustration of the reaction rate field, quenching distance <math display="inline"><semantics> <msub> <mi>δ</mi> <mi>q</mi> </msub> </semantics></math>, penetration distance <math display="inline"><semantics> <msub> <mi>δ</mi> <mi>p</mi> </msub> </semantics></math>, and the profiles of the flow velocity <math display="inline"><semantics> <msub> <mi>u</mi> <mi>z</mi> </msub> </semantics></math> and consumption speed <math display="inline"><semantics> <msub> <mi>S</mi> <mi>c</mi> </msub> </semantics></math>. The position of the flame has been adjusted in the <span class="html-italic">z</span> direction for illustrative purposes. <math display="inline"><semantics> <mrow> <mi>R</mi> <mo>=</mo> <mn>60</mn> <msub> <mi>δ</mi> <mi>L</mi> </msub> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>θ</mi> <mo>=</mo> <mn>4</mn> <mo>,</mo> <mspace width="4pt"/> <mi>L</mi> <mi>e</mi> <mo>=</mo> <mn>1.0</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 7
<p>Critical velocity gradient <span class="html-italic">g</span> as a function of <span class="html-italic">R</span> for various <math display="inline"><semantics> <mrow> <mi>L</mi> <mi>e</mi> </mrow> </semantics></math> and <math display="inline"><semantics> <mi>θ</mi> </semantics></math>. Subfigures (<b>a</b>–<b>c</b>) represent <math display="inline"><semantics> <mrow> <mi>θ</mi> <mo>=</mo> <mn>4</mn> <mo>,</mo> <mspace width="4pt"/> <mn>8</mn> <mo>,</mo> <mspace width="4pt"/> <mn>12</mn> </mrow> </semantics></math>, respectively.</p>
Full article ">Figure 8
<p>Influence of Lewis number <math display="inline"><semantics> <mrow> <mi>L</mi> <mi>e</mi> </mrow> </semantics></math> on the consumption speed <math display="inline"><semantics> <msub> <mi>S</mi> <mi>c</mi> </msub> </semantics></math> and flow velocity <math display="inline"><semantics> <msub> <mi>u</mi> <mi>z</mi> </msub> </semantics></math> near the wall for different <math display="inline"><semantics> <mi>θ</mi> </semantics></math>. <math display="inline"><semantics> <mrow> <mi>R</mi> <mo>=</mo> <mn>60</mn> <msub> <mi>δ</mi> <mi>L</mi> </msub> <mo>,</mo> <mi>θ</mi> <mo>=</mo> <mn>4</mn> <mo>,</mo> <mspace width="4pt"/> <mn>8</mn> <mo>,</mo> <mspace width="4pt"/> <mn>12</mn> <mo>,</mo> <mi>L</mi> <mi>e</mi> <mo>=</mo> <mrow> <mn>0.2</mn> </mrow> <mo>–</mo> <mrow> <mn>1.4</mn> </mrow> </mrow> </semantics></math>.</p>
Full article ">Figure 9
<p>Influence of thermal expansion <math display="inline"><semantics> <mi>θ</mi> </semantics></math> on the flame consumption speed <math display="inline"><semantics> <msub> <mi>S</mi> <mi>c</mi> </msub> </semantics></math> and flow velocity <math display="inline"><semantics> <msub> <mi>u</mi> <mi>z</mi> </msub> </semantics></math> under critical condition for various <math display="inline"><semantics> <mrow> <mi>L</mi> <mi>e</mi> </mrow> </semantics></math>. <math display="inline"><semantics> <mrow> <mi>θ</mi> <mo>=</mo> <mn>4</mn> <mo>,</mo> <mspace width="4pt"/> <mn>8</mn> <mo>,</mo> <mspace width="4pt"/> <mn>12</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>R</mi> <mo>=</mo> <mn>60</mn> <mo>,</mo> <mspace width="4pt"/> <mi>L</mi> <mi>e</mi> <mo>=</mo> <mn>0.4</mn> <mo>,</mo> <mspace width="4pt"/> <mn>0.6</mn> <mo>,</mo> <mspace width="4pt"/> <mn>1.0</mn> <mo>,</mo> <mspace width="4pt"/> <mn>1.4</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 10
<p>Effect of tube radius <span class="html-italic">R</span> on consumption speed <math display="inline"><semantics> <msub> <mi>S</mi> <mi>c</mi> </msub> </semantics></math> and flow velocity <math display="inline"><semantics> <msub> <mi>u</mi> <mi>z</mi> </msub> </semantics></math> close to the wall for different Lewis numbers <math display="inline"><semantics> <mrow> <mi>L</mi> <mi>e</mi> </mrow> </semantics></math>. <math display="inline"><semantics> <mrow> <mi>θ</mi> <mo>=</mo> <mn>4</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>R</mi> <mo>=</mo> <mn>20</mn> <mo>–</mo> <mn>100</mn> <msub> <mi>δ</mi> <mi>L</mi> </msub> </mrow> </semantics></math>.</p>
Full article ">Figure 11
<p>Illustration of the flame shapes near the wall, based on the levels of the reaction rate field, for various <math display="inline"><semantics> <mrow> <mi>L</mi> <mi>e</mi> </mrow> </semantics></math> at the critical condition. Non-dimensional reaction rate <math display="inline"><semantics> <mrow> <mover accent="true"> <mi>w</mi> <mo>˜</mo> </mover> <mo>=</mo> <mi>w</mi> <mo>/</mo> <msub> <mi>w</mi> <mrow> <mi>L</mi> <mi>e</mi> <mo>=</mo> <mn>1.0</mn> </mrow> </msub> </mrow> </semantics></math> is scaled by the maximum reaction rate in the <math display="inline"><semantics> <mrow> <mi>L</mi> <mi>e</mi> <mo>=</mo> <mn>1.0</mn> </mrow> </semantics></math> case. <math display="inline"><semantics> <mrow> <mi>θ</mi> <mo>=</mo> <mn>4</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>R</mi> <mo>=</mo> <mn>60</mn> <msub> <mi>δ</mi> <mi>L</mi> </msub> </mrow> </semantics></math>.</p>
Full article ">Figure 12
<p>Illustration of the flame shapes for various <math display="inline"><semantics> <mi>θ</mi> </semantics></math>, based on the isolines of the normalized reaction rate <math display="inline"><semantics> <mover> <mi>w</mi> <mo>¯</mo> </mover> </semantics></math> at the critical condition for <math display="inline"><semantics> <mrow> <mi>θ</mi> <mo>=</mo> <mn>4</mn> <mo>,</mo> <mspace width="4pt"/> <mn>8</mn> <mo>,</mo> <mspace width="4pt"/> <mn>12</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>L</mi> <mi>e</mi> <mo>=</mo> <mn>0.4</mn> </mrow> </semantics></math> at <math display="inline"><semantics> <mrow> <mi>R</mi> <mo>=</mo> <mn>60</mn> <msub> <mi>δ</mi> <mi>L</mi> </msub> </mrow> </semantics></math>.</p>
Full article ">
19 pages, 1326 KiB  
Article
Thermodynamics of the Acceleration of the Universe in the κ(R, T) Gravity Model
by Archana Dixit, Sanjeev Gupta, Anirudh Pradhan and Aroonkumar Beesham
Symmetry 2023, 15(2), 549; https://doi.org/10.3390/sym15020549 - 18 Feb 2023
Cited by 3 | Viewed by 1840
Abstract
In this article, we examined the behavior of dark energy (DE) and the cosmic acceleration in the framework of κ(R,T) gravity in the standard spherically symmetric coordinates (xi) = [...] Read more.
In this article, we examined the behavior of dark energy (DE) and the cosmic acceleration in the framework of κ(R,T) gravity in the standard spherically symmetric coordinates (xi) = t,r,θ,ϕ, a spatially homogeneous and isotropic FLRW space–time. We discovered some remarkable cosmic characteristics in this investigation that are in line with both observations and the accepted ΛCDM model. We made two assumptions in order to determine a deterministic solution of the modified field equations (MFEs): (i) p=γρ, where γ(1γ0) is a constant, (ii) Λ = βH2, where β is an arbitrary constant. We solved the MFEs and obtained the expression for the Hubble parameter. The depicted model of κ(R,T) gravity was taken into consideration when discussing the behavior of the accelerating Universe. In κ(R,T) gravity, the statefinder analysis was utilized to distinguish our model from the ΛCDM model. The evolution of the cosmos was studied using an effective equation of state (EoS). We investigated the thermodynamic quantities and the generalized energy conditions in order to test the viability of our model. When dominant and weak energy conditions are satisfied, this validates the model; when the strong energy condition is not satisfied, this accelerates the expansion of the Universe. Full article
(This article belongs to the Special Issue Symmetry in Gravity Research)
Show Figures

Figure 1

Figure 1
<p>The plot of deceleration parameter <math display="inline"><semantics> <mrow> <mi>q</mi> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </semantics></math> versus time <span class="html-italic">t</span> for <math display="inline"><semantics> <mrow> <mi>γ</mi> <mo>=</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo>/</mo> <mn>3</mn> <mspace width="3.33333pt"/> <mi>and</mi> <mspace width="3.33333pt"/> <mn>1</mn> </mrow> </semantics></math>. Here, <math display="inline"><semantics> <mrow> <mi>β</mi> <mo>=</mo> <mn>1.5</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>c</mi> <mn>1</mn> </msub> <mrow> <mo>=</mo> <mn>0.5</mn> </mrow> </mrow> </semantics></math>.</p>
Full article ">Figure 2
<p>(<b>a</b>) The plot of effective energy density <math display="inline"><semantics> <msub> <mi>ρ</mi> <mrow> <mi>e</mi> <mi>f</mi> <mi>f</mi> </mrow> </msub> </semantics></math> versus time <span class="html-italic">t</span> for <math display="inline"><semantics> <mrow> <mi>γ</mi> <mo>=</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo>/</mo> <mn>3</mn> <mspace width="3.33333pt"/> <mi>and</mi> <mspace width="3.33333pt"/> <mn>1</mn> </mrow> </semantics></math>. (<b>b</b>) The plot of effective pressure <math display="inline"><semantics> <msub> <mi>p</mi> <mrow> <mi>e</mi> <mi>f</mi> <mi>f</mi> </mrow> </msub> </semantics></math> versus time <span class="html-italic">t</span> for <math display="inline"><semantics> <mrow> <mi>γ</mi> <mo>=</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo>/</mo> <mn>3</mn> <mspace width="3.33333pt"/> <mi>and</mi> <mspace width="3.33333pt"/> <mn>1</mn> </mrow> </semantics></math>. Here, <math display="inline"><semantics> <mrow> <mi>β</mi> <mo>=</mo> <mn>1.5</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>c</mi> <mn>1</mn> </msub> <mrow> <mo>=</mo> <mn>0.5</mn> </mrow> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <msub> <mi>k</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 3
<p>The plot of EoS parameter versus time <span class="html-italic">t</span> for <math display="inline"><semantics> <mrow> <mi>γ</mi> <mo>=</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo>/</mo> <mn>3</mn> <mspace width="3.33333pt"/> <mi>and</mi> <mspace width="3.33333pt"/> <mn>1</mn> </mrow> </semantics></math>. Here, <math display="inline"><semantics> <mrow> <mi>β</mi> <mo>=</mo> <mn>1.5</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>c</mi> <mn>1</mn> </msub> <mrow> <mo>=</mo> <mn>0.5</mn> </mrow> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>k</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 4
<p>The plots of energy conditions (<b>a</b>) WECs, (<b>b</b>) NECs, (<b>c</b>) DECs, and (<b>d</b>) DECs versus time <span class="html-italic">t</span> and <math display="inline"><semantics> <mi>γ</mi> </semantics></math> respectively. Here, <math display="inline"><semantics> <mrow> <mi>β</mi> <mo>=</mo> <mn>1.5</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>c</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0.5</mn> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <msub> <mi>k</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>. The scale of time <span class="html-italic">t</span> is taken in Gyr.</p>
Full article ">Figure 5
<p>(<b>a</b>) The plot of <math display="inline"><semantics> <mrow> <mo>(</mo> <mi>r</mi> <mo>−</mo> <mi>s</mi> <mo>)</mo> </mrow> </semantics></math>. (<b>b</b>) The plot of <math display="inline"><semantics> <mrow> <mo>(</mo> <mi>r</mi> <mo>−</mo> <mi>q</mi> <mo>)</mo> </mrow> </semantics></math>. (<b>c</b>) The plot of <math display="inline"><semantics> <mrow> <mo>(</mo> <mi>s</mi> <mo>−</mo> <mi>q</mi> <mo>)</mo> </mrow> </semantics></math>. Here, <math display="inline"><semantics> <mrow> <mi>β</mi> <mo>=</mo> <mn>1.5</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>c</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0.5</mn> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <msub> <mi>k</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 6
<p>(<b>a</b>) Evolution of thermodynamical temperature <span class="html-italic">T</span> in the <math display="inline"><semantics> <mrow> <mi>κ</mi> <mo>(</mo> <mi>R</mi> <mo>,</mo> <mi>T</mi> <mo>)</mo> </mrow> </semantics></math> gravity model. (<b>b</b>) Evolution of thermodynamical entropy density <math display="inline"><semantics> <msub> <mi>S</mi> <mi>d</mi> </msub> </semantics></math> in the <math display="inline"><semantics> <mrow> <mi>κ</mi> <mo>(</mo> <mi>R</mi> <mo>,</mo> <mi>T</mi> <mo>)</mo> </mrow> </semantics></math> gravity model. Here, <math display="inline"><semantics> <mrow> <mi>β</mi> <mo>=</mo> <mn>1.5</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>c</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0.5</mn> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <msub> <mi>k</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 7
<p>The <math display="inline"><semantics> <mrow> <mn>1</mn> <mo>−</mo> <mi>σ</mi> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mn>2</mn> <mo>−</mo> <mi>σ</mi> </mrow> </semantics></math> likelihood contours for the model parameters with <math display="inline"><semantics> <mrow> <mi>H</mi> <mo>(</mo> <mi>z</mi> <mo>)</mo> <mo>+</mo> <mi>P</mi> <mi>a</mi> <mi>n</mi> <mi>t</mi> <mi>h</mi> <mi>e</mi> <mi>o</mi> <mi>n</mi> </mrow> </semantics></math> data.</p>
Full article ">Figure 8
<p>The figure depicts the error bar plot of the 57 OHD points with the fitting of Hubble function <math display="inline"><semantics> <mrow> <mi>H</mi> <mo>(</mo> <mi>z</mi> <mo>)</mo> </mrow> </semantics></math> versus redshift. This plot is compared to the conventional <math display="inline"><semantics> <mi mathvariant="sans-serif">Λ</mi> </semantics></math>CDM.</p>
Full article ">Figure 9
<p>The error bar plot of the 1048 points of the Pantheon compilation SNe Ia datasets is shown in the image, along with the fitting of function <math display="inline"><semantics> <mrow> <mi>μ</mi> <mo>(</mo> <mi>z</mi> <mo>)</mo> </mrow> </semantics></math> and redshift <span class="html-italic">z</span> for comparison with the conventional <math display="inline"><semantics> <mi mathvariant="sans-serif">Λ</mi> </semantics></math>CDM model.</p>
Full article ">Figure 10
<p>(<b>a</b>) Behavior of deceleration parameter versus redshift. (<b>b</b>) Behavior of effective density versus redshift. (<b>c</b>) Behavior of effective pressure versus redshift. (<b>d</b>) Behavior of EoS parameter versus redshift.</p>
Full article ">Figure 11
<p>Behavior of all types of energy conditions against redshift for various observational data.</p>
Full article ">Figure 12
<p>Behavior of statefinder trajectories <math display="inline"><semantics> <mrow> <mo>(</mo> <mi>r</mi> <mo>−</mo> <mi>s</mi> <mo>)</mo> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mo>(</mo> <mi>r</mi> <mo>−</mo> <mi>q</mi> <mo>)</mo> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <mo>(</mo> <mi>s</mi> <mo>−</mo> <mi>q</mi> <mo>)</mo> </mrow> </semantics></math>.</p>
Full article ">
37 pages, 497 KiB  
Review
Particles of a de Sitter Universe
by Gizem Şengör
Universe 2023, 9(2), 59; https://doi.org/10.3390/universe9020059 - 17 Jan 2023
Cited by 7 | Viewed by 1439
Abstract
The de Sitter spacetime is a maximally symmetric spacetime. It is one of the vacuum solutions to Einstein equations with a cosmological constant. It is the solution with a positive cosmological constant and describes a universe undergoing accelerated expansion. Among the possible signs [...] Read more.
The de Sitter spacetime is a maximally symmetric spacetime. It is one of the vacuum solutions to Einstein equations with a cosmological constant. It is the solution with a positive cosmological constant and describes a universe undergoing accelerated expansion. Among the possible signs for a cosmological constant, this solution is relevant for primordial and late-time cosmology. In the case of a zero cosmological constant, studies on the representations of its isometry group have led to a broader understanding of particle physics. The isometry group of d+1-dimensional de Sitter is the group SO(d+1,1), whose representations are well known. Given this insight, what can we learn about the elementary degrees of freedom in a four dimensional de Sitter universe by exploring how the unitary irreducible representations of SO(4,1) present themselves in cosmological setups? This article aims to summarize recent advances along this line that benefit towards a broader understanding of quantum field theory and holography at different signs of the cosmological constant. Particular focus is given to the manifestation of SO(4,1) representations at the late-time boundary of de Sitter. The discussion is concluded by pointing towards future questions at the late-time boundary and the static patch with a focus on the representations. Full article
(This article belongs to the Special Issue Cosmological Constant)
19 pages, 6955 KiB  
Article
Research on Frost Heaving Distribution of Seepage Stratum in Tunnel Construction Using Horizontal Freezing Technique
by Mengkai Li, Haibing Cai, Zheng Liu, Changqiang Pang and Rongbao Hong
Appl. Sci. 2022, 12(22), 11696; https://doi.org/10.3390/app122211696 - 17 Nov 2022
Cited by 3 | Viewed by 1612
Abstract
During the horizontal freezing construction of a subway tunnel, the delay of the closure of the frozen wall occurs frequently due to the existence of groundwater seepage, which can be directly reflected by a freezing temperature field. Accordingly, the distribution of ground surface [...] Read more.
During the horizontal freezing construction of a subway tunnel, the delay of the closure of the frozen wall occurs frequently due to the existence of groundwater seepage, which can be directly reflected by a freezing temperature field. Accordingly, the distribution of ground surface frost heaving displacement under seepage conditions will be different from that under hydrostatic conditions. In view of this, this paper uses COMSOL to realize the hydro–thermal coupling in frozen stratum under seepage conditions, then, the frost heaving distribution of seepage stratum in tunnel construction using horizontal freezing technique is researched considering the ice–water phase transition and orthotropic deformation characteristics of frozen–thawed soil by ABAQUS. The results show that the expansion speed of upstream frozen wall is obviously slower than that of the downstream frozen wall, and the freezing temperature field is symmetrical along the seepage direction. In addition, the ground frost heaving displacement field is asymmetrically distributed along the tunnel center line, which is manifested in that the vertical frost heaving displacement of the upstream stratum is less than that of the downstream stratum. The vertical frost heaving displacement of the ground surface decreases with the increase in tunnel buried depth, but the position of the maximum value remains unchanged as the tunnel buried depth increases. The numerical simulation method established in this paper can provide a theoretical basis and design reference for the construction of a subway tunnel in a water-rich stratum under different seepage using the artificial freezing technique. Full article
(This article belongs to the Special Issue Artificial Ground Freezing Technology)
Show Figures

Figure 1

Figure 1
<p>The volume content of each component in soil.</p>
Full article ">Figure 2
<p>Local coordinate system.</p>
Full article ">Figure 3
<p>Flow chart of numerical simulation.</p>
Full article ">Figure 4
<p>Grid generation in COMSOL.</p>
Full article ">Figure 5
<p>Grid generation in ABAQUS.</p>
Full article ">Figure 6
<p>Temperature field in COMSOL.</p>
Full article ">Figure 7
<p>Temperature field in ABAQUS.</p>
Full article ">Figure 8
<p>Flow diagram of subroutine programming.</p>
Full article ">Figure 9
<p>Custom frozen wall thickness.</p>
Full article ">Figure 10
<p>Freezing time of frozen wall under different states: <span class="html-italic">T</span><sub>1</sub> is the time for initial closure of frozen wall, and <span class="html-italic">T</span><sub>2</sub> is the time for complete closure of frozen wall.</p>
Full article ">Figure 11
<p>Initial closure of frozen wall: (<b>a</b>) 0 m/d; (<b>b</b>) 1.0 m/d; and (<b>c</b>) 2.0 m/d.</p>
Full article ">Figure 11 Cont.
<p>Initial closure of frozen wall: (<b>a</b>) 0 m/d; (<b>b</b>) 1.0 m/d; and (<b>c</b>) 2.0 m/d.</p>
Full article ">Figure 12
<p>Complete closure of frozen wall: (<b>a</b>) 0 m/d; (<b>b</b>) 1.0 m/d; and (<b>c</b>) 2.0 m/d.</p>
Full article ">Figure 13
<p>Variation of frozen wall thickness with time at different positions: (<b>a</b>) 0 m/d; (<b>b</b>) 1.0 m/d; (<b>c</b>) 2.0 m/d.</p>
Full article ">Figure 13 Cont.
<p>Variation of frozen wall thickness with time at different positions: (<b>a</b>) 0 m/d; (<b>b</b>) 1.0 m/d; (<b>c</b>) 2.0 m/d.</p>
Full article ">Figure 14
<p>Distribution of stratum vertical displacement field of stratum under different seepage velocities: (<b>a</b>) 0 m/d; (<b>b</b>) 0.5 m/d; (<b>c</b>) 1.0 m/d (<b>d</b>) 1.5 m/d; and (<b>e</b>) 2.0 m/d.</p>
Full article ">Figure 15
<p>Vertical displacement distribution law of surface under different seepage velocities.</p>
Full article ">Figure 16
<p>Distribution of stratum vertical displacement under different buried depth: (<b>a</b>) 11 m; (<b>b</b>) 13 m; and (<b>c</b>) 15 m.</p>
Full article ">Figure 17
<p>Vertical displacement distribution law of surface under different buried depths.</p>
Full article ">
15 pages, 5391 KiB  
Article
Stochastic Analysis of Train Running Safety on Bridge with Earthquake-Induced Irregularity under Aftershock
by Jincheng Tan, Ping Xiang, Han Zhao, Jian Yu, Bailong Ye and Delei Yang
Symmetry 2022, 14(10), 1998; https://doi.org/10.3390/sym14101998 - 23 Sep 2022
Cited by 13 | Viewed by 1631
Abstract
As a type of urban life project in China, bridges need a certain capacity of trains running safely after an earthquake to ensure and guarantee transportation on railway lines, post-disaster reconstruction and relief work. Since aftershocks may occur after the main shock, the [...] Read more.
As a type of urban life project in China, bridges need a certain capacity of trains running safely after an earthquake to ensure and guarantee transportation on railway lines, post-disaster reconstruction and relief work. Since aftershocks may occur after the main shock, the earthquake-induced irregularity and aftershock intensity are fully considered, based on the running safety index in the seismic design of bridges. However, there is a lack of research on the running safety of trains after an earthquake; it is mainly judged on experience, and lacks theoretical basis. In this paper, the established finite element model of a train bridge interaction system with symmetry was considered. The point estimation method (PEM) combined with moment expansion approximation (MEA) is used for random calculation of the Housner Intensity (HI). Furthermore, running safety indexes were analyzed and the running safety performance of a simply supported bridge with symmetry was assessed under a post-earthquake condition. Then the limit value, to ensure the traffic safety performance after an earthquake, is calculated based on stochastic analysis. The HI can be calculated with full consideration of the randomness of aftershock intensity and structural parameters. On this basis, a calculation method of the HI that considers the randomness of aftershock intensity is proposed. This study can be helpful for the performance-based design of symmetric railway structures under post-earthquake conditions. Full article
(This article belongs to the Special Issue Symmetry in Applied Mechanics Analysis on Smart Optical Fiber Sensors)
Show Figures

Figure 1

Figure 1
<p>Overall process in this paper.</p>
Full article ">Figure 2
<p>Earthquake-induced irregularity samples. (<b>a</b>): Rail irregularity samples. (<b>b</b>): TSM. (<b>c</b>): KS test result. (<b>d</b>): KLE.</p>
Full article ">Figure 3
<p>The main steps of dynamic response analysis of the TBIS. (<b>a</b>): The main steps of dynamic response analysis of the TBIS with single random variables. (<b>b</b>): The main steps of dynamic response analysis of the TBIS with multiple random variables.</p>
Full article ">Figure 4
<p>Diagram of bridge.</p>
Full article ">Figure 5
<p>Knife edge contact model.</p>
Full article ">Figure 6
<p>TBIS model validation. (<b>a</b>): Derailment coefficient comparison results. (<b>b</b>): 0.8 Hz, 105 mm amplitude sine wave excitation.</p>
Full article ">Figure 7
<p>(<b>a</b>): Horizontal acceleration of bridge midspan; (<b>b</b>): Horizontal acceleration of carbody; (<b>c</b>): PSD of horizontal acceleration of carbody.</p>
Full article ">Figure 8
<p>Comparison between MCS and PEM. (<b>a</b>): Comparison of bridge responses, (<b>b</b>): Comparison of train responses.</p>
Full article ">Figure 9
<p>MEA validation. (<b>a</b>): Confidence interval of MEA and MCS-1000 and heat map. (<b>b</b>): MEA with 7 degrees. (<b>c</b>): MEA with 8 degrees. (<b>d</b>): MEA with 15 degrees.</p>
Full article ">Figure 10
<p>Flow chart of calculation.</p>
Full article ">Figure 11
<p>Calculation of HI.</p>
Full article ">Figure 12
<p>Safety limit and the maximin derailment coefficient.</p>
Full article ">
11 pages, 997 KiB  
Article
Morphologies of Wolf–Rayet Planetary Nebulae Based on IFU Observations
by Ashkbiz Danehkar
Galaxies 2022, 10(2), 45; https://doi.org/10.3390/galaxies10020045 - 8 Mar 2022
Viewed by 2580
Abstract
Integral field unit (IFU) spectroscopy of planetary nebulae (PNe) provides a plethora of information about their morphologies and ionization structures. An IFU survey of a sample of PNe around hydrogen-deficient stars has been conducted with the Wide Field Spectrograph (WiFeS) on the ANU [...] Read more.
Integral field unit (IFU) spectroscopy of planetary nebulae (PNe) provides a plethora of information about their morphologies and ionization structures. An IFU survey of a sample of PNe around hydrogen-deficient stars has been conducted with the Wide Field Spectrograph (WiFeS) on the ANU 2.3-m telescope. In this paper, we present the Hα kinematic observations of the PN M 2-42 with a weak emission-line star (wels), and the compact PNe Hen 3-1333 and Hen 2-113 around Wolf–Rayet ([WR]) stars from this WiFeS survey. We see that the ring and point-symmetric knots previously identified in the velocity [N ii] channels of M 2-42 are also surrounded by a thin exterior ionized Hα halo, whose polar expansion is apparently faster than the low-ionization knots. The velocity-resolved Hα channel maps of Hen 3-1333 and Hen 2-113 also suggest that the faint multipolar lobes may get to a projected outflow velocity of ∼100 ± 20 km s1 far from the central stars. Our recent kinematic studies of the WiFeS/IFU survey of other PNe around [WR] and wels mostly hint at elliptical morphologies, while collimated outflows are present in many of them. As the WiFeS does not have adequate resolution for compact (≤6 arcsec) PNe, future high-resolution spatially-resolved observations are necessary to unveil full details of their morpho-kinematic structures. Full article
(This article belongs to the Special Issue Asymmetric Planetary Nebulae 8e)
Show Figures

Figure 1

Figure 1
<p>Velocity-resolved flux channels of M 2-42 along H<math display="inline"><semantics> <mi>α</mi> </semantics></math> <math display="inline"><semantics> <mi>λ</mi> </semantics></math>6563 at ∼21 km s<math display="inline"><semantics> <msup> <mrow/> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </semantics></math> intervals with channel velocities specified at the top in km s<math display="inline"><semantics> <msup> <mrow/> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </semantics></math>. The systemic velocity (<math display="inline"><semantics> <msub> <mi>v</mi> <mi>sys</mi> </msub> </semantics></math>) in the LSR frame is given in the right bottom corner in km s<math display="inline"><semantics> <msup> <mrow/> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </semantics></math> unit. The logarithmic color bar is in <math display="inline"><semantics> <msup> <mn>10</mn> <mrow> <mo>−</mo> <mn>15</mn> </mrow> </msup> </semantics></math> erg s<math display="inline"><semantics> <msup> <mrow/> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </semantics></math> cm<math display="inline"><semantics> <msup> <mrow/> <mrow> <mo>−</mo> <mn>2</mn> </mrow> </msup> </semantics></math> spaxel<math display="inline"><semantics> <msup> <mrow/> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </semantics></math> unit. The gray contour depicts the boundary of 10% of the mean H<math display="inline"><semantics> <mi>α</mi> </semantics></math> surface brightness of this object in the SHS. The channels are oriented with north up and east toward the left side. Two bright points over the central shell in the flux maps are associated with H<math display="inline"><semantics> <mi>α</mi> </semantics></math> emission saturation.</p>
Full article ">Figure 2
<p>The same as <a href="#galaxies-10-00045-f001" class="html-fig">Figure 1</a>, but for (<b>a</b>) Hen 3-1333 and (<b>b</b>) Hen 2-113.</p>
Full article ">Figure 2 Cont.
<p>The same as <a href="#galaxies-10-00045-f001" class="html-fig">Figure 1</a>, but for (<b>a</b>) Hen 3-1333 and (<b>b</b>) Hen 2-113.</p>
Full article ">Figure 3
<p>PV arrays of (<b>a</b>) Hen 3-1333 and (<b>b</b>) Hen 2-113 observed in the H<math display="inline"><semantics> <mi>α</mi> </semantics></math> <math display="inline"><semantics> <mi>λ</mi> </semantics></math>6563 emission. Slits are aligned with the PA parallel to and vertical to the model’s symmetric axis. The velocity in each P–V array is relative to the object’s systemic velocity in km s<math display="inline"><semantics> <msup> <mrow/> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </semantics></math> units. The central star is positioned at the angular offset of <math display="inline"><semantics> <mrow> <mn>0</mn> <msup> <mrow/> <mrow> <mo>″</mo> </mrow> </msup> </mrow> </semantics></math>. The logarithmic color bar is in <math display="inline"><semantics> <msup> <mn>10</mn> <mrow> <mo>−</mo> <mn>15</mn> </mrow> </msup> </semantics></math> erg s<math display="inline"><semantics> <msup> <mrow/> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </semantics></math> cm<math display="inline"><semantics> <msup> <mrow/> <mrow> <mo>−</mo> <mn>2</mn> </mrow> </msup> </semantics></math> spaxel<math display="inline"><semantics> <msup> <mrow/> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </semantics></math> unit.</p>
Full article ">Figure 4
<p>Wireframe <span class="html-small-caps">shape</span> models (<b>top panel</b>) and their Doppler shift outputs (<b>bottom panel</b>) of M 3-30, Hb 4, Pe 1-1, M 1-32, M 1-25, Hen 2-142, MGC 6578, and NGC 6567 from Danehkar [<a href="#B29-galaxies-10-00045" class="html-bibr">29</a>], along with Th 2-A [<a href="#B26-galaxies-10-00045" class="html-bibr">26</a>], and M 2-42 [<a href="#B28-galaxies-10-00045" class="html-bibr">28</a>]. Red and blue colors in the Doppler shift outputs are associated with redshift (<math display="inline"><semantics> <mrow> <mo>+</mo> <mi>V</mi> </mrow> </semantics></math>) and blueshift (<math display="inline"><semantics> <mrow> <mo>−</mo> <mi>V</mi> </mrow> </semantics></math>) effects relative to the centers, respectively. 3D interactive <span class="html-small-caps">shape</span> models are provided by Danehkar [<a href="#B29-galaxies-10-00045" class="html-bibr">29</a>], hosted on Sketchfab (<a href="https://skfb.ly/opFZv" target="_blank">https://skfb.ly/opFZv</a>, 29 January 2022), and stored in a Zenodo data repository (doi:10.5281/zenodo.5393974).</p>
Full article ">Figure 5
<p>PPV cubes of Hb 4 (<b>top panel</b>) and M 2-42 (<b>bottom panel</b>) with 3 slices at <math display="inline"><semantics> <mrow> <mo>−</mo> <mn>104</mn> </mrow> </semantics></math>, 0, and <math display="inline"><semantics> <mrow> <mo>+</mo> <mn>102</mn> </mrow> </semantics></math> km s<math display="inline"><semantics> <msup> <mrow/> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </semantics></math> for Hb 4, and a slice at <math display="inline"><semantics> <mrow> <mo>−</mo> <mn>2</mn> </mrow> </semantics></math> km s<math display="inline"><semantics> <msup> <mrow/> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </semantics></math> for M 2-42. Velocity slices of Hb 4 and M 2-42 are presented in Danehkar [<a href="#B29-galaxies-10-00045" class="html-bibr">29</a>] and <a href="#galaxies-10-00045-f001" class="html-fig">Figure 1</a>, respectively.</p>
Full article ">
21 pages, 3765 KiB  
Article
Construction and Modeling of Multi-Circuit Multi-Voltage HVAC Transmission Lines
by Agnieszka Dziendziel, Henryk Kocot and Paweł Kubek
Energies 2021, 14(2), 421; https://doi.org/10.3390/en14020421 - 14 Jan 2021
Cited by 11 | Viewed by 3144
Abstract
A transmission network’s main objective is to continuously supply electrical energy to consumers. This article presents an analysis of the use of multi-circuit, multi-voltage overhead lines as a compromise between ensuring the system’s safe operation by increasing the transmission network capacity and managing [...] Read more.
A transmission network’s main objective is to continuously supply electrical energy to consumers. This article presents an analysis of the use of multi-circuit, multi-voltage overhead lines as a compromise between ensuring the system’s safe operation by increasing the transmission network capacity and managing the constraints related to its expansion. The considerations presented in this work include the construction of such lines, their operation, and modeling aspects. As part of the study, the potential for improving the environmental conditions around the lines is discussed in terms of the necessary area for their construction and the peak electromagnetic field strength in their vicinity. We also present a mechanical analysis of stress and sag coordination in the individual circuits of these lines. Then, we detail the method for determining the electrical parameters of multi-voltage lines’ series impedances and capacitance. Specific attention is given to the possibility of zero-sequence voltage that occurs in the systems despite the symmetric supply and load of circuits—especially in the circuits with the lowest voltages—that result from the line’s geometric asymmetry. We evaluate the impact of the line’s geometric asymmetry on the power system’s correct operation by determining the asymmetry factors. Finally, the accuracy of using a simplified symmetric model for lines with various geometric asymmetries is analyzed by studying the error of the short-circuit currents. Full article
(This article belongs to the Section F6: High Voltage)
Show Figures

Graphical abstract

Graphical abstract
Full article ">Figure 1
<p>Graphs of (<b>a</b>) electric field strength <span class="html-italic">E</span> and (<b>b</b>) magnetic field strength <span class="html-italic">H</span> of two types of multi-circuits (<span class="html-italic">Line 1</span> and <span class="html-italic">Line 2</span> from <a href="#energies-14-00421-t002" class="html-table">Table 2</a>).</p>
Full article ">Figure 2
<p>Block diagram of the multi-circuit line before and after simplification operations.</p>
Full article ">Figure 3
<p>The process of determining the model of a multi-circuit, multi-voltage high voltage alternating current (HVAC) transmission line.</p>
Full article ">Figure 4
<p>Schemes of <span class="html-italic">Line 2</span> (<b>a</b>) positive- (negative-) and (<b>b</b>) zero-sequence [<a href="#B21-energies-14-00421" class="html-bibr">21</a>] (parameters in pu).</p>
Full article ">Figure 5
<p>Analysis of impedance asymmetry of <span class="html-italic">Line 2</span>: (<b>a</b>) Horizontal phase conductor configuration of <span class="html-italic">Line 2</span>, with <span class="html-italic">dx</span><sub>1</sub> and <span class="html-italic">dx</span><sub>2</sub> as examples of two extreme phase conductors of Circuit III positions. (<b>b</b>) The voltage <span class="html-italic">U</span><sub>0</sub> as a function of extreme phase location calculated per one kilometer of the line length in a horizontal phase conductor configuration of <span class="html-italic">Line 2</span>.</p>
Full article ">Figure 6
<p>Analysis of impedance asymmetry of <span class="html-italic">Line 3</span>: (<b>a</b>) A scheme of the silhouette of the <span class="html-italic">Line 3</span> tower. (<b>b</b>) The zero-sequence component of voltage <span class="html-italic">U</span><sub>0</sub> as a function of the 110 kV circuit location <span class="html-italic">dy</span> from the lower (<span class="html-italic">dy</span> = 0 m) to the upper (<span class="html-italic">dy</span><sub>max</sub> = 14.7 m) position.</p>
Full article ">Figure 7
<p>Schemes of <span class="html-italic">Line 2</span> (<b>a</b>) positive- (negative-) and (<b>b</b>) zero-sequence (parameters in pu).</p>
Full article ">Figure 8
<p>The voltage <span class="html-italic">U</span><sub>0</sub> as a function of (<b>a</b>) location the extreme phases of <span class="html-italic">Line 2</span>; (<b>b</b>) the 110 kV circuit location <span class="html-italic">dy</span> from the lower (<span class="html-italic">dy</span> = 0 m) to the upper (<span class="html-italic">dy</span> = 14.7 m) position [<a href="#B23-energies-14-00421" class="html-bibr">23</a>].</p>
Full article ">Figure 9
<p>Transmission network model with a three-circuit transmission line designed in MATLAB Simulink program.</p>
Full article ">Figure 10
<p>Results of the analysis: (<b>a</b>) the <span class="html-italic">α</span><sub>0</sub> and (<b>b</b>) <span class="html-italic">α</span><sub>2</sub> factors for <span class="html-italic">Line 3</span> with the load on two of the three circuits of the full long-term permissible current <span class="html-italic">I<sub>p</sub></span>.</p>
Full article ">Figure 11
<p>Results of the analysis: (<b>a</b>) the <span class="html-italic">α</span><sub>0</sub> and (<b>b</b>) <span class="html-italic">α</span><sub>2</sub> factors for <span class="html-italic">Line 3</span> with the load on all line circuits of the full and half long-term permissible current <span class="html-italic">I<sub>p</sub></span>.</p>
Full article ">Figure 12
<p>Results of the analysis: (<b>a</b>) the <span class="html-italic">α</span><sub>0</sub> and (<b>b</b>) <span class="html-italic">α</span><sub>2</sub> factors for <span class="html-italic">Line 2</span> with the load on all line circuits of the full and half long-term permissible current <span class="html-italic">I<sub>p</sub></span>.</p>
Full article ">Figure 13
<p>Relative Circuit III current indexes in the function of line length <span class="html-italic">l</span> for (<b>a</b>) <span class="html-italic">Line 2</span> and (<b>b</b>) <span class="html-italic">Line 3.</span></p>
Full article ">
25 pages, 7623 KiB  
Article
Influence of Loose Contact between Tunnel Lining and Surrounding Rock on the Safety of the Tunnel Structure
by Zijian Ye and Chengping Zhang
Symmetry 2020, 12(10), 1733; https://doi.org/10.3390/sym12101733 - 20 Oct 2020
Cited by 9 | Viewed by 2717
Abstract
The improvement of the contact state between the surrounding rock and tunnel lining, such as the effect of back-fill grouting behind lining, was important for maintaining the stability of the lining structure. To explore the influence of loose contact states behind lining on [...] Read more.
The improvement of the contact state between the surrounding rock and tunnel lining, such as the effect of back-fill grouting behind lining, was important for maintaining the stability of the lining structure. To explore the influence of loose contact states behind lining on the safety of tunnel lining, a case of field investigation in a railway tunnel with a symmetrical lining structure was presented in this paper. A model test was conducted to prove the accuracy of the numerical simulation in the condition of dense contact state between the lining and surrounding rocks. Based on this, the three-dimensional (3-D) impact of loose contact states on the mechanic behavior of the lining structure under different compactness and different loose contact areas behind lining was investigated and summarized. Furthermore, the influence of the percentage of the insufficient strength behind lining was explored. Finally, the grade of the influence of the loose contact state on the safety of the lining structure was classified. The results revealed that: (1) in order to maintain the stability of lining structure, the compactness of the back-fill grouting behind lining was recommended to be above 80%, and the range of the loose contact area should be no more than 60 degree; (2) the strength of the back-fill grouting behind lining should be above 50% strength of the surrounding rock, the loose contact state behind lining should be improved in time to avoid expansion of the loose contact area; and (3) the classification of the influence grade on the safety of the lining structure provides a basic reference for controlling the quality of the back-fill grouting. This research gives a new point of view for the evaluation of the contact state between lining and surrounding rock. Full article
Show Figures

Figure 1

Figure 1
<p>The lining structure needs to be repaired due to loose contact with surrounding rock.</p>
Full article ">Figure 2
<p>Field investigation.</p>
Full article ">Figure 3
<p>Simplified cause classification diagram. (<b>a</b>) Ⅰ, (<b>b</b>) Ⅱ.</p>
Full article ">Figure 4
<p>Tunnel geometry used in numerical simulations.</p>
Full article ">Figure 5
<p>Numerical simulation model.</p>
Full article ">Figure 6
<p>Model test apparatus.</p>
Full article ">Figure 7
<p>The comparison between numerical simulation results and model test results. (<b>a</b>) contact pressure, (<b>b</b>) bending moment.</p>
Full article ">Figure 8
<p>The variation of the circumferential internal force with the compactness of the loose area behind the lining. (<b>a</b>) axial force, (<b>b</b>) bending moment.</p>
Full article ">Figure 9
<p>The variation of the internal force along the longitudinal of the lining structure with the compactness of the loose area. (<b>a</b>) axial force, (<b>b</b>) bending moment.</p>
Full article ">Figure 10
<p>Changes of the contact pressure between the lining structure and surrounding rock with the compactness of the loose area behind the lining. (<b>a</b>) distribution of the contact pressure, (<b>b</b>) variation of the contact pressure along the tunnel axis.</p>
Full article ">Figure 11
<p>Deformation of the lining structure variation with the compactness of the loose contact area. (<b>a</b>) Distribution of the deformation, (<b>b</b>) The deformation of the lining structure along the tunnel axis.</p>
Full article ">Figure 12
<p>The internal force of the lining structure. (<b>a</b>) axial force, (<b>b</b>) bending moment.</p>
Full article ">Figure 12 Cont.
<p>The internal force of the lining structure. (<b>a</b>) axial force, (<b>b</b>) bending moment.</p>
Full article ">Figure 13
<p>Variation of the contact pressure between the lining structure and surrounding rock. (<b>a</b>) distribution of the contact pressure, (<b>b</b>) variation of the contact pressure along the tunnel axis.</p>
Full article ">Figure 14
<p>Deformation of the lining structure variation with the loose contact area. (<b>a</b>) distribution of the deformation, (<b>b</b>) deformation of the lining structure along the tunnel axis at the vault.</p>
Full article ">Figure 15
<p>The internal force of the lining structure. (<b>a</b>) bending moment, (<b>b</b>) axial force.</p>
Full article ">Figure 16
<p>Variation of the contact pressure between the lining structure and surrounding rock. (<b>a</b>) distribution of the contact pressure, (<b>b</b>) variation of the contact pressure along the circumferential direction of the lining structure.</p>
Full article ">Figure 17
<p>Deformation of the lining structure (<b>a</b>) displacement along the tunnel axis. (<b>b</b>) the maximum displacement varies with insufficient strength.</p>
Full article ">Figure 18
<p>Comparison of the variation of the internal force. (<b>a</b>) bending moment, (<b>b</b>) axial force.</p>
Full article ">Figure 19
<p>Comparison of the safety factor of the lining structure.</p>
Full article ">Figure 20
<p>Rank of the reduction of the safety factor.</p>
Full article ">
14 pages, 1394 KiB  
Article
Exact and Numerical Solitary Wave Structures to the Variant Boussinesq System
by Abdulghani Alharbi and Mohammed B. Almatrafi
Symmetry 2020, 12(9), 1473; https://doi.org/10.3390/sym12091473 - 8 Sep 2020
Cited by 21 | Viewed by 2022
Abstract
Solutions such as symmetric, periodic, and solitary wave solutions play a significant role in the field of partial differential equations (PDEs), and they can be utilized to explain several phenomena in physics and engineering. Therefore, constructing such solutions is significantly essential. This article [...] Read more.
Solutions such as symmetric, periodic, and solitary wave solutions play a significant role in the field of partial differential equations (PDEs), and they can be utilized to explain several phenomena in physics and engineering. Therefore, constructing such solutions is significantly essential. This article concentrates on employing the improved exp(ϕ(η))-expansion approach and the method of lines on the variant Boussinesq system to establish its exact and numerical solutions. Novel solutions based on the solitary wave structures are obtained. We present a comprehensible comparison between the accomplished exact and numerical results to testify the accuracy of the used numerical technique. Some 3D and 2D diagrams are sketched for some solutions. We also investigate the L2 error and the CPU time of the used numerical method. The used mathematical tools can be comfortably invoked to handle more nonlinear evolution equations. Full article
(This article belongs to the Special Issue Ordinary and Partial Differential Equations: Theory and Applications)
Show Figures

Figure 1

Figure 1
<p>Figure (<b>a</b>) illustrates the behavior of the solution <math display="inline"><semantics> <mrow> <mo>Φ</mo> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mn>0</mn> <mo>)</mo> </mrow> </semantics></math> (Equation (<a href="#FD24-symmetry-12-01473" class="html-disp-formula">24</a>)) while Figure (<b>b</b>) shows the behavior of the solution <math display="inline"><semantics> <mrow> <mo>Ψ</mo> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mn>0</mn> <mo>)</mo> </mrow> </semantics></math> (Equation (<a href="#FD24-symmetry-12-01473" class="html-disp-formula">24</a>)). The used parameters are <math display="inline"><semantics> <mrow> <mi>λ</mi> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mi>γ</mi> <mo>=</mo> <mn>0.7</mn> <mo>,</mo> <msub> <mi>a</mi> <mn>1</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>2</mn> <mo>,</mo> <msub> <mi>a</mi> <mn>0</mn> </msub> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mi>r</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mi>k</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> </mrow> </semantics></math> <math display="inline"><semantics> <mrow> <msub> <mi>x</mi> <mn>0</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>20</mn> <mo>,</mo> <mi>x</mi> <mo>=</mo> <mn>0</mn> <mo>→</mo> <mn>35</mn> <mspace width="0.166667em"/> <mi>a</mi> <mi>n</mi> <mi>d</mi> <mspace width="0.166667em"/> <mi>t</mi> <mo>=</mo> <mn>0</mn> <mo>→</mo> <mn>24</mn> <mo>.</mo> </mrow> </semantics></math></p>
Full article ">Figure 2
<p>Figure (<b>a</b>) shows the time evolution of the exact solution of <math display="inline"><semantics> <mrow> <mo>Φ</mo> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>t</mi> <mo>)</mo> </mrow> </semantics></math> while Figure (<b>b</b>) presents the time evolution of the numerical solution of <math display="inline"><semantics> <mrow> <mo>Φ</mo> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>t</mi> <mo>)</mo> <mo>.</mo> </mrow> </semantics></math> We consider <math display="inline"><semantics> <mrow> <mn>0</mn> <mo>≤</mo> <mi>t</mi> <mo>≤</mo> <mn>24</mn> <mo>.</mo> </mrow> </semantics></math></p>
Full article ">Figure 3
<p>Figure (<b>a</b>) shows the time evolution of the exact solution of <math display="inline"><semantics> <mrow> <mo>Ψ</mo> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>t</mi> <mo>)</mo> </mrow> </semantics></math> while Figure (<b>b</b>) presents the time evolution of the numerical solution of <math display="inline"><semantics> <mrow> <mo>Ψ</mo> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>t</mi> <mo>)</mo> <mo>.</mo> </mrow> </semantics></math> We consider <math display="inline"><semantics> <mrow> <mn>0</mn> <mo>≤</mo> <mi>t</mi> <mo>≤</mo> <mn>24</mn> <mo>.</mo> </mrow> </semantics></math></p>
Full article ">Figure 4
<p>3D figures comparing the performance of the numerical method with the exact solution. The exact solution of <math display="inline"><semantics> <mrow> <mo>Φ</mo> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>t</mi> <mo>)</mo> </mrow> </semantics></math> (Figure (<b>a</b>)) and the numerical solution of <math display="inline"><semantics> <mrow> <mo>Φ</mo> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>t</mi> <mo>)</mo> </mrow> </semantics></math> (Figure (<b>b</b>)) are graphically compared in these plots.</p>
Full article ">Figure 5
<p>Figure (<b>a</b>) presents a 3D surface for the exact solution of <math display="inline"><semantics> <mrow> <mo>Ψ</mo> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>t</mi> <mo>)</mo> </mrow> </semantics></math> while Figure (<b>b</b>) illustrates a 3D surface for the numerical solution of <math display="inline"><semantics> <mrow> <mo>Ψ</mo> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>t</mi> <mo>)</mo> <mo>.</mo> </mrow> </semantics></math> The numerical graph seems to be identical with the exact one.</p>
Full article ">Figure 6
<p>Figure (<b>a</b>) compares some numerical solutions of <math display="inline"><semantics> <mrow> <mo>Φ</mo> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>t</mi> <mo>)</mo> </mrow> </semantics></math> with the exact solution of <math display="inline"><semantics> <mrow> <mo>Φ</mo> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>t</mi> <mo>)</mo> </mrow> </semantics></math> for various values of <math display="inline"><semantics> <mrow> <msub> <mi>h</mi> <mi>x</mi> </msub> <mo>.</mo> </mrow> </semantics></math> In Figure (<b>b</b>), we present a comparison between the exact and numerical solutions of <math display="inline"><semantics> <mrow> <mo>Ψ</mo> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>t</mi> <mo>)</mo> <mo>.</mo> </mrow> </semantics></math> The numerical solutions of <math display="inline"><semantics> <mrow> <mo>Φ</mo> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>t</mi> <mo>)</mo> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mo>Ψ</mo> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>t</mi> <mo>)</mo> </mrow> </semantics></math> approach the exact solutions if <math display="inline"><semantics> <msub> <mi>h</mi> <mi>x</mi> </msub> </semantics></math> is very small, as can be observed in these figures.</p>
Full article ">
20 pages, 661 KiB  
Article
Four-Fermion Interaction Model on ℳD−1S1
by Tomohiro Inagaki, Yamato Matsuo and Hiromu Shimoji
Symmetry 2019, 11(4), 451; https://doi.org/10.3390/sym11040451 - 1 Apr 2019
Cited by 6 | Viewed by 2571
Abstract
Four-fermion interaction models are often used as simplified models of interacting fermion fields with the chiral symmetry. The chiral symmetry is dynamically broken for a larger four-fermion coupling. It is expected that the broken symmetry is restored under extreme conditions. In this paper, [...] Read more.
Four-fermion interaction models are often used as simplified models of interacting fermion fields with the chiral symmetry. The chiral symmetry is dynamically broken for a larger four-fermion coupling. It is expected that the broken symmetry is restored under extreme conditions. In this paper, the finite size effect on the chiral symmetry breaking is investigated in the four-fermion interaction model. We consider the model on a flat spacetime with a compactified spatial coordinate, M D 1 S 1 and obtain explicit expressions of the effective potential for arbitrary spacetime dimensions in the leading order of the 1 / N expansion. Evaluating the effective potential, we show the critical lines which divide the symmetric and the broken phase and the sign-flip condition for the Casimir force. Full article
(This article belongs to the Special Issue Nambu-Jona-Lasinio model and its applications)
Show Figures

Figure 1

Figure 1
<p>Critical point as the function of the dimension on <math display="inline"><semantics> <msup> <mi mathvariant="script">M</mi> <mi>D</mi> </msup> </semantics></math>.</p>
Full article ">Figure 2
<p>Dynamically generated mass, <math display="inline"><semantics> <msub> <mi>m</mi> <mn>0</mn> </msub> </semantics></math>, (solid lines) and the mass scale, <math display="inline"><semantics> <msub> <mi>m</mi> <mn>1</mn> </msub> </semantics></math>, (dashed lines).</p>
Full article ">Figure 3
<p>Behavior of the effective potential on <math display="inline"><semantics> <mrow> <msup> <mi mathvariant="script">M</mi> <mrow> <mi>D</mi> <mo>−</mo> <mn>1</mn> </mrow> </msup> <mo>⊗</mo> <msup> <mi>S</mi> <mn>1</mn> </msup> </mrow> </semantics></math> at <math display="inline"><semantics> <mrow> <mi>L</mi> <msub> <mi>m</mi> <mn>0</mn> </msub> <mo>=</mo> <mn>2.5</mn> </mrow> </semantics></math> for <math display="inline"><semantics> <mrow> <msub> <mi>λ</mi> <mi>r</mi> </msub> <mo>&gt;</mo> <msub> <mi>λ</mi> <mrow> <mi>c</mi> <mi>r</mi> </mrow> </msub> </mrow> </semantics></math>.</p>
Full article ">Figure 4
<p>Behavior of the effective potential on <math display="inline"><semantics> <mrow> <msup> <mi mathvariant="script">M</mi> <mrow> <mi>D</mi> <mo>−</mo> <mn>1</mn> </mrow> </msup> <mo>⊗</mo> <msup> <mi>S</mi> <mn>1</mn> </msup> </mrow> </semantics></math> at <math display="inline"><semantics> <mrow> <mi>L</mi> <msub> <mi>m</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>2.5</mn> </mrow> </semantics></math> for <math display="inline"><semantics> <mrow> <msub> <mi>λ</mi> <mi>r</mi> </msub> <mo>&lt;</mo> <msub> <mi>λ</mi> <mrow> <mi>c</mi> <mi>r</mi> </mrow> </msub> </mrow> </semantics></math>.</p>
Full article ">Figure 5
<p>Value of the effective potential at the minimum.</p>
Full article ">Figure 6
<p>Value of the effective potential at the minimum for <math display="inline"><semantics> <mrow> <mi>D</mi> <mo>=</mo> <mn>3</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 7
<p>Dynamically generated fermion mass.</p>
Full article ">Figure 8
<p>Dynamically generated fermion mass for <math display="inline"><semantics> <mrow> <mi>D</mi> <mo>=</mo> <mn>3</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 9
<p>Phase structure on <math display="inline"><semantics> <mrow> <mi>δ</mi> <mo>−</mo> <mi>L</mi> </mrow> </semantics></math> plane. The chiral symmetry is broken above the lines for <math display="inline"><semantics> <mrow> <msub> <mi>λ</mi> <mi>r</mi> </msub> <mo>&gt;</mo> <msub> <mi>λ</mi> <mrow> <mi>c</mi> <mi>r</mi> </mrow> </msub> </mrow> </semantics></math> and below the lines for <math display="inline"><semantics> <mrow> <msub> <mi>λ</mi> <mi>r</mi> </msub> <mo>&lt;</mo> <msub> <mi>λ</mi> <mrow> <mi>c</mi> <mi>r</mi> </mrow> </msub> </mrow> </semantics></math>.</p>
Full article ">Figure 10
<p>Phase structure on <math display="inline"><semantics> <mrow> <mi>D</mi> <mo>−</mo> <mi>L</mi> </mrow> </semantics></math> plane. The chiral symmetry is broken above the lines for <math display="inline"><semantics> <mrow> <msub> <mi>λ</mi> <mi>r</mi> </msub> <mo>&gt;</mo> <msub> <mi>λ</mi> <mrow> <mi>c</mi> <mi>r</mi> </mrow> </msub> </mrow> </semantics></math> and below the lines for <math display="inline"><semantics> <mrow> <msub> <mi>λ</mi> <mi>r</mi> </msub> <mo>&lt;</mo> <msub> <mi>λ</mi> <mrow> <mi>c</mi> <mi>r</mi> </mrow> </msub> </mrow> </semantics></math>.</p>
Full article ">Figure 11
<p>Casimir force as the function of <math display="inline"><semantics> <mi>δ</mi> </semantics></math>.</p>
Full article ">Figure 12
<p>Casimir force as a function of <span class="html-italic">L</span>.</p>
Full article ">Figure 13
<p>Boundary between the repulsive (left side of the lines) and attractive (right side of the lines) force.</p>
Full article ">
Back to TopTop