Soil erosion has become an increasingly serious issue, drawing global attention. As one of the countries facing severe soil erosion in the world, China confronts significant ecological challenges. Against this backdrop, the country places great emphasis on soil conservation efforts, considering them a crucial component of ecological civilization construction. This study focuses on the carbon sink benefits of comprehensive soil conservation management in the loess hilly region and sandy slopes, using the Xiaonanshan Mountain small watershed in Youyu County, Shanxi Province, as a typical case for in-depth analysis. In terms of research methodology, an integrated monitoring approach combining fundamental data, measured data, and remote sensing data was developed. A comprehensive survey of the Xiaonanshan Mountain small watershed was conducted to categorize plant carbon pools and soil carbon pools, establish baseline scenarios, and utilize methods such as inverse distance spatial interpolation, sample calculation, and feature extraction to estimate forest carbon storage across different years and determine changes in soil and vegetation carbon storage. Simultaneously, data collection and preprocessing were carried out, including the gathering of fundamental data, field data collection, and internal data preprocessing. On this basis, a vegetation carbon storage model was constructed, and an assessment of soil carbon pool storage was conducted. The research results indicate that from 2002 to 2024, the continuous implementation of various soil conservation measures over 22 years has led to a significant increase in carbon storage within the Xiaonanshan Mountain small watershed. The vegetation carbon density of the entire small watershed increased from 14.66 t C/ha to 27.02 t C/ha, and the soil carbon density rose from 28.92 t C/ha to 32.48 t C/ha. The net carbon sink amount was 18,422.20 t C (corresponding to 67,548.08 t CO
2e in terms of carbon dioxide equivalent).
Populus simonii and
Pinus sylvestris var.
mongholica significantly contribute to the carbon sink; however, due to partial degradation of
Populus simonii, its net carbon sink amount is less than that of
Pinus sylvestris var.
mongholica. Additionally, the carbon sink capacity of the small watershed exhibits spatial differences influenced by conservation measures, with high carbon density areas primarily concentrated within the range of
Populus simonii, while low carbon density areas are mainly found in shrub zones. The increase in carbon storage within the small watershed is primarily attributed to the contributions of vegetation and soil carbon storage, indicating that comprehensive soil erosion management has a significant carbon accumulation effect; moreover, the annual growth rate of vegetation carbon storage exceeds that of soil carbon storage, with the proportion of soil carbon storage increasing year by year. Furthermore, the vegetation carbon sink, soil carbon sink, and total carbon sink of the small watershed were separately calculated. In terms of benefit analysis, the Xiaonanshan Mountain small watershed offers ecological benefits such as increased forest coverage, carbon fixation and oxygen release, and biodiversity conservation; from an economic perspective, the value of carbon trading is substantial, promoting soil conservation and rural revitalization, with the total value of timber reaching 7.6 million yuan, of which the value of standing timber constitutes the largest proportion; social benefits include the improvement of environmental landscapes, stimulation of ecological tourism, and attraction of investment, with the Xiaonanshan Mountain Ecological Park receiving numerous visitors and generating significant tourism revenue. This research provides a theoretical basis and data foundation for comprehensive soil conservation management in project areas or small watersheds within the loess hilly and sandy slope regions, offering technical and methodological support for other soil conservation carbon sink projects in the area.
Full article