Nothing Special   »   [go: up one dir, main page]

You seem to have javascript disabled. Please note that many of the page functionalities won't work as expected without javascript enabled.
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (251)

Search Parameters:
Keywords = eavesdropping

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 874 KiB  
Article
Deep Reinforcement Learning-Driven Jamming-Enhanced Secure Unmanned Aerial Vehicle Communications
by Zhifang Xing, Yunhui Qin, Changhao Du, Wenzhang Wang and Zhongshan Zhang
Sensors 2024, 24(22), 7328; https://doi.org/10.3390/s24227328 - 16 Nov 2024
Viewed by 282
Abstract
Despite its flexibility, unmanned aerial vehicle (UAV) communications are susceptible to eavesdropping due to the open nature of wireless channels and the broadcasting nature of wireless signals. This paper studies secure UAV communications and proposes a method to optimize the minimum secrecy rate [...] Read more.
Despite its flexibility, unmanned aerial vehicle (UAV) communications are susceptible to eavesdropping due to the open nature of wireless channels and the broadcasting nature of wireless signals. This paper studies secure UAV communications and proposes a method to optimize the minimum secrecy rate of the system by using interference technology to enhance it. To this end, the system not only deploys multiple UAV base stations (BSs) to provide services to legitimate users but also assigns dedicated UAV jammers to send interference signals to active or potential eavesdroppers to disrupt their eavesdropping effectiveness. Based on this configuration, we formulate the optimization process of parameters such as the user association variables, UAV trajectory, and output power as a sequential decision-making problem and use the single-agent soft actor-critic (SAC) algorithm and twin delayed deep deterministic policy gradient (TD3) algorithm to achieve joint optimization of the core parameters. In addition, for specific scenarios, we also use the multi-agent soft actor-critic (MASAC) algorithm to solve the joint optimization problem mentioned above. The numerical results show that the normalized average secrecy rate of the MASAC algorithm increased by more than 6.6% and 14.2% compared with that of the SAC and TD3 algorithms, respectively. Full article
(This article belongs to the Special Issue Novel Signal Processing Techniques for Wireless Communications)
Show Figures

Figure 1

Figure 1
<p>The jamming-enhanced secure UAV communication deployment in the target area.</p>
Full article ">Figure 2
<p>Diagram of the single-agent SAC algorithm for the jamming-enhanced secure UAV communication network.</p>
Full article ">Figure 3
<p>Diagram of the agent in the single-agent TD3 algorithm.</p>
Full article ">Figure 4
<p>Diagram of the MASAC algorithm for the jamming-enhanced secure UAV communication network.</p>
Full article ">Figure 5
<p>The cumulative discounted reward versus the training episodes.</p>
Full article ">Figure 6
<p>The normalized average secrecy rate versus the number of time slots.</p>
Full article ">Figure 7
<p>The normalized average secrecy rate versus the number of ground eavesdroppers.</p>
Full article ">Figure 8
<p>The normalized average secrecy rate versus the number of latent eavesdroppers.</p>
Full article ">
19 pages, 642 KiB  
Article
Multi-Intelligent Reflecting Surfaces and Artificial Noise-Assisted Cell-Free Massive MIMO Against Simultaneous Jamming and Eavesdropping
by Huazhi Hu, Wei Xie, Kui Xu, Xiaochen Xia, Na Li and Huaiwu Wu
Sensors 2024, 24(22), 7326; https://doi.org/10.3390/s24227326 - 16 Nov 2024
Viewed by 406
Abstract
In a cell-free massive multiple-input multiple-output (MIMO) system without cells, it is assumed that there are smart jammers and disrupters (SJDs) that attempt to interfere with and eavesdrop on the downlink communications of legitimate users. A secure transmission scheme based on multiple intelligent [...] Read more.
In a cell-free massive multiple-input multiple-output (MIMO) system without cells, it is assumed that there are smart jammers and disrupters (SJDs) that attempt to interfere with and eavesdrop on the downlink communications of legitimate users. A secure transmission scheme based on multiple intelligent reflecting surfaces (IRSs) and artificial noise (AN) is proposed. First, an access point (AP) selection strategy based on user location information is designed, which aims to determine the set of APs serving users. Then, a joint optimization framework based on the block coordinate descent (BCD) algorithm is constructed, and a non-convex optimization solution based on the univariate function optimization and semi-definite relaxation (SDR) is proposed with the aim of maximising the minimum achievable secrecy rate for users. By solving the univariate function maximisation problem, the multi-variable coupled non-convex problem is transformed into a solvable convex problem, obtaining the optimal AP beamforming, AN matrix and IRS phase shift matrix. Specifically, in a single-user scenario, the scheme of multiple intelligent reflecting surfaces combined with artificial noise can improve the user’s achievable secrecy rate by about 11% compared to the existing method (single intelligent reflective surface combined with artificial noise) and about 2% compared to the scheme assisted by multiple intelligent reflecting surfaces without artificial noise assistance. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

Figure 1
<p>Schematic diagram of multi-IRS assisted communication.</p>
Full article ">Figure 2
<p>System model of multi-IRS against simultaneous jamming and eavesdropping communication.</p>
Full article ">Figure 3
<p>Simulation deployment.</p>
Full article ">Figure 4
<p>Achievable secrecy rate [bps/Hz] v.s. IRS amplitude limitation for <math display="inline"><semantics> <mrow> <mi>L</mi> <mo>=</mo> <mn>5</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>K</mi> <mo>=</mo> <mn>2</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>N</mi> <mo>=</mo> <mn>20</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <msub> <mi>P</mi> <mo movablelimits="true" form="prefix">max</mo> </msub> </semantics></math> = 0 dBm, <math display="inline"><semantics> <msub> <mi>P</mi> <mrow> <mi>J</mi> <mi>a</mi> <mo>,</mo> <mo movablelimits="true" form="prefix">max</mo> </mrow> </msub> </semantics></math> = 30 dBm.</p>
Full article ">Figure 5
<p>Achievable secrecy rate [bps/Hz] v.s. transmit power for <math display="inline"><semantics> <mrow> <mi>L</mi> <mo>=</mo> <mn>5</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>K</mi> <mo>=</mo> <mn>2</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>N</mi> <mo>=</mo> <mn>20</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <msub> <mi>P</mi> <mrow> <mi>J</mi> <mi>a</mi> <mo>,</mo> <mo movablelimits="true" form="prefix">max</mo> </mrow> </msub> </semantics></math> = 30 dBm.</p>
Full article ">Figure 6
<p>Achievable secrecy rate [bps/Hz] v.s. jammer transmit power [dBm] for <math display="inline"><semantics> <mrow> <mi>L</mi> <mo>=</mo> <mn>5</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>K</mi> <mo>=</mo> <mn>2</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>N</mi> <mo>=</mo> <mn>20</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <msub> <mi>P</mi> <mo movablelimits="true" form="prefix">max</mo> </msub> </semantics></math> = 0 dBm.</p>
Full article ">Figure 7
<p>Achievable secrecy rate [bps/Hz] v.s. number of users for <math display="inline"><semantics> <mrow> <mi>L</mi> <mo>=</mo> <mn>5</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>N</mi> <mo>=</mo> <mn>20</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <msub> <mi>P</mi> <mo movablelimits="true" form="prefix">max</mo> </msub> </semantics></math> = 0 dBm, <math display="inline"><semantics> <msub> <mi>P</mi> <mrow> <mi>J</mi> <mi>a</mi> <mo>,</mo> <mo movablelimits="true" form="prefix">max</mo> </mrow> </msub> </semantics></math> = 30 dBm.</p>
Full article ">Figure 8
<p>Achievable secrecy rate [bps/Hz] v.s. location of IRS clusters for <math display="inline"><semantics> <mrow> <mi>L</mi> <mo>=</mo> <mn>5</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>K</mi> <mo>=</mo> <mn>2</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>N</mi> <mo>=</mo> <mn>20</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <msub> <mi>P</mi> <mo movablelimits="true" form="prefix">max</mo> </msub> </semantics></math> = 0 dBm, <math display="inline"><semantics> <msub> <mi>P</mi> <mrow> <mi>J</mi> <mi>a</mi> <mo>,</mo> <mo movablelimits="true" form="prefix">max</mo> </mrow> </msub> </semantics></math> = 30 dBm.</p>
Full article ">
11 pages, 909 KiB  
Article
Efficient Quantum Private Comparison with Unitary Operations
by Min Hou and Yue Wu
Mathematics 2024, 12(22), 3541; https://doi.org/10.3390/math12223541 - 13 Nov 2024
Viewed by 290
Abstract
Quantum private comparison (QPC) is a crucial component of quantum multiparty computing (QMPC), allowing parties to compare their private inputs while ensuring that no sensitive information is disclosed. Many existing QPC protocols that utilize Bell states encounter efficiency challenges. In this paper, we [...] Read more.
Quantum private comparison (QPC) is a crucial component of quantum multiparty computing (QMPC), allowing parties to compare their private inputs while ensuring that no sensitive information is disclosed. Many existing QPC protocols that utilize Bell states encounter efficiency challenges. In this paper, we present a novel and efficient QPC protocol that capitalizes on the distinct characteristics of Bell states to enable secure comparisons. Our method transforms private inputs into unitary operations on shared Bell states, which are then returned to a third party to obtain the comparison results. This approach enhances efficiency and decreases the reliance on complex quantum resources. A single Bell state can compare two classical bits, achieving a qubit efficiency of 100%. We illustrate the feasibility of the protocol through a simulation on the IBM Quantum Cloud Platform. The security analysis confirms that our protocol is resistant to both eavesdropping and attacks from participants. Full article
(This article belongs to the Section Mathematical Physics)
Show Figures

Figure 1

Figure 1
<p>Quantum circuit for comparing <math display="inline"><semantics> <mrow> <mi>X</mi> <mo>=</mo> <mn>45</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>Y</mi> <mo>=</mo> <mn>49</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 2
<p>The measurement result corresponds to <a href="#mathematics-12-03541-f001" class="html-fig">Figure 1</a>.</p>
Full article ">
29 pages, 11294 KiB  
Article
Pilot Contamination Attack Detection Methods—An Exhaustive Performance Evaluation Through Probability Metrics and Statistical Classification Parameters
by Dimitriya Mihaylova, Georgi Iliev, Zlatka Valkova-Jarvis and Viktor Stoynov
Mathematics 2024, 12(22), 3524; https://doi.org/10.3390/math12223524 - 12 Nov 2024
Viewed by 473
Abstract
Among the numerous strategies that an attacker can initiate to enhance its eavesdropping capabilities is the Pilot Contamination Attack (PCA). Two promising methods, based on Phase-Shift Keying (PSK) modulation of Nth order—2-N-PSK and Shifted 2-N-PSK, can detect an existing PCA by [...] Read more.
Among the numerous strategies that an attacker can initiate to enhance its eavesdropping capabilities is the Pilot Contamination Attack (PCA). Two promising methods, based on Phase-Shift Keying (PSK) modulation of Nth order—2-N-PSK and Shifted 2-N-PSK, can detect an existing PCA by means of analysis of the constellation that the correlation product of received pilot signals belongs to. The overall efficiency of the methods can be studied by the most commonly used probability metrics—detection probability and false alarm probability. However, this information may be insufficient for comparison purposes; therefore, to acquire a more holistic perspective on the methods’ performances, statistical evaluation metrics can be obtained. Depending on the particular application of the system in which the PCA detection methods are incorporated and the distribution of attack initiation among all samples, different classification parameters are of varying significance in the efficiency assessment. In this paper, 2-N-PSK and Shifted 2-N-PSK are comprehensively studied through their probability parameters. In addition, the methods are also compared by their most informative statistical parameters, such as accuracy, precision and recall, F1-score, specificity, and fall-out. A large number of simulations are carried out, the analyses of which indisputably prove the superior behavior of the Shifted 2-N-PSK compared to the 2-N-PSK detection method. Since a method’s performance is strongly related to the number of antenna elements at the base station, all simulations are conducted for scenarios with different antennae numbers. The most promising realization of Shifted 2-N-PSK improves the receiver operating characteristics results of the original 2-N-PSK by 7.38%, 4.33%, and 5.61%, and outperforms the precision recall analyses of 2-N-PSK by 10.02%, 4.82% and 3.86%, for the respective number of 10, 100 and 300 antenna elements at the base station. Full article
(This article belongs to the Special Issue Computational Intelligence in Communication Networks)
Show Figures

Figure 1

Figure 1
<p>Flow chart of the algorithm involved in <span class="html-italic">2-N-PSK</span> and <span class="html-italic">Shifted 2-N-PSK</span> [<a href="#B16-mathematics-12-03524" class="html-bibr">16</a>].</p>
Full article ">Figure 2
<p>PCA DP of <span class="html-italic">2-N-PSK</span> and the realizations of <span class="html-italic">Shifted 2-N-PSK</span> for different numbers of antenna elements at the BS: (<b>a</b>) <span class="html-italic">M</span> = 10; (<b>b</b>) <span class="html-italic">M</span> = 100; (<b>c</b>) <span class="html-italic">M</span> = 300.</p>
Full article ">Figure 3
<p>PCA DP for different numbers of antenna elements at the BS—individual representation of <span class="html-italic">2-N-PSK</span> and the different realizations of <span class="html-italic">Shifted 2-N-PSK</span>: (<b>a</b>) <span class="html-italic">2-N-PSK</span>; (<b>b</b>) <span class="html-italic">Shifted 2-N-PSK</span>, realization <span class="html-italic">A</span>; (<b>c</b>) <span class="html-italic">Shifted 2-N-PSK</span>, realization <span class="html-italic">B</span>; (<b>d</b>) <span class="html-italic">Shifted 2-N-PSK</span>, realization <span class="html-italic">C</span>.</p>
Full article ">Figure 4
<p>PCA FAP of <span class="html-italic">2-N-PSK</span> and the realizations of <span class="html-italic">Shifted 2-N-PSK</span> for different numbers of antenna elements at the BS: (<b>a</b>) <span class="html-italic">M</span> = 10; (<b>b</b>) <span class="html-italic">M</span> = 100; (<b>c</b>) <span class="html-italic">M</span> = 300.</p>
Full article ">Figure 5
<p>PCA FAP for different numbers of antenna elements at the BS—individual representation of <span class="html-italic">2-N-PSK</span> and the different realizations of <span class="html-italic">Shifted 2-N-PSK</span>: (<b>a</b>) <span class="html-italic">Shifted 2-N-PSK</span>, realization <span class="html-italic">A</span>; (<b>b</b>) <span class="html-italic">Shifted 2-N-PSK</span>, realization <span class="html-italic">B</span>; (<b>c</b>) <span class="html-italic">Shifted 2-N-PSK</span>, realization <span class="html-italic">C</span>; (<b>d</b>) <span class="html-italic">2-N-PSK</span>.</p>
Full article ">Figure 5 Cont.
<p>PCA FAP for different numbers of antenna elements at the BS—individual representation of <span class="html-italic">2-N-PSK</span> and the different realizations of <span class="html-italic">Shifted 2-N-PSK</span>: (<b>a</b>) <span class="html-italic">Shifted 2-N-PSK</span>, realization <span class="html-italic">A</span>; (<b>b</b>) <span class="html-italic">Shifted 2-N-PSK</span>, realization <span class="html-italic">B</span>; (<b>c</b>) <span class="html-italic">Shifted 2-N-PSK</span>, realization <span class="html-italic">C</span>; (<b>d</b>) <span class="html-italic">2-N-PSK</span>.</p>
Full article ">Figure 6
<p>Classification metrics of <span class="html-italic">2-N-PSK</span> and the different realizations of <span class="html-italic">Shifted 2-N-PSK</span>: (<b>a</b>) <span class="html-italic">Accuracy</span>; (<b>b</b>) <span class="html-italic">Precision</span>; (<b>c</b>) <span class="html-italic">Recall</span>; (<b>d</b>) <span class="html-italic">F1-score;</span> (<b>e</b>) <span class="html-italic">Specificity</span>; (<b>f</b>) <span class="html-italic">Fall-out</span>.</p>
Full article ">Figure 7
<p><span class="html-italic">ROC</span> curves for different SNR scenarios: (<b>a</b>) SNR = 0 dB; (<b>b</b>) SNR = 10 dB; (<b>c</b>) SNR = 20 dB; (<b>d</b>) SNR = 30 dB; (<b>e</b>) SNR = 40 dB.</p>
Full article ">Figure 7 Cont.
<p><span class="html-italic">ROC</span> curves for different SNR scenarios: (<b>a</b>) SNR = 0 dB; (<b>b</b>) SNR = 10 dB; (<b>c</b>) SNR = 20 dB; (<b>d</b>) SNR = 30 dB; (<b>e</b>) SNR = 40 dB.</p>
Full article ">Figure 8
<p><span class="html-italic">ROC</span> curves—individual representation of <span class="html-italic">2-N-PSK</span> and the different realizations of <span class="html-italic">Shifted 2-N-PSK</span>: (<b>a</b>) <span class="html-italic">Shifted 2-N-PSK</span>, <span class="html-italic">realization A</span>; (<b>b</b>) <span class="html-italic">Shifted 2-N-PSK</span>, <span class="html-italic">realization B</span>; (<b>c</b>) <span class="html-italic">Shifted 2-N-PSK</span>, <span class="html-italic">realization C</span>; (<b>d</b>) <span class="html-italic">2-N-PSK</span>.</p>
Full article ">Figure 8 Cont.
<p><span class="html-italic">ROC</span> curves—individual representation of <span class="html-italic">2-N-PSK</span> and the different realizations of <span class="html-italic">Shifted 2-N-PSK</span>: (<b>a</b>) <span class="html-italic">Shifted 2-N-PSK</span>, <span class="html-italic">realization A</span>; (<b>b</b>) <span class="html-italic">Shifted 2-N-PSK</span>, <span class="html-italic">realization B</span>; (<b>c</b>) <span class="html-italic">Shifted 2-N-PSK</span>, <span class="html-italic">realization C</span>; (<b>d</b>) <span class="html-italic">2-N-PSK</span>.</p>
Full article ">Figure 9
<p><span class="html-italic">PR</span> curves for different SNR scenarios: (<b>a</b>) SNR = 0 dB; (<b>b</b>) SNR = 10 dB; (<b>c</b>) SNR = 20 dB; (<b>d</b>) SNR = 30 dB; (<b>e</b>) SNR = 40 dB.</p>
Full article ">Figure 10
<p><span class="html-italic">PR</span> curves—individual representation of <span class="html-italic">2-N-PSK</span> and the different realizations of <span class="html-italic">Shifted 2-N-PSK</span>: (<b>a</b>) <span class="html-italic">Shifted 2-N-PSK</span>, realization <span class="html-italic">A</span>; (<b>b</b>) <span class="html-italic">Shifted 2-N-PSK</span>, realization <span class="html-italic">B</span>; (<b>c</b>) <span class="html-italic">Shifted 2-N-PSK</span>, realization <span class="html-italic">C</span>; (<b>d</b>) <span class="html-italic">2-N-PSK</span>.</p>
Full article ">Figure 11
<p><span class="html-italic">ROC</span> curves of <span class="html-italic">2-N-PSK</span> and the different realizations of <span class="html-italic">Shifted 2-N-PSK</span> for different numbers of antennae at the BS.</p>
Full article ">Figure 12
<p><span class="html-italic">PR</span> curves of <span class="html-italic">2-N-PSK</span> and the different realizations of <span class="html-italic">Shifted 2-N-PSK</span> for different numbers of antennae at the BS.</p>
Full article ">Figure 13
<p>Flow chart of the algorithm for calculating the legitimate constellations’ shift values <span class="html-italic">x</span><sub>2<span class="html-italic">i</span>+1</sub> and <span class="html-italic">x</span><sub>2<span class="html-italic">i</span>+2</sub> [<a href="#B17-mathematics-12-03524" class="html-bibr">17</a>].</p>
Full article ">
15 pages, 1367 KiB  
Article
Advanced Security Framework for 6G Networks: Integrating Deep Learning and Physical Layer Security
by Haitham Mahmoud, Tawfik Ismail, Tobi Baiyekusi and Moad Idrissi
Network 2024, 4(4), 453-467; https://doi.org/10.3390/network4040023 - 23 Oct 2024
Viewed by 661
Abstract
This paper presents an advanced framework for securing 6G communication by integrating deep learning and physical layer security (PLS). The proposed model incorporates multi-stage detection mechanisms to enhance security against various attacks on the 6G air interface. Deep neural networks and a hybrid [...] Read more.
This paper presents an advanced framework for securing 6G communication by integrating deep learning and physical layer security (PLS). The proposed model incorporates multi-stage detection mechanisms to enhance security against various attacks on the 6G air interface. Deep neural networks and a hybrid model are employed for sequential learning to improve classification accuracy and handle complex data patterns. Additionally, spoofing, jamming, and eavesdropping attacks are simulated to refine detection mechanisms. An anomaly detection system is developed to identify unusual signal patterns indicating potential attacks. The results demonstrate that machine learning (ML) and hybrid models outperform conventional approaches, showing improvements of up to 85% in bit error rate (BER) and 24% in accuracy, especially under attack conditions. This research contributes to the advancement of secure 6G communication systems, offering details on effective defence mechanisms against physical layer attacks. Full article
Show Figures

Figure 1

Figure 1
<p>Intelligent network for B5G service-based architecture.</p>
Full article ">Figure 2
<p>Evaluation of the BER (<b>a</b>–<b>d</b>) and accuracy (<b>e</b>–<b>h</b>) of different approaches of non-ML, ML (LSTM), and hybrid.</p>
Full article ">Figure 3
<p>Training and validation convergence for both the ML and hybrid models for Alice and Bob. The loss corresponds to the model’s error during training, representing the difference between the predicted and actual outcomes.</p>
Full article ">
20 pages, 1508 KiB  
Article
Secure Unmanned Aerial Vehicle Communication in Dual-Function Radar Communication System by Exploiting Constructive Interference
by Qian Xu, Jia Yi, Xianyu Wang, Ming-bo Niu, Md. Sipon Miah and Ling Wang
Drones 2024, 8(10), 581; https://doi.org/10.3390/drones8100581 - 15 Oct 2024
Viewed by 575
Abstract
In contrast from traditional unmanned aerial vehicle communication via unlicensed spectrum, connecting unmanned aerial vehicles with cellular networks can extend their communication coverage and improve the quality of their service. In addition, the emerging dual-functional radar communication paradigm in cellular systems can better [...] Read more.
In contrast from traditional unmanned aerial vehicle communication via unlicensed spectrum, connecting unmanned aerial vehicles with cellular networks can extend their communication coverage and improve the quality of their service. In addition, the emerging dual-functional radar communication paradigm in cellular systems can better meet the requirements of location-sensitive tasks such as reconnaissance and cargo delivery. Based on the above considerations, in this paper, we study the simultaneous communication and target sensing issue in cellular-connected unmanned aerial vehicle systems. Specifically, we consider a two-cell coordinated system with two base stations, cellular unmanned aerial vehicles, and potential aerial targets. In such systems, the communication security issue of cellular unmanned aerial vehicles regarding eavesdropping on their target is inevitable since the main beam of the transmit waveform needs to point to the direction of the target for achieving a sufficient detection performance. Aiming at protecting the privacy of cellular transmission as well as performing target sensing, we exploit the physical layer security technique with the aid of constructive interference-based precoding. A transmit power minimization problem is formulated with constraints on secure and reliable cellular transmission and a sufficient radar signal-to-interference-plus-noise ratio. By specially designing the transmit beamforming vectors at the base stations, the received signals at the cellular users are located in the decision regions of the transmitted symbols while the targets can only receive wrong symbols. We also compare the performance of the proposed scheme with that of the traditional one without constructive interference. The simulation results show that the proposed constructive interference-based strategy can meet the requirements of simultaneous target sensing and secure communication, and also save transmit power compared with the traditional scheme. Full article
(This article belongs to the Special Issue Physical-Layer Security in Drone Communications)
Show Figures

Figure 1

Figure 1
<p>System model: a two-cell DFRC system where UAVs are cellular users and targets are potential eavesdroppers.</p>
Full article ">Figure 2
<p>The concept of CI-based secure precoding for 8PSK modulation, where <math display="inline"><semantics> <msub> <mi>s</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>k</mi> </mrow> </msub> </semantics></math> is the symbol of interest and the two dashed red lines represent the decision boundaries of <math display="inline"><semantics> <msub> <mi>s</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>k</mi> </mrow> </msub> </semantics></math>.</p>
Full article ">Figure 3
<p>Convergence of the proposed CI-based precoding scheme for different numbers of transmit antennas.</p>
Full article ">Figure 4
<p>Received signals at <math display="inline"><semantics> <msub> <mi>CU</mi> <mrow> <mn>1</mn> <mo>,</mo> <mn>1</mn> </mrow> </msub> </semantics></math> and target 1, assuming that the transmitted symbol for <math display="inline"><semantics> <msub> <mi>CU</mi> <mrow> <mn>1</mn> <mo>,</mo> <mn>1</mn> </mrow> </msub> </semantics></math> is fixed as the one located in the first quadrant of the QPSK constellation.</p>
Full article ">Figure 5
<p>SER comparison between the CU and the target.</p>
Full article ">Figure 6
<p>Normalized beam patterns generated by the proposed CI-based precoding.</p>
Full article ">Figure 7
<p>Transmit SNR comparison between the CI-based precoding and the traditional precoding schemes.</p>
Full article ">Figure 8
<p>Transmit SNR comparison between the CI-based precoding and the traditional precoding schemes for different PSK modulation orders.</p>
Full article ">
25 pages, 5245 KiB  
Article
Enhancing Syslog Message Security and Reliability over Unidirectional Fiber Optics
by Alin-Adrian Anton, Petra Csereoka, Eugenia Ana Capota and Răzvan-Dorel Cioargă
Sensors 2024, 24(20), 6537; https://doi.org/10.3390/s24206537 - 10 Oct 2024
Viewed by 647
Abstract
Standard log transmission protocols do not offer a robust way of segregating the log network from potential threats. A secure log transmission system and the realization of a data diode using affordable components are proposed. Unidirectional data flow prevents unauthorized access and eavesdropping, [...] Read more.
Standard log transmission protocols do not offer a robust way of segregating the log network from potential threats. A secure log transmission system and the realization of a data diode using affordable components are proposed. Unidirectional data flow prevents unauthorized access and eavesdropping, ensuring the integrity and confidentiality of sensitive log data. The system uses an encryption protocol that requires that the upstream and the downstream of the data diode are perfectly synchronized, mitigating replay attacks. It has been shown that message amplification can mitigate UDP packet loss, but this is only required when the data diode traffic is congested. The implementation of the encryption algorithm is suitable for resource-constrained devices and it has been shown to produce random-looking output even on a reduced number of rounds when compared to the parent cipher. Several improvements have been made to the original encryption algorithm for which an actual implementation was missing. Free software and datasets have been made available to reproduce the results. The complete solution is easy to reproduce in order to secure the segregation of a log network inside any scenario where logging is required by the law and log tampering must be prevented. Full article
(This article belongs to the Special Issue Sensing in Internet of Things and Smart Sensor Networks)
Show Figures

Graphical abstract

Graphical abstract
Full article ">Figure 1
<p>Generalized cloud log forensics as proposed in [<a href="#B21-sensors-24-06537" class="html-bibr">21</a>] (reconstruction of Figure 4 Page 12).</p>
Full article ">Figure 2
<p>Differences between Speck-R [<a href="#B39-sensors-24-06537" class="html-bibr">39</a>] (<b>a</b>) and Enhanced Speck-R (<b>b</b>).</p>
Full article ">Figure 3
<p>Connection schematics for a gigabit ethernet data diode using 3 off-the-shelf media converters.</p>
Full article ">Figure 4
<p>Gigabit ethernet data diode using 3 off-the-shelf media converters.</p>
Full article ">Figure 5
<p>Fast ethernet data diode schematics made using only 2 media converters.</p>
Full article ">Figure 6
<p>Fast ethernet data diode with 2 media converters.</p>
Full article ">Figure 7
<p>Solution architecture for safely concentrating logs via UDP through a data diode for live tailing with an SIEM or SOAR in a network with a higher security level.</p>
Full article ">Figure 8
<p>Line message format where the first 8 bytes are a uint64_t counter and the rest are a list of printable characters.</p>
Full article ">Figure 9
<p>Sender and receiver programs. (<b>a</b>) Sender program in Algorithm 5; (<b>b</b>) receiver program in Algorithm 6.</p>
Full article ">Figure 10
<p>Combined data diodes for scaling the program over several unidirectional links. (<b>a</b>) parallel unidirectional connections used in a round-robin fashion; (<b>b</b>) several self-made gigabit data diodes in a 2U rack case.</p>
Full article ">
18 pages, 959 KiB  
Article
Intelligent-Reflecting-Surface-Assisted Single-Input Single-Output Secure Transmission: A Joint Multiplicative Perturbation and Constructive Reflection Perspective
by Chaowen Liu, Anling Zeng, Fei Yu, Zhengmin Shi, Mingyang Liu and Boyang Liu
Entropy 2024, 26(10), 849; https://doi.org/10.3390/e26100849 - 8 Oct 2024
Viewed by 535
Abstract
Due to the inherent broadcasting nature and openness of wireless transmission channels, wireless communication systems are vulnerable to the eavesdropping of malicious attackers and usually encounter undesirable situations of information leakage. The problem may be more serious when a passive eavesdropping device is [...] Read more.
Due to the inherent broadcasting nature and openness of wireless transmission channels, wireless communication systems are vulnerable to the eavesdropping of malicious attackers and usually encounter undesirable situations of information leakage. The problem may be more serious when a passive eavesdropping device is directly connected to the transmitter of a single-input single-output (SISO) system. To deal with this urgent situation, a novel IRS-assisted physical-layer secure transmission scheme based on joint transmitter perturbation and IRS reflection (JPR) is proposed, such that the secrecy of wireless SISO systems can be comprehensively guaranteed regardless of whether the reflection-based jamming from the IRS to the eavesdropper is blocked or not. Moreover, to develop a trade-off between the achievable performance and implementation complexity, we propose both element-wise and group-wise reflected perturbation alignment (ERPA/GRPA)-based IRS reflection strategies, respectively. In order to evaluate the achievable performance, we analyze the ergodic secrecy rate (ESR) and secrecy outage probability (SOP) of the SISO secure systems with the ERPA/GRPA-based JPRs, respectively. Finally, by characterizing the simulated and numerical ESR and SOP performance results, our proposed scheme is compared with the benchmark scheme of random phase-based reflection, which strongly demonstrates the effectiveness of our proposed scheme. Full article
(This article belongs to the Section Multidisciplinary Applications)
Show Figures

Figure 1

Figure 1
<p>An IRS-aided SISO secure transmission system.</p>
Full article ">Figure 2
<p>An illustration of received signal observations at BS and Eve with the RPA-based JPR secure transmissions.</p>
Full article ">Figure 3
<p>Comparison of simulated and theoretical results for the achievable ESR with the ERPA-based JPR scheme.</p>
Full article ">Figure 4
<p>Comparison of simulatied and theoretical results for the achievable ESR with the GRPA-based JPR scheme.</p>
Full article ">Figure 5
<p>Comparison of simulated ESR results with different secure transmission schemes.</p>
Full article ">Figure 6
<p>Comparison of simulated and theoretical SOP results with different JPR schemes.</p>
Full article ">Figure 7
<p>Comparison of simulated SOP results with different secure transmission schemes.</p>
Full article ">
12 pages, 17759 KiB  
Article
Attention-Enhanced Defensive Distillation Network for Channel Estimation in V2X mm-Wave Secure Communication
by Xingyu Qi, Yuanjian Liu and Yingchun Ye
Sensors 2024, 24(19), 6464; https://doi.org/10.3390/s24196464 - 7 Oct 2024
Viewed by 774
Abstract
Millimeter-wave (mm-wave) technology, crucial for future networks and vehicle-to-everything (V2X) communication in intelligent transportation, offers high data rates and bandwidth but is vulnerable to adversarial attacks, like interference and eavesdropping. It is crucial to protect V2X mm-wave communication from cybersecurity attacks, as traditional [...] Read more.
Millimeter-wave (mm-wave) technology, crucial for future networks and vehicle-to-everything (V2X) communication in intelligent transportation, offers high data rates and bandwidth but is vulnerable to adversarial attacks, like interference and eavesdropping. It is crucial to protect V2X mm-wave communication from cybersecurity attacks, as traditional security measures often fail to counter sophisticated threats and complex attacks. To tackle these difficulties, the current study introduces an attention-enhanced defensive distillation network (AEDDN) to improve robustness and accuracy in V2X mm-wave communication under adversarial attacks. The AEDDN model combines the transformer algorithm with defensive distillation, leveraging the transformer’s attention mechanism to focus on critical channel features and adapt to complex conditions. This helps mitigate adversarial examples by filtering misleading data. Defensive distillation further strengthens the model by smoothing decision boundaries, making it less sensitive to small perturbations. To evaluate and validate the AEDDN model, this study uses a publicly available dataset called 6g-channel-estimation and a proprietary dataset named MMMC, comparing the simulation results with the convolutional neural network (CNN) model. The findings from the experiments indicate that the AEDDN, especially in the complex V2X mm-wave environment, demonstrates enhanced performance. Full article
(This article belongs to the Special Issue AI-Driven Cybersecurity in IoT-Based Systems)
Show Figures

Figure 1

Figure 1
<p>Structure of AEDDN algorithm.</p>
Full article ">Figure 2
<p>The scenario in the WI simulation platform. (<b>a</b>) Specific trajectories of vehicles. (<b>b</b>) Heat maps and propagation paths.</p>
Full article ">Figure 3
<p>Training history for CNN-based and AEDDN models through 6g-channel-estimation dataset. (<b>a</b>) Teacher model training. (<b>b</b>) Student model training.</p>
Full article ">Figure 4
<p>Comparative performance of CNN and AEDDN models under adversarial attacks. (<b>a</b>) MSE and ASR comparison under FGSM attack. (<b>b</b>) MSE and ASR comparison under PGD attack.</p>
Full article ">Figure 5
<p>Comparison of pilot signals, actual channel, and predicted channel using AEDDN model for MMMC dataset.</p>
Full article ">Figure 6
<p>Loss value comparison between CNN-based and AEDDN models through MMMC dataset. (<b>a</b>) Loss value from teacher training and validation. (<b>b</b>) Loss value from student training and validation.</p>
Full article ">
14 pages, 498 KiB  
Article
Covert Information Mapped Generalized Spatial and Direction Modulation toward Secure Wireless Transmission
by Yuan Zhong, Zhengyu Ji, Xianglu Li, Peng Fei, Dong Hou, Zhigang Wang and Jie Tian
Sensors 2024, 24(19), 6333; https://doi.org/10.3390/s24196333 - 30 Sep 2024
Viewed by 545
Abstract
In this paper, for the sake of enhancing the security of wireless transmission, we proposed a novel system based on spatial and direction modulation (SDM) combined with generalized spatial modulation (GSM) which is aided by covert information mapping (CIM), termed as the CIM-GSDM [...] Read more.
In this paper, for the sake of enhancing the security of wireless transmission, we proposed a novel system based on spatial and direction modulation (SDM) combined with generalized spatial modulation (GSM) which is aided by covert information mapping (CIM), termed as the CIM-GSDM system. In such a system, the legitimated user is equipped with distributed receivers so as to demodulate the conveyed signal by exploiting its indices while disturbing eavesdroppers for information security. More specifically, part of the information is modulated into the indices of the legitimated distributed receiver subsets with the aid of the mapped covert information and the interference matrix, while another part of the message is arranged by conventional amplitude-phase modulation. The proposed system can reap the benefits from both GSM and CIM to make eavesdropper suffer great mixture. Furthermore, the detection scheme and theoretical analysis of error performance are discussed as well. The simulation results exhibit that the bit error rate (BER) performance of legitimate user is much better than that of the eavesdropper while the proposed scheme improves the security compared to the original CIM-SDM system at the same spectral efficiency. Full article
(This article belongs to the Special Issue System Design and Signal Processing for 6G Wireless Communications)
Show Figures

Figure 1

Figure 1
<p>The system of generalized spatial and direction modulation.</p>
Full article ">Figure 2
<p>An example with <math display="inline"><semantics> <mrow> <msub> <mi>N</mi> <mi>r</mi> </msub> <mo>=</mo> <mn>4</mn> </mrow> </semantics></math> for the proposed CIM-GSDM scheme.</p>
Full article ">Figure 3
<p>Bob’s and Eve’s BER performances of proposed CIM-GSDM scheme employing <math display="inline"><semantics> <mrow> <msub> <mi>N</mi> <mi>t</mi> </msub> <mo>=</mo> <mn>8</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>N</mi> <mi>r</mi> </msub> <mo>=</mo> <mn>6</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>N</mi> <mi>e</mi> </msub> <mo>=</mo> <mn>6</mn> </mrow> </semantics></math> and QPSK.</p>
Full article ">Figure 4
<p>Bob’s and Eve’s BER performances of proposed CIM-GSDM scheme in comparison to the traditional CIM-SDM counterparts employing <math display="inline"><semantics> <mrow> <msub> <mi>N</mi> <mi>t</mi> </msub> <mo>=</mo> <mn>8</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>N</mi> <mi>r</mi> </msub> <mo>=</mo> <mn>6</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>N</mi> <mi>e</mi> </msub> <mo>=</mo> <mn>6</mn> </mrow> </semantics></math> and QPSK at the same spectral efficiency.</p>
Full article ">Figure 5
<p>Bob and Eve’s BER performances of proposed CIM-GSDM scheme employing <math display="inline"><semantics> <mrow> <msub> <mi>N</mi> <mi>t</mi> </msub> <mo>=</mo> <mn>8</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>N</mi> <mi>r</mi> </msub> <mo>=</mo> <mn>8</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>N</mi> <mi>e</mi> </msub> <mo>=</mo> <mn>8</mn> </mrow> </semantics></math> and QPSK.</p>
Full article ">Figure 6
<p>Bob’s and Eve’s BER performances of proposed CIM-GSDM scheme in comparison to the traditional CIM-SDM counterparts employing <math display="inline"><semantics> <mrow> <msub> <mi>N</mi> <mi>t</mi> </msub> <mo>=</mo> <mn>8</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>N</mi> <mi>r</mi> </msub> <mo>=</mo> <mn>8</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>N</mi> <mi>e</mi> </msub> <mo>=</mo> <mn>8</mn> </mrow> </semantics></math> and QPSK at the same spectral efficiency.</p>
Full article ">
28 pages, 16386 KiB  
Article
Ultra-Reliable and Low-Latency Wireless Hierarchical Federated Learning: Performance Analysis
by Haonan Zhang, Peng Xu and Bin Dai
Entropy 2024, 26(10), 827; https://doi.org/10.3390/e26100827 - 29 Sep 2024
Viewed by 609
Abstract
Wireless hierarchical federated learning (WHFL) is an implementation of wireless federated Learning (WFL) on a cloud–edge–client hierarchical architecture that accelerates model training and achieves more favorable trade-offs between communication and computation. However, due to the broadcast nature of wireless communication, the WHFL is [...] Read more.
Wireless hierarchical federated learning (WHFL) is an implementation of wireless federated Learning (WFL) on a cloud–edge–client hierarchical architecture that accelerates model training and achieves more favorable trade-offs between communication and computation. However, due to the broadcast nature of wireless communication, the WHFL is susceptible to eavesdropping during the training process. Apart from this, recently ultra-reliable and low-latency communication (URLLC) has received much attention since it serves as a critical communication service in current 5G and upcoming 6G, and this motivates us to study the URLLC-WHFL in the presence of physical layer security (PLS) issue. In this paper, we propose a secure finite block-length (FBL) approach for the multi-antenna URLLC-WHFL, and characterize the relationship between privacy, utility, and PLS of the proposed scheme. Simulation results show that when the eavesdropper’s CSI is perfectly known by the edge server, our proposed FBL approach not only almost achieves perfect secrecy but also does not affect learning performance, and further shows the robustness of our schemes against imperfect CSI of the eavesdropper’s channel. This paper provides a new method for the URLLC-WHFL in the presence of PLS. Full article
Show Figures

Figure 1

Figure 1
<p>The multi-antenna WHFL in the presence of PLS.</p>
Full article ">Figure 2
<p>An information-theoretic model of the WHFL system, where the edge server, cloud server and eavesdroppers are equipped with <span class="html-italic">A</span>, <span class="html-italic">B</span>, and <span class="html-italic">C</span> antennas, respectively (<math display="inline"><semantics> <mrow> <mi>A</mi> <mo>≥</mo> <mn>1</mn> <mo>,</mo> <mi>B</mi> <mo>≥</mo> <mn>1</mn> <mo>,</mo> <mi>C</mi> <mo>≥</mo> <mn>1</mn> </mrow> </semantics></math>).</p>
Full article ">Figure 3
<p>A schematic diagram of the FBL approach for the WHFL over the MIMO channel.</p>
Full article ">Figure 4
<p>Comparison of the message mapping methods between the classical SK scheme and the scheme in this paper. (<b>a</b>) Message mapping of classical SK scheme. (<b>b</b>) Message mapping in this paper.</p>
Full article ">Figure 5
<p>Comparing the mechanisms between the classical SK scheme and the two-dimensional MLO-based SK-type scheme, where <math display="inline"><semantics> <msub> <mover accent="true"> <mi>θ</mi> <mo stretchy="false">^</mo> </mover> <mrow> <mi>i</mi> <mo>−</mo> <mn>1</mn> </mrow> </msub> </semantics></math> represents the estimation of the transmitted message <math display="inline"><semantics> <mi>θ</mi> </semantics></math> at time <math display="inline"><semantics> <mrow> <mi>i</mi> <mo>−</mo> <mn>1</mn> </mrow> </semantics></math>. (<b>a</b>) The classical SK scheme in a certain round <span class="html-italic">i</span>. (<b>b</b>) The two-dimensional MLO-based SK-type scheme in a certain round <span class="html-italic">i</span>.</p>
Full article ">Figure 6
<p>A schematic diagram of the FBL approach for the SIMO WHFL.</p>
Full article ">Figure 7
<p>Performance comparison between the different schemes on the MNIST dataset (<math display="inline"><semantics> <mrow> <mi>K</mi> <mo>=</mo> <mn>10</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>S</mi> <mo>ℓ</mo> </msub> <mo>=</mo> <mn>60,000</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>q</mi> <mo>=</mo> <mn>15,910</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>D</mi> <mo>=</mo> <msup> <mn>10</mn> <mrow> <mo>−</mo> <mn>4</mn> </mrow> </msup> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mover accent="true"> <mi>SNR</mi> <mo stretchy="false">˜</mo> </mover> <mo>=</mo> <mn>15</mn> </mrow> </semantics></math> dB, <math display="inline"><semantics> <mrow> <mi>P</mi> <mo>=</mo> <mn>10</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>τ</mi> <mo>=</mo> <msup> <mn>10</mn> <mrow> <mo>−</mo> <mn>6</mn> </mrow> </msup> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msubsup> <mi>σ</mi> <mrow> <mn>1</mn> </mrow> <mn>2</mn> </msubsup> <mo>=</mo> <msubsup> <mi>σ</mi> <mrow> <mn>2</mn> </mrow> <mn>2</mn> </msubsup> <mo>=</mo> <mn>1</mn> <mo>,</mo> <msubsup> <mi>σ</mi> <mrow> <mi>e</mi> </mrow> <mn>2</mn> </msubsup> <mo>=</mo> <mn>2</mn> </mrow> </semantics></math>). (<b>a</b>) <math display="inline"><semantics> <mrow> <mi>A</mi> <mo>=</mo> <mi>B</mi> <mo>=</mo> <mi>C</mi> <mo>=</mo> <mn>4</mn> <mo>,</mo> <mo> </mo> <mi>δ</mi> <mo>=</mo> <mn>0.99994</mn> </mrow> </semantics></math>. (<b>b</b>) <math display="inline"><semantics> <mrow> <mi>A</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <mi>B</mi> <mo>=</mo> <mi>C</mi> <mo>=</mo> <mn>4</mn> <mo>,</mo> <mo> </mo> <mi>δ</mi> <mo>=</mo> <mn>0.99997</mn> </mrow> </semantics></math>. (<b>c</b>) <math display="inline"><semantics> <mrow> <mi>A</mi> <mo>=</mo> <mn>4</mn> <mo>,</mo> <mo> </mo> <mi>B</mi> <mo>=</mo> <mi>C</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <mi>δ</mi> <mo>=</mo> <mn>0.99997</mn> </mrow> </semantics></math>. (<b>d</b>) <math display="inline"><semantics> <mrow> <mi>A</mi> <mo>=</mo> <mi>B</mi> <mo>=</mo> <mi>C</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <mi>δ</mi> <mo>=</mo> <mn>0.99998</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 8
<p>Performance comparison between the different schemes on the MNIST dataset (<math display="inline"><semantics> <mrow> <mi>K</mi> <mo>=</mo> <mn>10</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>S</mi> <mo>ℓ</mo> </msub> <mo>=</mo> <mn>60,000</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>q</mi> <mo>=</mo> <mn>15,910</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>D</mi> <mo>=</mo> <msup> <mn>10</mn> <mrow> <mo>−</mo> <mn>4</mn> </mrow> </msup> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mover accent="true"> <mi>SNR</mi> <mo stretchy="false">˜</mo> </mover> <mo>=</mo> <mn>15</mn> </mrow> </semantics></math> dB, <math display="inline"><semantics> <mrow> <mi>P</mi> <mo>=</mo> <mn>10</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>τ</mi> <mo>=</mo> <msup> <mn>10</mn> <mrow> <mo>−</mo> <mn>6</mn> </mrow> </msup> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msubsup> <mi>σ</mi> <mrow> <mn>1</mn> </mrow> <mn>2</mn> </msubsup> <mo>=</mo> <msubsup> <mi>σ</mi> <mrow> <mn>2</mn> </mrow> <mn>2</mn> </msubsup> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <msubsup> <mi>σ</mi> <mrow> <mi>e</mi> </mrow> <mn>2</mn> </msubsup> <mo>=</mo> <mn>2</mn> </mrow> </semantics></math>). (<b>a</b>) <math display="inline"><semantics> <mrow> <mi>A</mi> <mo>=</mo> <mi>B</mi> <mo>=</mo> <mi>C</mi> <mo>=</mo> <mn>4</mn> <mo>,</mo> <mo> </mo> <mi>δ</mi> <mo>=</mo> <mn>0.99994</mn> </mrow> </semantics></math>. (<b>b</b>) <math display="inline"><semantics> <mrow> <mi>A</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <mi>B</mi> <mo>=</mo> <mi>C</mi> <mo>=</mo> <mn>4</mn> <mo>,</mo> <mo> </mo> <mi>δ</mi> <mo>=</mo> <mn>0.99997</mn> </mrow> </semantics></math>. (<b>c</b>) <math display="inline"><semantics> <mrow> <mi>A</mi> <mo>=</mo> <mn>4</mn> <mo>,</mo> <mo> </mo> <mi>B</mi> <mo>=</mo> <mi>C</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <mi>δ</mi> <mo>=</mo> <mn>0.99997</mn> </mrow> </semantics></math>. (<b>d</b>) <math display="inline"><semantics> <mrow> <mi>A</mi> <mo>=</mo> <mi>B</mi> <mo>=</mo> <mi>C</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <mi>δ</mi> <mo>=</mo> <mn>0.99998</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 8 Cont.
<p>Performance comparison between the different schemes on the MNIST dataset (<math display="inline"><semantics> <mrow> <mi>K</mi> <mo>=</mo> <mn>10</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>S</mi> <mo>ℓ</mo> </msub> <mo>=</mo> <mn>60,000</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>q</mi> <mo>=</mo> <mn>15,910</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>D</mi> <mo>=</mo> <msup> <mn>10</mn> <mrow> <mo>−</mo> <mn>4</mn> </mrow> </msup> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mover accent="true"> <mi>SNR</mi> <mo stretchy="false">˜</mo> </mover> <mo>=</mo> <mn>15</mn> </mrow> </semantics></math> dB, <math display="inline"><semantics> <mrow> <mi>P</mi> <mo>=</mo> <mn>10</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>τ</mi> <mo>=</mo> <msup> <mn>10</mn> <mrow> <mo>−</mo> <mn>6</mn> </mrow> </msup> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msubsup> <mi>σ</mi> <mrow> <mn>1</mn> </mrow> <mn>2</mn> </msubsup> <mo>=</mo> <msubsup> <mi>σ</mi> <mrow> <mn>2</mn> </mrow> <mn>2</mn> </msubsup> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <msubsup> <mi>σ</mi> <mrow> <mi>e</mi> </mrow> <mn>2</mn> </msubsup> <mo>=</mo> <mn>2</mn> </mrow> </semantics></math>). (<b>a</b>) <math display="inline"><semantics> <mrow> <mi>A</mi> <mo>=</mo> <mi>B</mi> <mo>=</mo> <mi>C</mi> <mo>=</mo> <mn>4</mn> <mo>,</mo> <mo> </mo> <mi>δ</mi> <mo>=</mo> <mn>0.99994</mn> </mrow> </semantics></math>. (<b>b</b>) <math display="inline"><semantics> <mrow> <mi>A</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <mi>B</mi> <mo>=</mo> <mi>C</mi> <mo>=</mo> <mn>4</mn> <mo>,</mo> <mo> </mo> <mi>δ</mi> <mo>=</mo> <mn>0.99997</mn> </mrow> </semantics></math>. (<b>c</b>) <math display="inline"><semantics> <mrow> <mi>A</mi> <mo>=</mo> <mn>4</mn> <mo>,</mo> <mo> </mo> <mi>B</mi> <mo>=</mo> <mi>C</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <mi>δ</mi> <mo>=</mo> <mn>0.99997</mn> </mrow> </semantics></math>. (<b>d</b>) <math display="inline"><semantics> <mrow> <mi>A</mi> <mo>=</mo> <mi>B</mi> <mo>=</mo> <mi>C</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <mi>δ</mi> <mo>=</mo> <mn>0.99998</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 9
<p>Transmission latency (200 rounds) of the different schemes on the MNIST dataset (<math display="inline"><semantics> <mrow> <mi>K</mi> <mo>=</mo> <mn>10</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>S</mi> <mo>ℓ</mo> </msub> <mo>=</mo> <mn>60,000</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>q</mi> <mo>=</mo> <mn>15,910</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>D</mi> <mo>=</mo> <msup> <mn>10</mn> <mrow> <mo>−</mo> <mn>4</mn> </mrow> </msup> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>τ</mi> <mo>=</mo> <msup> <mn>10</mn> <mrow> <mo>−</mo> <mn>6</mn> </mrow> </msup> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mover accent="true"> <mi>SNR</mi> <mo stretchy="false">˜</mo> </mover> <mo>=</mo> <mn>15</mn> </mrow> </semantics></math> dB, <math display="inline"><semantics> <mrow> <msubsup> <mi>σ</mi> <mrow> <mn>1</mn> </mrow> <mn>2</mn> </msubsup> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <msubsup> <mi>σ</mi> <mrow> <mn>2</mn> </mrow> <mn>2</mn> </msubsup> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> </mrow> </semantics></math><math display="inline"><semantics> <mrow> <msubsup> <mi>σ</mi> <mrow> <mi>e</mi> </mrow> <mn>2</mn> </msubsup> <mo>=</mo> <mn>2</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>T</mi> <mo>=</mo> <mn>200</mn> </mrow> </semantics></math>). (<b>a</b>) <math display="inline"><semantics> <mrow> <mi>A</mi> <mo>=</mo> <mi>B</mi> <mo>=</mo> <mi>C</mi> <mo>=</mo> <mn>4</mn> <mo>,</mo> <mo> </mo> <mi>δ</mi> <mo>=</mo> <mn>0.99994</mn> </mrow> </semantics></math>. (<b>b</b>) <math display="inline"><semantics> <mrow> <mi>A</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <mi>B</mi> <mo>=</mo> <mi>C</mi> <mo>=</mo> <mn>4</mn> <mo>,</mo> <mo> </mo> <mi>δ</mi> <mo>=</mo> <mn>0.99997</mn> </mrow> </semantics></math>. (<b>c</b>) <math display="inline"><semantics> <mrow> <mi>A</mi> <mo>=</mo> <mn>4</mn> <mo>,</mo> <mo> </mo> <mi>B</mi> <mo>=</mo> <mi>C</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <mi>δ</mi> <mo>=</mo> <mn>0.99997</mn> </mrow> </semantics></math>. (<b>d</b>) <math display="inline"><semantics> <mrow> <mi>A</mi> <mo>=</mo> <mi>B</mi> <mo>=</mo> <mi>C</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <mi>δ</mi> <mo>=</mo> <mn>0.99998</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 10
<p>Transmission latency (200 rounds) of our schemes under different feedback channel SNR and perfect CSI on the MNIST dataset (<math display="inline"><semantics> <mrow> <mi>K</mi> <mo>=</mo> <mn>10</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>S</mi> <mo>ℓ</mo> </msub> <mo>=</mo> <mn>60,000</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>q</mi> <mo>=</mo> <mn>15,910</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>P</mi> <mo>=</mo> <mn>10</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>D</mi> <mo>=</mo> <msup> <mn>10</mn> <mrow> <mo>−</mo> <mn>4</mn> </mrow> </msup> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>τ</mi> <mo>=</mo> <msup> <mn>10</mn> <mrow> <mo>−</mo> <mn>6</mn> </mrow> </msup> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msubsup> <mi>σ</mi> <mrow> <mn>1</mn> </mrow> <mn>2</mn> </msubsup> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <msubsup> <mi>σ</mi> <mrow> <mn>2</mn> </mrow> <mn>2</mn> </msubsup> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <msubsup> <mi>σ</mi> <mrow> <mi>e</mi> </mrow> <mn>2</mn> </msubsup> <mo>=</mo> <mn>2</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>T</mi> <mo>=</mo> <mn>200</mn> </mrow> </semantics></math>).</p>
Full article ">Figure 11
<p>The relationship between the PLS (secrecy level), the privacy-utility, and LDP noise variance of proposed FBL schemes on the MNIST dataset (<math display="inline"><semantics> <mrow> <mi>K</mi> <mo>=</mo> <mn>10</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>S</mi> <mo>ℓ</mo> </msub> <mo>=</mo> <mn>60,000</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>q</mi> <mo>=</mo> <mn>15,910</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>D</mi> <mo>=</mo> <msup> <mn>10</mn> <mrow> <mo>−</mo> <mn>4</mn> </mrow> </msup> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mover accent="true"> <mi>SNR</mi> <mo stretchy="false">˜</mo> </mover> <mo>=</mo> <mn>15</mn> </mrow> </semantics></math> dB, <math display="inline"><semantics> <mrow> <mi>P</mi> <mo>=</mo> <mn>10</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>τ</mi> <mo>=</mo> <msup> <mn>10</mn> <mrow> <mo>−</mo> <mn>6</mn> </mrow> </msup> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msubsup> <mi>σ</mi> <mrow> <mn>1</mn> </mrow> <mn>2</mn> </msubsup> <mo>=</mo> <msubsup> <mi>σ</mi> <mrow> <mn>2</mn> </mrow> <mn>2</mn> </msubsup> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> </mrow> </semantics></math><math display="inline"><semantics> <mrow> <msubsup> <mi>σ</mi> <mrow> <mi>e</mi> </mrow> <mn>2</mn> </msubsup> <mo>=</mo> <mn>2</mn> </mrow> </semantics></math>). (<b>a</b>) <math display="inline"><semantics> <mrow> <mi>A</mi> <mo>=</mo> <mi>B</mi> <mo>=</mo> <mi>C</mi> <mo>=</mo> <mn>4</mn> </mrow> </semantics></math>. (<b>b</b>) <math display="inline"><semantics> <mrow> <mi>A</mi> <mo>=</mo> <mi>B</mi> <mo>=</mo> <mi>C</mi> <mo>=</mo> <mn>4</mn> </mrow> </semantics></math>. (<b>c</b>) <math display="inline"><semantics> <mrow> <mi>A</mi> <mo>=</mo> <mi>B</mi> <mo>=</mo> <mi>C</mi> <mo>=</mo> <mn>4</mn> </mrow> </semantics></math>. (<b>d</b>) <math display="inline"><semantics> <mrow> <mi>A</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <mi>B</mi> <mo>=</mo> <mi>C</mi> <mo>=</mo> <mn>4</mn> </mrow> </semantics></math>. (<b>e</b>) <math display="inline"><semantics> <mrow> <mi>A</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <mi>B</mi> <mo>=</mo> <mi>C</mi> <mo>=</mo> <mn>4</mn> </mrow> </semantics></math>. (<b>f</b>) <math display="inline"><semantics> <mrow> <mi>A</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <mi>B</mi> <mo>=</mo> <mi>C</mi> <mo>=</mo> <mn>4</mn> </mrow> </semantics></math>. (<b>g</b>) <math display="inline"><semantics> <mrow> <mi>A</mi> <mo>=</mo> <mn>4</mn> <mo>,</mo> <mo> </mo> <mi>B</mi> <mo>=</mo> <mi>C</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>. (<b>h</b>) <math display="inline"><semantics> <mrow> <mi>A</mi> <mo>=</mo> <mn>4</mn> <mo>,</mo> <mo> </mo> <mi>B</mi> <mo>=</mo> <mi>C</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>. (<b>i</b>) <math display="inline"><semantics> <mrow> <mi>A</mi> <mo>=</mo> <mn>4</mn> <mo>,</mo> <mo> </mo> <mi>B</mi> <mo>=</mo> <mi>C</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>. (<b>j</b>) <math display="inline"><semantics> <mrow> <mi>A</mi> <mo>=</mo> <mi>B</mi> <mo>=</mo> <mi>C</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>. (<b>k</b>) <math display="inline"><semantics> <mrow> <mi>A</mi> <mo>=</mo> <mi>B</mi> <mo>=</mo> <mi>C</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>. (<b>l</b>) <math display="inline"><semantics> <mrow> <mi>A</mi> <mo>=</mo> <mi>B</mi> <mo>=</mo> <mi>C</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 11 Cont.
<p>The relationship between the PLS (secrecy level), the privacy-utility, and LDP noise variance of proposed FBL schemes on the MNIST dataset (<math display="inline"><semantics> <mrow> <mi>K</mi> <mo>=</mo> <mn>10</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>S</mi> <mo>ℓ</mo> </msub> <mo>=</mo> <mn>60,000</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>q</mi> <mo>=</mo> <mn>15,910</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>D</mi> <mo>=</mo> <msup> <mn>10</mn> <mrow> <mo>−</mo> <mn>4</mn> </mrow> </msup> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mover accent="true"> <mi>SNR</mi> <mo stretchy="false">˜</mo> </mover> <mo>=</mo> <mn>15</mn> </mrow> </semantics></math> dB, <math display="inline"><semantics> <mrow> <mi>P</mi> <mo>=</mo> <mn>10</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>τ</mi> <mo>=</mo> <msup> <mn>10</mn> <mrow> <mo>−</mo> <mn>6</mn> </mrow> </msup> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msubsup> <mi>σ</mi> <mrow> <mn>1</mn> </mrow> <mn>2</mn> </msubsup> <mo>=</mo> <msubsup> <mi>σ</mi> <mrow> <mn>2</mn> </mrow> <mn>2</mn> </msubsup> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> </mrow> </semantics></math><math display="inline"><semantics> <mrow> <msubsup> <mi>σ</mi> <mrow> <mi>e</mi> </mrow> <mn>2</mn> </msubsup> <mo>=</mo> <mn>2</mn> </mrow> </semantics></math>). (<b>a</b>) <math display="inline"><semantics> <mrow> <mi>A</mi> <mo>=</mo> <mi>B</mi> <mo>=</mo> <mi>C</mi> <mo>=</mo> <mn>4</mn> </mrow> </semantics></math>. (<b>b</b>) <math display="inline"><semantics> <mrow> <mi>A</mi> <mo>=</mo> <mi>B</mi> <mo>=</mo> <mi>C</mi> <mo>=</mo> <mn>4</mn> </mrow> </semantics></math>. (<b>c</b>) <math display="inline"><semantics> <mrow> <mi>A</mi> <mo>=</mo> <mi>B</mi> <mo>=</mo> <mi>C</mi> <mo>=</mo> <mn>4</mn> </mrow> </semantics></math>. (<b>d</b>) <math display="inline"><semantics> <mrow> <mi>A</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <mi>B</mi> <mo>=</mo> <mi>C</mi> <mo>=</mo> <mn>4</mn> </mrow> </semantics></math>. (<b>e</b>) <math display="inline"><semantics> <mrow> <mi>A</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <mi>B</mi> <mo>=</mo> <mi>C</mi> <mo>=</mo> <mn>4</mn> </mrow> </semantics></math>. (<b>f</b>) <math display="inline"><semantics> <mrow> <mi>A</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <mi>B</mi> <mo>=</mo> <mi>C</mi> <mo>=</mo> <mn>4</mn> </mrow> </semantics></math>. (<b>g</b>) <math display="inline"><semantics> <mrow> <mi>A</mi> <mo>=</mo> <mn>4</mn> <mo>,</mo> <mo> </mo> <mi>B</mi> <mo>=</mo> <mi>C</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>. (<b>h</b>) <math display="inline"><semantics> <mrow> <mi>A</mi> <mo>=</mo> <mn>4</mn> <mo>,</mo> <mo> </mo> <mi>B</mi> <mo>=</mo> <mi>C</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>. (<b>i</b>) <math display="inline"><semantics> <mrow> <mi>A</mi> <mo>=</mo> <mn>4</mn> <mo>,</mo> <mo> </mo> <mi>B</mi> <mo>=</mo> <mi>C</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>. (<b>j</b>) <math display="inline"><semantics> <mrow> <mi>A</mi> <mo>=</mo> <mi>B</mi> <mo>=</mo> <mi>C</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>. (<b>k</b>) <math display="inline"><semantics> <mrow> <mi>A</mi> <mo>=</mo> <mi>B</mi> <mo>=</mo> <mi>C</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>. (<b>l</b>) <math display="inline"><semantics> <mrow> <mi>A</mi> <mo>=</mo> <mi>B</mi> <mo>=</mo> <mi>C</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>.</p>
Full article ">
28 pages, 12031 KiB  
Article
Key Synchronization Method Based on Negative Databases and Physical Channel State Characteristics of Wireless Sensor Network
by Haoyang Pu, Wen Chen, Hongchao Wang and Shenghong Bao
Sensors 2024, 24(19), 6217; https://doi.org/10.3390/s24196217 - 25 Sep 2024
Viewed by 541
Abstract
Due to their inherent openness, wireless sensor networks (WSNs) are vulnerable to eavesdropping attacks. Addressing the issue of secure Internet Key Exchange (IKE) in the absence of reliable third parties like CA/PKI (Certificate Authority/Public Key Infrastructure) in WSNs, a novel key synchronization method [...] Read more.
Due to their inherent openness, wireless sensor networks (WSNs) are vulnerable to eavesdropping attacks. Addressing the issue of secure Internet Key Exchange (IKE) in the absence of reliable third parties like CA/PKI (Certificate Authority/Public Key Infrastructure) in WSNs, a novel key synchronization method named NDPCS-KS is proposed in the paper. Firstly, through an initial negotiation process, both ends of the main channels generate the same initial key seeds using the Channel State Information (CSI). Subsequently, negotiation keys and a negative database (NDB) are synchronously generated at the two ends based on the initial key seeds. Then, in a second-negotiation process, the NDB is employed to filter the negotiation keys to obtain the keys for encryption. NDPCS-KS reduced the risk of information leakage, since the keys are not directly transmitted over the network, and the eavesdroppers cannot acquire the initial key seeds because of the physical isolation of their eavesdropping channels and the main channels. Furthermore, due to the NP-hard problem of reversing the NDB, even if an attacker obtains the NDB, deducing the initial key seeds is computationally infeasible. Therefore, it becomes exceedingly difficult for attackers to generate legitimate encryption keys without the NDB or initial key seeds. Moreover, a lightweight anti-replay and identity verification mechanism is designed to deal with replay attacks or forgery attacks. Experimental results show that NDPCS-KS has less time overhead and stronger randomness in key generation compared with other methods, and it can effectively counter replay, forgery, and tampering attacks. Full article
(This article belongs to the Section Sensor Networks)
Show Figures

Figure 1

Figure 1
<p>System model.</p>
Full article ">Figure 2
<p>Schematic diagram of the NDB.</p>
Full article ">Figure 3
<p>Schematic diagram showing the distribution of the generated NDB and negotiation key in a two-dimensional plane.</p>
Full article ">Figure 4
<p>Schematic diagram of communication key generated by dual negotiation of the NDB.</p>
Full article ">Figure 5
<p>Data transmission flow.</p>
Full article ">Figure 6
<p>Schematic diagram of sensor topology.</p>
Full article ">Figure 7
<p>Schematic diagram of ESP32 development board.</p>
Full article ">Figure 8
<p>Replay attack detection accuracy.</p>
Full article ">Figure 9
<p>(<b>a</b>) Forgery detection accuracy. (<b>b</b>) Tamper detection accuracy.</p>
Full article ">Figure 10
<p>Comparison of execution time. The execution time of NDPCS-KS is compared with that of Rangarajan et al. (2023) [<a href="#B18-sensors-24-06217" class="html-bibr">18</a>], Moara-Nkwe et al. (2018) [<a href="#B19-sensors-24-06217" class="html-bibr">19</a>], and Ji et al. (2022) [<a href="#B20-sensors-24-06217" class="html-bibr">20</a>].</p>
Full article ">Figure 11
<p>(<b>a</b>) Total key generation time across different network scales. The execution time of NDPCS-KS is compared with the methods of Rangarajan et al. (2023) [<a href="#B18-sensors-24-06217" class="html-bibr">18</a>], Moara-Nkwe et al. (2018) [<a href="#B19-sensors-24-06217" class="html-bibr">19</a>], and Ji et al. (2022) [<a href="#B20-sensors-24-06217" class="html-bibr">20</a>]. (<b>b</b>) Average key generation time per node across different network scales. The comparison includes NDPCS-KS and the methods from Rangarajan et al. (2023) [<a href="#B18-sensors-24-06217" class="html-bibr">18</a>], Moara-Nkwe et al. (2018) [<a href="#B19-sensors-24-06217" class="html-bibr">19</a>], and Ji et al. (2022) [<a href="#B20-sensors-24-06217" class="html-bibr">20</a>].</p>
Full article ">Figure 12
<p>Key distribution chart.</p>
Full article ">Figure 13
<p>Monte Carlo simulation results.</p>
Full article ">Figure 14
<p>Entropy statistics of keys.</p>
Full article ">
13 pages, 2094 KiB  
Article
Secrecy Performance Analysis of Hybrid RF/FSO System under Different Eavesdropping Strategies
by Xinkang Song, Xiang Wang, Xin Li, Shanghong Zhao and Qin Tian
Photonics 2024, 11(10), 897; https://doi.org/10.3390/photonics11100897 - 24 Sep 2024
Viewed by 462
Abstract
In this paper, we analyze the confidentiality of a hybrid radio frequency (RF)/free-space optical (FSO) system with regard to physical layer security (PLS). In this system, signals are transmitted between the source and destination using RF and FSO links, with the destination employing [...] Read more.
In this paper, we analyze the confidentiality of a hybrid radio frequency (RF)/free-space optical (FSO) system with regard to physical layer security (PLS). In this system, signals are transmitted between the source and destination using RF and FSO links, with the destination employing the maximal-ratio combining (MRC) scheme. A non-cooperative target (NCT) is assumed to have eavesdropping capabilities for RF and FSO signals in both collusion and non-collusion strategies. The Nakagami-m distribution models fading RF links, while FSO links are characterized by the Málaga (M) distribution. Exact closed-form expressions for the system’s secrecy outage probability (SOP) and effective secrecy throughput (EST) are derived based on the generalized Meijer G-function with two variables. Asymptotic expressions for the SOP are also obtained under high-signal-to-noise-ratio (SNR) regimes. These conclusions are validated through Monte Carlo simulations. The superiority of the hybrid RF/FSO system in improving the communication security of a single link is confirmed in its comparison with conventional means of RF communication. Full article
(This article belongs to the Section Optical Communication and Network)
Show Figures

Figure 1

Figure 1
<p>High altitude platform-UAV communication scenario in the presence of the NCT.</p>
Full article ">Figure 2
<p>Secrecy outage probability versus average SNR of legitimate RF link under different eavesdropping strategies and schemes.</p>
Full article ">Figure 3
<p>Secrecy outage probability versus average SNR of legitimate RF link for different parameters.</p>
Full article ">Figure 4
<p>Secrecy outage probability versus average SNR of legitimate RF link for different channel conditions.</p>
Full article ">Figure 5
<p>Secrecy outage probability and effective secrecy throughput against target secrecy rate.</p>
Full article ">
20 pages, 3271 KiB  
Article
Smart Collaborative Intrusion Detection System for Securing Vehicular Networks Using Ensemble Machine Learning Model
by Mostafa Mahmoud El-Gayar, Faheed A. F. Alrslani and Shaker El-Sappagh
Information 2024, 15(10), 583; https://doi.org/10.3390/info15100583 - 24 Sep 2024
Viewed by 772
Abstract
The advent of the Fourth Industrial Revolution has positioned the Internet of Things as a pivotal force in intelligent vehicles. With the source of vehicle-to-everything (V2X), Internet of Things (IoT) networks, and inter-vehicle communication, intelligent connected vehicles are at the forefront of this [...] Read more.
The advent of the Fourth Industrial Revolution has positioned the Internet of Things as a pivotal force in intelligent vehicles. With the source of vehicle-to-everything (V2X), Internet of Things (IoT) networks, and inter-vehicle communication, intelligent connected vehicles are at the forefront of this transformation, leading to complex vehicular networks that are crucial yet susceptible to cyber threats. The complexity and openness of these networks expose them to a plethora of cyber-attacks, from passive eavesdropping to active disruptions like Denial of Service and Sybil attacks. These not only compromise the safety and efficiency of vehicular networks but also pose a significant risk to the stability and resilience of the Internet of Vehicles. Addressing these vulnerabilities, this paper proposes a Dynamic Forest-Structured Ensemble Network (DFSENet) specifically tailored for the Internet of Vehicles (IoV). By leveraging data-balancing techniques and dimensionality reduction, the DFSENet model is designed to detect a wide range of cyber threats effectively. The proposed model demonstrates high efficacy, with an accuracy of 99.2% on the CICIDS dataset and 98% on the car-hacking dataset. The precision, recall, and f-measure metrics stand at 95.6%, 98.8%, and 96.9%, respectively, establishing the DFSENet model as a robust solution for securing the IoV against cyber-attacks. Full article
(This article belongs to the Special Issue Intrusion Detection Systems in IoT Networks)
Show Figures

Figure 1

Figure 1
<p>Proposed CIDSs.</p>
Full article ">Figure 2
<p>Heatmaps Depicting the Feature Correlation in CICIDS data at various processing stages: (<b>a</b>) the heatmap demonstrating data feature correlations following feature selection; (<b>b</b>) the heatmap showing data feature correlations following the implementation of PCA.</p>
Full article ">Figure 3
<p>Structure of the DFSENet.</p>
Full article ">Figure 4
<p>Consolidation of 13 subcategories into six main categories from the original CICIDS2017 dataset during preprocessing.</p>
Full article ">Figure 5
<p>Distribution of the car-hacking dataset, highlighting the preponderance of attack samples at 95%, with no data balancing required.</p>
Full article ">Figure 6
<p>Comparative visualization of the detection performance of the RF model using various data-balancing techniques tested on the original testing set.</p>
Full article ">Figure 7
<p>Performance metrics of the optimal base estimators for the IDS model.</p>
Full article ">Figure 8
<p>Confusion matrices (<b>a</b>) obtained from the CICIDS testing set, and (<b>b</b>) obtained from the car-hacking dataset’s testing set.</p>
Full article ">Figure 9
<p>Evaluation metrics for each category in the CICIDS testing set, highlighting DFSENet’s superior detection performance with a special note of the ‘Botnet’ Category’s high recall and lower precision.</p>
Full article ">Figure 10
<p>Performance overview of the proposed IDS on the car-hacking dataset.</p>
Full article ">
18 pages, 3424 KiB  
Article
Architecture for Enhancing Communication Security with RBAC IoT Protocol-Based Microgrids
by SooHyun Shin, MyungJoo Park, TaeWan Kim and HyoSik Yang
Sensors 2024, 24(18), 6000; https://doi.org/10.3390/s24186000 - 16 Sep 2024
Viewed by 932
Abstract
In traditional power grids, the unidirectional flow of energy and information has led to a decrease in efficiency. To address this issue, the concept of microgrids with bidirectional flow and independent power sources has been introduced. The components of a microgrid utilize various [...] Read more.
In traditional power grids, the unidirectional flow of energy and information has led to a decrease in efficiency. To address this issue, the concept of microgrids with bidirectional flow and independent power sources has been introduced. The components of a microgrid utilize various IoT protocols such as OPC-UA, MQTT, and DDS to implement bidirectional communication, enabling seamless network communication among different elements within the microgrid. Technological innovation, however, has simultaneously given rise to security issues in the communication system of microgrids. The use of IoT protocols creates vulnerabilities that malicious hackers may exploit to eavesdrop on data or attempt unauthorized control of microgrid devices. Therefore, monitoring and controlling security vulnerabilities is essential to prevent intrusion threats and enhance cyber resilience in the stable and efficient operation of microgrid systems. In this study, we propose an RBAC-based security approach on top of DDS protocols in microgrid systems. The proposed approach allocates roles to users or devices and grants various permissions for access control. DDS subscribers request access to topics and publishers request access to evaluations from the role repository using XACML. The overall implementation model is designed for the publisher to receive XACML transmitted from the repository and perform policy decision making and enforcement. By applying these methods, security vulnerabilities in communication between IoT devices can be reduced, and cyber resilience can be enhanced. Full article
(This article belongs to the Special Issue IoT Cybersecurity)
Show Figures

Figure 1

Figure 1
<p>Data flow of XACML.</p>
Full article ">Figure 2
<p>DCPS structure in microgrid.</p>
Full article ">Figure 3
<p>“Push” and “Pull” model in IEC 62351-8 [<a href="#B10-sensors-24-06000" class="html-bibr">10</a>].</p>
Full article ">Figure 4
<p>OpenFMB architecture [<a href="#B32-sensors-24-06000" class="html-bibr">32</a>].</p>
Full article ">Figure 5
<p>DDS and XACML into the concept of draft idea.</p>
Full article ">Figure 6
<p>Overall architecture.</p>
Full article ">Figure 7
<p>Communication of publish and subscribe on DDS.</p>
Full article ">Figure 8
<p>DDS and XACML data flow using domain ID.</p>
Full article ">
Back to TopTop