Nothing Special   »   [go: up one dir, main page]

You seem to have javascript disabled. Please note that many of the page functionalities won't work as expected without javascript enabled.
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (177)

Search Parameters:
Keywords = blazars

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 1992 KiB  
Article
Exploring γ-Ray Flares from High-Redshift Blazar B3 1343+451 at GeV Energies
by Xiongfei Geng, Yang Liu, Gang Cao, Jing Fan, Xiongbang Yang, Nan Ding, Minghu Gao, Yehui Yang and Zhijie Zhang
Universe 2024, 10(11), 423; https://doi.org/10.3390/universe10110423 - 11 Nov 2024
Viewed by 400
Abstract
We study the temporal and spectral variability properties of the high-redshift blazar B3 1343+451 utilizing Fermi-LAT data from 2008 to 2022 in the energy range of 0.1–300 GeV. We identify six major flares with many substructures and analyze their temporal and spectral properties [...] Read more.
We study the temporal and spectral variability properties of the high-redshift blazar B3 1343+451 utilizing Fermi-LAT data from 2008 to 2022 in the energy range of 0.1–300 GeV. We identify six major flares with many substructures and analyze their temporal and spectral properties in detail. The fastest rise and decay timescales are found to be 4.8 ± 0.48 h and 5.28 ± 0.72 h, respectively. The size of the emission region is constrained to be R ∼ 5.18 × 1015–1.56 × 1016 cm with the typical Doppler factors of δ ∼ 10–30. Most of the peaks from the flares exhibit a symmetric temporal profile within the error bars, implying that the rise and decay timescales are dominated by the disturbances caused by dense plasma blobs passing through the standing shock front in the jet region. We also find that four flares are better fitted with a log-parabolic distribution, while two flares are better fitted with a power-law distribution. Our results indicate that the emission regions vary from one flare to another, which is consistent with earlier results. Full article
Show Figures

Figure 1

Figure 1
<p>Panel (<b>a</b>) presents the 7-day binned light curves of B3 1343+451 from 2008 to 2022 at <span class="html-italic">E</span> &gt; 100 MeV. The different patterns are divided by green vertical dashed lines. Panel (<b>b</b>) presents the <math display="inline"><semantics> <mi>γ</mi> </semantics></math>-ray photon index as a function of time. Panel (<b>c</b>) presents the TS values (&gt;9) as a function of time on a logarithmic scale. Panel (<b>d</b>) presents the arrival time and energy of <span class="html-italic">E</span> &gt; 10 GeV photons with the significance levels of 2<math display="inline"><semantics> <mi>σ</mi> </semantics></math> and 3<math display="inline"><semantics> <mi>σ</mi> </semantics></math>.</p>
Full article ">Figure 2
<p>Panels (<b>a</b>,<b>b</b>,<b>d</b>–<b>f</b>) present the 2-day binned light curves of Flare-I, Flare-II, Flare-V, Flare-VI (A), and Flare-VI (B) that are identified in <a href="#universe-10-00423-f001" class="html-fig">Figure 1</a>, respectively. Panel (<b>c</b>) presents the 1-day binned light curves of Flare-III. The light curves are fitted with Equation (<a href="#FD1-universe-10-00423" class="html-disp-formula">1</a>). Here, the fitted residuals are shown in (<b>a</b>–<b>f</b>).</p>
Full article ">Figure 3
<p>CCF calculated for the 2-day or 1-day light curves within the 0.1–1 GeV and 1–300 GeV energy bands. The top-left, top-middle, and top-right present the correlations of Flare-I (binned in 2-day periods), Flare-II (binned in 2-day periods), and Flare-III (binned in 1-day period), respectively. The bottom-left and bottom-right present the correlations of Flare-V (binned in 2-day periods) and Flare-VI (binned in 2-day periods). CCCD is the cross-correlation centroid distribution. CCPD is the cross-correlation peak distribution.</p>
Full article ">Figure 4
<p><math display="inline"><semantics> <mi>γ</mi> </semantics></math>-ray SEDs of B3 1343+451 during the different states defined in <a href="#universe-10-00423-f001" class="html-fig">Figure 1</a>. These states are fitted by a PL (green lines) and LP (orange dashed curves). Their respective best-fitting parameters are given in <a href="#universe-10-00423-t003" class="html-table">Table 3</a>.</p>
Full article ">Figure 5
<p>(<b>a</b>) Histogram of all the 7-day binned flux data points. (<b>b</b>) Histogram of all the photon energy above 10 GeV. (<b>c</b>) Histogram of peak fluxes from <a href="#universe-10-00423-t001" class="html-table">Table 1</a>.</p>
Full article ">Figure 6
<p>(<b>a</b>) Histogram of rise and decay times from <a href="#universe-10-00423-t001" class="html-table">Table 1</a>. (<b>b</b>) Histogram of the symmetry factor (<math display="inline"><semantics> <mi>ξ</mi> </semantics></math>) from <a href="#universe-10-00423-t001" class="html-table">Table 1</a>. (<b>c</b>) Histogram of the rise and decay times from the fastest variability timescale from <a href="#universe-10-00423-t002" class="html-table">Table 2</a>.</p>
Full article ">Figure A1
<p>The 2-day binned light curves of Flare-I, Flare-II, Flare-V, and Flare-VI and the 1-day binned light curves of Flare-III. The peaks are identified by the BB algorithm with the false alarm rate parameter <math display="inline"><semantics> <msub> <mi>p</mi> <mn>0</mn> </msub> </semantics></math> = 0.05.</p>
Full article ">
35 pages, 7319 KiB  
Article
Searching for Hadronic Signatures in the Time Domain of Blazar Emission: The Case of Mrk 501
by Margaritis Chatzis, Stamatios I. Stathopoulos, Maria Petropoulou and Georgios Vasilopoulos
Universe 2024, 10(10), 392; https://doi.org/10.3390/universe10100392 - 10 Oct 2024
Viewed by 538
Abstract
Blazars—a subclass of active galaxies—are intrinsically time-variable broadband sources of electromagnetic radiation. In this contribution, we explored relativistic proton (hadronic) signatures in the time domain blazar emission and searched for those parameter combinations that unveil their presence during flaring epochs. We generated time [...] Read more.
Blazars—a subclass of active galaxies—are intrinsically time-variable broadband sources of electromagnetic radiation. In this contribution, we explored relativistic proton (hadronic) signatures in the time domain blazar emission and searched for those parameter combinations that unveil their presence during flaring epochs. We generated time series for key model parameters, like magnetic field strength and the power-law index of radiating particles, which were motivated from a simulated time series with statistical properties describing the observed GeV gamma-ray flux. We chose the TeV blazar Mrk 501 as our test case, as it had been the study ground for extensive investigations during individual flaring events. Using the code LeHaMoC, we computed the electromagnetic and neutrino emissions for a period of several years that contained several flares of interest. We show that for both of those particle distributions the power-law index variations that were tied to moderate changes in the magnetic field strength of the emitting region might naturally lead to hard X-ray flares with very-high-energy γ-ray counterparts. We found spectral differences measurable by the Cherenkov Telescope Array Observatory at sub-TeV energies, and we computed the neutrino fluence over 14.5 years. The latter predicted ∼0.2 muon and anti-muon neutrinos, consistent with the non-detection of high-energy neutrinos from Mrk 501. Full article
(This article belongs to the Section Compact Objects)
Show Figures

Figure 1

Figure 1
<p>Spectral energy distribution of Mrk 501. Gray points indicate archival observations taken from SED builder. We highlight VHE flares and the major X-ray outburst of 1997 with a faded gray color; both were excluded from our average-state analysis. Black points represent the archival X-ray data and the optical bulge of the host galaxy that were also not used in our modeling process. Colored markers indicate the long-term average X-ray and HE <math display="inline"><semantics> <mi>γ</mi> </semantics></math>-ray spectra included in the fitting process (see inset legend).</p>
Full article ">Figure 2
<p>One hundred leptonic SEDs computed from the posterior parameter space shown in <a href="#universe-10-00392-f0A2" class="html-fig">Figure A2</a>. The shaded band has been excluded from the fit assuming emission originating from a more extended jet region. The green dashed line represents the 1% limit used to calculate the upper limit on <math display="inline"><semantics> <msub> <mi>L</mi> <mi>p</mi> </msub> </semantics></math>. With (faded) gray points, the archival (flare) observations are shown. Black points represent the archival X-ray data not used in our modeling process. Colored markers indicate the long-term average X-ray and HE <math display="inline"><semantics> <mi>γ</mi> </semantics></math>-ray spectra included in the fitting process (see inset legend).</p>
Full article ">Figure 3
<p>Spectral components of the long-term average SED of Mrk 501 according to a leptohadronic model for the parameters listed in <a href="#universe-10-00392-t001" class="html-table">Table 1</a> and <a href="#universe-10-00392-t002" class="html-table">Table 2</a>. Highlighted are the leptonic components (synchrotron and Inverse Compton (IC) of primary electrons) and the hadronic components (synchrotron and IC of secondary electrons, proton synchrotron, and emission from <math display="inline"><semantics> <msup> <mi>π</mi> <mn>0</mn> </msup> </semantics></math>-decay) alongside the synchrotron and IC emission created from <math display="inline"><semantics> <mrow> <mi>γ</mi> <mi>γ</mi> </mrow> </semantics></math>-injected pairs.</p>
Full article ">Figure 4
<p>(<b>Left</b>): <tt>Celerite</tt> fit (blue line) of Mrk 501 overplotted on the logarithmic energy flux LC from the Fermi LCR (black markers). (<b>Right</b>): Posterior PSD of the <tt>celerite</tt> fit with <tt>emcee</tt>. Indicated is the break frequency that marks the transition from a white-noise to a red-noise-like PSD (see <a href="#app3-universe-10-00392" class="html-app">Appendix C</a> for slope discussion).</p>
Full article ">Figure 5
<p>(<b>Upper</b> panel): Zero-mean synthetic LC for Mrk 501 (black stars) and the interpolated LC on time steps of <math display="inline"><semantics> <mrow> <mn>1</mn> <msub> <mi>t</mi> <mrow> <mi>c</mi> <mi>r</mi> </mrow> </msub> <mo>=</mo> <mn>0.55</mn> </mrow> </semantics></math> days (blue circles). Gray bands designate analyzed flares. Lower panel: Zoom-in of the two gray bands of the upper panel, showing the extreme flare (<b>left</b>) and the typical flare (<b>right</b>).</p>
Full article ">Figure 6
<p>Components of the SED of Mrk 501 at the peak of the TS describing the extreme flare (see <a href="#universe-10-00392-f005" class="html-fig">Figure 5</a>). (<b>Upper panel</b>): Variations of the particle energy luminosity. (<b>Lower panel</b>): Variations of the magnetic field strength. Highlighted with a black dotted line is the average-state emission of <a href="#universe-10-00392-f003" class="html-fig">Figure 3</a>.</p>
Full article ">Figure 7
<p>Flux histograms in different energy bands for the full (14.6 yr) numerical run with time variations in the particle injection luminosity <math display="inline"><semantics> <msub> <mi>L</mi> <mrow> <mi>e</mi> <mo>,</mo> <mi>p</mi> </mrow> </msub> </semantics></math>. Upper panel: Energy ranges of 0.3–3 TeV and 0.1–100 GeV. Middle panel: Energy ranges of 14–195 keV and 0.2–10 keV. Lower panel: Energy range of the R-band and the histogram for the simulated LCs. The observational flux histograms are overplotted in green whenever available (for more details, see text).</p>
Full article ">Figure 8
<p>Same as <a href="#universe-10-00392-f007" class="html-fig">Figure 7</a> for time variations of the magnetic field strength <span class="html-italic">B</span>.</p>
Full article ">Figure 9
<p>Components of the SED of Mrk 501 at the peak of the TS describing the extreme flare (see <a href="#universe-10-00392-f005" class="html-fig">Figure 5</a>). Contrasted are leptohadronic (<b>left</b> column) to leptonic models (<b>right</b> column) for mild (<b>lower</b> row) to extreme (<b>upper</b> row) power-law index variations, with <math display="inline"><semantics> <mrow> <mi>m</mi> <mo>=</mo> <mn>0.5</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>m</mi> <mo>=</mo> <mn>4</mn> </mrow> </semantics></math>, respectively. Highlighted with a black dotted line is the average-state emission of <a href="#universe-10-00392-f003" class="html-fig">Figure 3</a>.</p>
Full article ">Figure 10
<p>Components of the SED of Mrk 501 at the peak of the injected TS describing the extreme (<b>left</b> panel) and typical (<b>right</b> panel) flare during the modified power-law index variations (for details, see text). Highlighted with a black dotted line is the average-state emission of <a href="#universe-10-00392-f003" class="html-fig">Figure 3</a>.</p>
Full article ">Figure 11
<p>Same as <a href="#universe-10-00392-f007" class="html-fig">Figure 7</a> for time variations of the power-law index <math display="inline"><semantics> <msub> <mi>p</mi> <mrow> <mi>e</mi> <mo>,</mo> <mi>p</mi> </mrow> </msub> </semantics></math>.</p>
Full article ">Figure 12
<p>LCs in three energy ranges of the extreme (solid line) and typical (dashed line) flares produced in a leptohadronic model with the modified power-law index variations (for more details, see text). The TS of the flares are rescaled to fit the display range and are overplotted for comparison (black lines).</p>
Full article ">Figure 13
<p>Flux–flux diagrams for the modified power-law index variations. We plotted the Fermi flux against (<b>a</b>) the VHE flux, (<b>b</b>) the harder X-ray flux probed by BAT, and (<b>c</b>) the softer X-ray flux probed by XRT. In panel (<b>d</b>), we plot the hard X-ray flux against the R-band flux. We present the variability for the complete 14.6-year-long leptohadronic run (blue circles) and highlight the results for the extreme (yellow stars) and typical (purple squares) flares.</p>
Full article ">Figure 14
<p>Simulated LCs of the extreme flare of Mrk 501 for CTAO North, using exposure times of 30 min, 1 h, and 5 h. Here, we used the EBL attenuated modified power-law index variation model. The 1 h and 5 h points were shifted by 0.25 and 0.5 days to the right, respectively, for clarity.</p>
Full article ">Figure 15
<p>Comparison of CTAO simulated LCs based on the leptohadronic (red) and leptonic (black) models for the energy ranges of 1–10 TeV (<b>left</b> panel) and 0.05–1 TeV (<b>right</b> panel). The leptonic points are shifted by 0.25 days to the right, for clarity.</p>
Full article ">Figure 16
<p>Log-parabola fits and 1<math display="inline"><semantics> <mi>σ</mi> </semantics></math> contours to the leptohadronic (red) and leptonic (black) simulated CTAO spectra, assuming 5 h exposure time, extracted at 11 days (<b>left</b> panel) and 43 days (<b>right</b> panel) from the simulated extreme flare. The light curves are displayed in <a href="#universe-10-00392-f015" class="html-fig">Figure 15</a>.</p>
Full article ">Figure 17
<p>Contour plots of best-fit log-parabola parameters of 1000 leptonic and leptohadronic simulated CTA spectra, showing <math display="inline"><semantics> <msub> <mi>ϕ</mi> <mn>0</mn> </msub> </semantics></math> (<b>left</b> panel), <math display="inline"><semantics> <mi>α</mi> </semantics></math> (<b>middle</b> panel), and <math display="inline"><semantics> <mi>β</mi> </semantics></math> (<b>right</b> panel) for <math display="inline"><semantics> <mrow> <mi>t</mi> <mo>=</mo> <mn>11</mn> </mrow> </semantics></math> (<b>left</b> figure) and <math display="inline"><semantics> <mrow> <mi>t</mi> <mo>=</mo> <mn>43</mn> </mrow> </semantics></math> (<b>right</b> figure) days.</p>
Full article ">Figure 18
<p><b>Upper</b> panel: Luminosity ratio between the MeV <math display="inline"><semantics> <msub> <mi>L</mi> <mrow> <mn>100</mn> <mi>MeV</mi> </mrow> </msub> </semantics></math> and 14–195 keV <math display="inline"><semantics> <msub> <mi>L</mi> <mrow> <mn>14</mn> <mo>−</mo> <mn>195</mn> <mi>keV</mi> </mrow> </msub> </semantics></math> bands using the produced SEDs when varying the slope of the particles <math display="inline"><semantics> <msub> <mi>p</mi> <mrow> <mi mathvariant="normal">e</mi> <mo>,</mo> <mi mathvariant="normal">p</mi> </mrow> </msub> </semantics></math> (see <b>middle</b> panel) according to Equation (<a href="#FD7-universe-10-00392" class="html-disp-formula">7</a>). <b>Bottom</b> panel: Expected muon neutrino events observed by IceCube using Equation (<a href="#FD9-universe-10-00392" class="html-disp-formula">9</a>). The solid blue line indicates the result obtained using different IceCube configurations over different operation seasons (<a href="#universe-10-00392-t005" class="html-table">Table 5</a>), while the dashed magenta line shows the result when considering only the most recent IceCube configuration (IC86 II) for all times. Gray areas designate analyzed flares, as described in <a href="#sec3-universe-10-00392" class="html-sec">Section 3</a>, while <math display="inline"><semantics> <msub> <mi>t</mi> <mn>0</mn> </msub> </semantics></math> = 55,029.0 MJD (17 July 2009) is the assumed starting time of the simulated LC.</p>
Full article ">Figure A1
<p>Multi-wavelength Light Curves of Mrk 501 (from top to bottom): (<b>first row</b>) 0.1–100 GeV from the Fermi LCR; (<b>second row</b>) 157-month Swift BAT rate in the 14–195 keV range; (<b>third row</b>) Swift XRT counts in the 0.2–10 keV range for the Windowed Timing (WT) and Photon Counting (PC) mode; (<b>fourth row</b>) spectral flux for the R-Band from observations from the GASP program of the Whole-Earth Blazar Telescope (WEBT) and data from the Tuorla Observatory using the KVA telescope. Time units of HJD can be compared to MJD for large timescales.</p>
Full article ">Figure A2
<p>Posterior distributions obtained from a leptonic fit to the average SED of Mrk 501 with <tt>emcee</tt> and <tt>LeHaMoC</tt>.</p>
Full article ">Figure A3
<p>(<b>Left</b>): Autocorrelation function of the standardized residuals. Indicated with a gray band is the 95% limit of white noise. (<b>Right</b>): Histogram of the standardized residuals (black) and Gaussian fit (blue).</p>
Full article ">Figure A4
<p>SED time evolution of Mrk 501 for the following scenarios (from top to bottom): (<b>upper left</b>) <math display="inline"><semantics> <msub> <mi>p</mi> <mrow> <mi>e</mi> <mo>,</mo> <mi>p</mi> </mrow> </msub> </semantics></math> variations in the extreme flaring event (<a href="https://youtu.be/gOThSSiAGo8" target="_blank">YouTube</a>); (<b>upper right</b>) <math display="inline"><semantics> <msub> <mi>p</mi> <mrow> <mi>e</mi> <mo>,</mo> <mi>p</mi> </mrow> </msub> </semantics></math> variations in the typical flaring event (<a href="https://youtu.be/XiJ4GyACBY0" target="_blank">YouTube</a>); (<b>lower left</b>) <span class="html-italic">B</span> variations in the extreme flaring event (<a href="https://youtu.be/2HoLAfhOpRk" target="_blank">YouTube</a>); (<b>lower right</b>) <math display="inline"><semantics> <msub> <mi>L</mi> <mrow> <mi>e</mi> <mo>,</mo> <mi>p</mi> </mrow> </msub> </semantics></math> variations in the extreme flaring event (<a href="https://youtu.be/jl5jHe2igeY" target="_blank">YouTube</a>).</p>
Full article ">Figure A5
<p><math display="inline"><semantics> <msub> <mi>L</mi> <mrow> <mi>e</mi> <mo>,</mo> <mi>p</mi> </mrow> </msub> </semantics></math> time variation SED density plot for the complete numerical run of <a href="#sec3dot1-universe-10-00392" class="html-sec">Section 3.1</a>.</p>
Full article ">Figure A6
<p><span class="html-italic">B</span> time variation SED density plot for the complete numerical run of <a href="#sec3dot1-universe-10-00392" class="html-sec">Section 3.1</a>.</p>
Full article ">Figure A7
<p><math display="inline"><semantics> <msub> <mi>p</mi> <mrow> <mi>e</mi> <mo>,</mo> <mi>p</mi> </mrow> </msub> </semantics></math> time variation SED density plot for the complete numerical run of <a href="#sec3dot2-universe-10-00392" class="html-sec">Section 3.2</a>.</p>
Full article ">Figure A8
<p>Parameter histograms of the variations in the particle energy injection rate (<b>left</b>, <b>center left</b>), the magnetic field strength (<b>center right</b>), and the modified power-law index variations (<b>right</b>). The variations in the power-law index are driven by changes in the magnetic field strength, ensuring the histogram accurately reflects both scenarios.</p>
Full article ">
19 pages, 12053 KiB  
Article
A Comprehensive Study on the Mid-Infrared Variability of Blazars
by Xuemei Zhang, Zhipeng Hu, Weitian Huang and Lisheng Mao
Universe 2024, 10(9), 360; https://doi.org/10.3390/universe10090360 - 7 Sep 2024
Viewed by 771
Abstract
We present a comprehensive investigation of mid-infrared (MIR) flux variability at 3.4 μm (W1 band) for a large sample of 3816 blazars, using Wide-field Infrared Survey Explorer (WISE) data through December 2022. The sample consists of 1740 flat-spectrum radio quasars (FSRQs), 1281 BL [...] Read more.
We present a comprehensive investigation of mid-infrared (MIR) flux variability at 3.4 μm (W1 band) for a large sample of 3816 blazars, using Wide-field Infrared Survey Explorer (WISE) data through December 2022. The sample consists of 1740 flat-spectrum radio quasars (FSRQs), 1281 BL Lac objects (BL Lacs), and 795 blazars of uncertain type (BCUs). Considering Fermi Large Area Telescope detection, we classify 2331 as Fermi blazars and 1485 as non-Fermi blazars. Additionally, based on synchrotron peak frequency, the sample includes 2264 low-synchrotron peaked (LSP), 512 intermediate-synchrotron peaked (ISP), and 655 high-synchrotron peaked (HSP) sources. We conduct a comparative analysis of short- and long-term intrinsic variability amplitude (σm), duty cycle (DC), and ensemble structure function (ESF) across blazar subclasses. The median short-term σm values were 0.1810.106+0.153, 0.1040.054+0.101, 0.1350.076+0.154, 0.1730.097+0.158, 0.1770.100+0.156, 0.0960.050+0.109, and 0.1060.058+0.100 mag for FSRQs, BL Lacs, Fermi blazars, non-Fermi blazars, LSPs, ISPs, and HSPs, respectively. The median DC values were 71.0322.48+14.17, 64.0222.86+16.97, 68.9625.52+15.66, 69.4022.17+14.42, 71.2421.36+14.25, 63.0333.19+16.93, and 64.6324.26+15.88 percent for the same subclasses. The median long-term σm values were 0.1370.105+0.408, 0.1710.132+0.206, 0.2820.184+0.332, 0.0710.062+0.143, 0.2180.174+0.386, 0.1730.132+0.208, and 0.1010.077+0.161 mag for the same subclasses, respectively. Our results reveal significant differences in 3.4 μm flux variability among these subclasses. FSRQs (LSPs) exhibit larger σm and DC values compared to BL Lacs (ISPs and HSPs). Fermi blazars display higher long-term σm but lower short-term σm relative to non-Fermi blazars, while DC distributions between the two groups are similar. ESF analysis further confirms the greater variability of FSRQs, LSPs, and Fermi blazars across a wide range of time scales compared to BL Lacs, ISPs/HSPs, and non-Fermi blazars. These findings highlight a close correlation between MIR variability and blazar properties, providing valuable insights into the underlying physical mechanisms responsible for their emission. Full article
(This article belongs to the Section Galaxies and Clusters)
Show Figures

Figure 1

Figure 1
<p>Sky distribution of selected blazars in Hammer-Aitoff projection with Galactic coordinates.</p>
Full article ">Figure 2
<p>Redshift distributions of FSRQs, BL Lacs, and BCUs in the sample. The black dashed lines indicate the median redshifts of the three subsamples.</p>
Full article ">Figure 3
<p>Light curves of the BL Lac 5BZB J1135+3200 (z = 0.511) in the W1 band: (<b>Left</b>) long-term light curve; (<b>Right</b>) representative short-term light curve.</p>
Full article ">Figure 4
<p>Distributions of (<b>Left</b>) short-term variability amplitude quantified by <math display="inline"><semantics> <msub> <mi>σ</mi> <mi>m</mi> </msub> </semantics></math>, (<b>Middle</b>) duty cycle, and (<b>Right</b>) long-term variability amplitude quantified by <math display="inline"><semantics> <msub> <mi>σ</mi> <mi>m</mi> </msub> </semantics></math> for the entire sample. The pink dashed lines mark the median values of the data set.</p>
Full article ">Figure 5
<p>Distributions of short-term <math display="inline"><semantics> <msub> <mi>σ</mi> <mi>m</mi> </msub> </semantics></math> for different subclasses of blazars. (<b>Left</b>) panels show normalized histograms. (<b>Middle</b>) panels display CDFs with 95% confidence intervals. (<b>Right</b>) panels present Q–Q plots, with red lines representing 45-degree lines.</p>
Full article ">Figure 6
<p>Distributions of duty cycle (DC) for different subclasses of blazars. Left panels show normalized histograms. Middle panels display CDFs with 95% confidence intervals. Right panels present Q–Q plots, with red lines representing 45-degree lines.</p>
Full article ">Figure 6 Cont.
<p>Distributions of duty cycle (DC) for different subclasses of blazars. Left panels show normalized histograms. Middle panels display CDFs with 95% confidence intervals. Right panels present Q–Q plots, with red lines representing 45-degree lines.</p>
Full article ">Figure 7
<p>Distributions of long-term <math display="inline"><semantics> <msub> <mi>σ</mi> <mi>m</mi> </msub> </semantics></math> for different subclasses of blazars. (<b>Left</b>) panels show normalized histograms. (<b>Middle</b>) panels display CDFs with 95% confidence intervals. (<b>Right</b>) panels present Q–Q plots, with red lines representing 45-degree lines.</p>
Full article ">Figure 8
<p>Ensemble structure functions (ESFs) for blazar subclasses. ESFs are shown in the rest frame (log–log scale) for various blazar subclasses. Upper panels: Comparison of ESF between (<b>left</b>) FSRQs and BL Lacs, and (<b>right</b>) Fermi and non-Fermi blazars. (<b>lower</b>): Comparison of ESF among LSP, ISP, and HSP blazars. Dashed lines represent power-law fits to the ESFs (SF ∝ <math display="inline"><semantics> <msup> <mrow> <mo>Δ</mo> <mi>τ</mi> </mrow> <mi>β</mi> </msup> </semantics></math>) within the approximate <math display="inline"><semantics> <mrow> <mo>Δ</mo> <mi>τ</mi> </mrow> </semantics></math> range of 120 to 2000 days. Best-fit <math display="inline"><semantics> <mi>β</mi> </semantics></math> values are shown near the lines.</p>
Full article ">
13 pages, 3218 KiB  
Article
Source Count Distribution of Fermi LAT Gamma-Ray Blazars Using Novel Nonparametric Methods
by Xuhang Yin and Houdun Zeng
Universe 2024, 10(9), 340; https://doi.org/10.3390/universe10090340 - 26 Aug 2024
Viewed by 654
Abstract
We utilized a sample from the Fermi-LAT 14-year Source Catalog by adjusting the flux detection threshold, enabling us to derive the intrinsic source count distribution dN/dF25 of extragalactic blazars using nonparametric, unbinned methods developed by Efron and Petrosian [...] Read more.
We utilized a sample from the Fermi-LAT 14-year Source Catalog by adjusting the flux detection threshold, enabling us to derive the intrinsic source count distribution dN/dF25 of extragalactic blazars using nonparametric, unbinned methods developed by Efron and Petrosian and Lynden-Bell. Subsequently, we evaluated the contribution of blazars to the extragalactic gamma-ray background. Our findings are summarized as follows: (1) There is no significant correlation between flux and spectral index values among blazars and their subclasses FSRQs and BL Lacs. (2) The intrinsic differential distributions of flux values exhibit a broken-power-law form, with parameters that closely match previous findings. The intrinsic photon index distributions are well described by a Gaussian form for FSRQs and BL Lacs individually, while a dual-Gaussian model provides a more appropriate fit for blazars as a whole. (3) Blazars contribute 34.5% to the extragalactic gamma-ray background and 16.8% to the extragalactic diffuse gamma-ray background. When examined separately, FSRQs and BL Lacs contribute 19.6% and 13% to the extragalactic gamma-ray background, respectively. Full article
(This article belongs to the Section Galaxies and Clusters)
Show Figures

Figure 1

Figure 1
<p>(<b>Left</b>): Scatter diagram of the photon flux <math display="inline"><semantics> <msub> <mi>F</mi> <mn>25</mn> </msub> </semantics></math> vs. the power-law index <math display="inline"><semantics> <mo>Γ</mo> </semantics></math>. The truncation curve (dashed line) shows the expected detection threshold with 8-year Fermi-LAT data (<math display="inline"><semantics> <msub> <mi>F</mi> <mrow> <mn>25</mn> <mo>,</mo> <mi>lim</mi> </mrow> </msub> </semantics></math> vs. <math display="inline"><semantics> <msub> <mo>Γ</mo> <mi>lim</mi> </msub> </semantics></math>), which reflects a larger dependence of the detection threshold on the power-law index (from Figure 16 of [<a href="#B2-universe-10-00340" class="html-bibr">2</a>]). (<b>Right</b>): The fraction of source <math display="inline"><semantics> <mstyle scriptlevel="0" displaystyle="true"> <mfrac> <mrow> <msub> <mi>N</mi> <mi>fsrq</mi> </msub> <mo>+</mo> <msub> <mi>N</mi> <mi>bll</mi> </msub> </mrow> <mrow> <msub> <mi>N</mi> <mi>fsrq</mi> </msub> <mo>+</mo> <msub> <mi>N</mi> <mi>bll</mi> </msub> <mo>+</mo> <msub> <mi>N</mi> <mi>Bcu</mi> </msub> </mrow> </mfrac> </mstyle> </semantics></math>, <math display="inline"><semantics> <mstyle scriptlevel="0" displaystyle="true"> <mfrac> <msub> <mi>N</mi> <mi>fsrq</mi> </msub> <mrow> <msub> <mi>N</mi> <mi>fsrq</mi> </msub> <mo>+</mo> <msub> <mi>N</mi> <mi>Bcu</mi> </msub> </mrow> </mfrac> </mstyle> </semantics></math>, <math display="inline"><semantics> <mstyle scriptlevel="0" displaystyle="true"> <mfrac> <msub> <mi>N</mi> <mi>bll</mi> </msub> <mrow> <msub> <mi>N</mi> <mi>bll</mi> </msub> <mo>+</mo> <msub> <mi>N</mi> <mi>Bcu</mi> </msub> </mrow> </mfrac> </mstyle> </semantics></math> vs. the shift factor <math display="inline"><semantics> <mi>α</mi> </semantics></math>. The black, red, and blue lines show the fraction of blazar, FSRQ, and BL Lac objects with the shift factor, respectively. When the shift factor <math display="inline"><semantics> <mrow> <mi>α</mi> <mo>=</mo> <mn>2.87</mn> </mrow> </semantics></math>, the fraction of blazars reaches 0.9, while the shift factors of FSRQs and BL Lacs need to be equal to 5.0 and 4.0.</p>
Full article ">Figure 2
<p>(<b>Left</b>): The value of the test statistic <math display="inline"><semantics> <mi>τ</mi> </semantics></math> as a function of <math display="inline"><semantics> <mi>β</mi> </semantics></math> for blazars, FSRQs, and BL Lacs, which indicates a correlation between the photon index and flux. The values of <math display="inline"><semantics> <mi>β</mi> </semantics></math> for which <math display="inline"><semantics> <mrow> <mi>τ</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mo>±</mo> <mn>1</mn> </mrow> </semantics></math> give the best value and 1-sigma range, respectively. A weak correlation or no correlation are indicated with <math display="inline"><semantics> <mrow> <msub> <mi>β</mi> <mi>blazars</mi> </msub> <mo>=</mo> <mn>0.006</mn> <mo>±</mo> <mn>0.033</mn> </mrow> </semantics></math> for blazars, <math display="inline"><semantics> <mrow> <msub> <mi>β</mi> <mi>fsrq</mi> </msub> <mo>=</mo> <mo>−</mo> <msubsup> <mn>0.100</mn> <mrow> <mo>−</mo> <mn>0.038</mn> </mrow> <mrow> <mo>+</mo> <mn>0.031</mn> </mrow> </msubsup> </mrow> </semantics></math> for FSRQs, and <math display="inline"><semantics> <mrow> <msub> <mi>β</mi> <mi>bll</mi> </msub> <mo>=</mo> <mo>−</mo> <msubsup> <mn>0.017</mn> <mrow> <mo>−</mo> <mn>0.045</mn> </mrow> <mrow> <mo>+</mo> <mn>0.037</mn> </mrow> </msubsup> </mrow> </semantics></math> for BL Lacs. (<b>Right</b>): Scatter diagram of photon flux <math display="inline"><semantics> <msub> <mi>F</mi> <mn>25</mn> </msub> </semantics></math> vs the correlation-reduced photon index <math display="inline"><semantics> <msub> <mo>Γ</mo> <mi>cr</mi> </msub> </semantics></math>. The black, red, and blue curves show the flux threshold limit <math display="inline"><semantics> <mrow> <mi>α</mi> <msub> <mi>F</mi> <mn>25</mn> </msub> </mrow> </semantics></math> vs. <math display="inline"><semantics> <msub> <mo>Γ</mo> <mi>cr</mi> </msub> </semantics></math> (the truncation curve) for blazars, FSRQs, and BL Lacs, respectively, with the different shift factor. The two boxes enclosed by the dashed (red) and dotted (purple) lines, respectively, represent two associated sets (<math display="inline"><semantics> <msub> <mi>M</mi> <mi>j</mi> </msub> </semantics></math> and <math display="inline"><semantics> <msub> <mi>N</mi> <mi>j</mi> </msub> </semantics></math>) of the source marked by the green star, as defined in Equation (<a href="#FD6-universe-10-00340" class="html-disp-formula">6</a>).</p>
Full article ">Figure 3
<p>(<b>Left</b>): The cumulative photon flux distribution (solid points), <math display="inline"><semantics> <mrow> <mo>Ψ</mo> <mo>(</mo> <msub> <mi>F</mi> <mn>25</mn> </msub> <mo>)</mo> </mrow> </semantics></math>, corrected for the photon flux limit, and compared with the raw histogram of photon flux (open points), <math display="inline"><semantics> <mrow> <mi>N</mi> <mo>(</mo> <mo>&gt;</mo> </mrow> </semantics></math><math display="inline"><semantics> <mrow> <msub> <mi>F</mi> <mn>25</mn> </msub> <mrow> <mo>)</mo> </mrow> </mrow> </semantics></math>. The solid curves display the cumulative distributions of flux achieved by integrating the broken power-law distribution (Equation (<a href="#FD8-universe-10-00340" class="html-disp-formula">8</a>)) using the best-fit parameters listed in <a href="#universe-10-00340-t001" class="html-table">Table 1</a>. (<b>Right</b>): The cumulative photon index distribution <math display="inline"><semantics> <mrow> <mi>H</mi> <mo>(</mo> <msub> <mo>Γ</mo> <mi>cr</mi> </msub> <mo>)</mo> </mrow> </semantics></math> vs. <math display="inline"><semantics> <msub> <mo>Γ</mo> <mi>cr</mi> </msub> </semantics></math> corrected for selection effects (solid points) and compared with the raw cumulative observed photon index (open points), <math display="inline"><semantics> <mo>Γ</mo> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>N</mi> <mo>(</mo> <mo>&gt;</mo> </mrow> </semantics></math><math display="inline"><semantics> <mrow> <mo>Γ</mo> <mo>)</mo> </mrow> </semantics></math>.</p>
Full article ">Figure 4
<p>The differential intrinsic photon flux distribution (<b>left</b>) and photon index distribution (<b>right</b>) for blazars, FSRQs, and BL Lacs, separately. The <math display="inline"><semantics> <mrow> <mi>d</mi> <mi>N</mi> <mo>/</mo> <mi>d</mi> <msub> <mi>F</mi> <mn>25</mn> </msub> </mrow> </semantics></math> values derive from the differentiation of the cumulative photon flux distribution for corrected and raw data, and the curves derive from Equation (<a href="#FD8-universe-10-00340" class="html-disp-formula">8</a>) with the best-fit parameters. The intrinsic <math display="inline"><semantics> <mrow> <mi>d</mi> <mi>N</mi> <mo>/</mo> <mi>d</mi> <mo>Γ</mo> <mo>=</mo> <mi>h</mi> <mo>(</mo> <mo>Γ</mo> <mo>)</mo> </mrow> </semantics></math> values are shown as solid points, which derive from Equation (<a href="#FD4-universe-10-00340" class="html-disp-formula">4</a>), and the raw observed distributions are shown as open points. The Gaussian distribution form is used to fit <math display="inline"><semantics> <mrow> <mi>h</mi> <mo>(</mo> <mo>Γ</mo> <mo>)</mo> </mrow> </semantics></math> and show the best-fit curves. The raw distribution of observations with 2796 blazars is also shown in the left panel (the open stars).</p>
Full article ">Figure 5
<p>The detection efficiency <math display="inline"><semantics> <mrow> <mi>ω</mi> <mo>(</mo> <msub> <mi>F</mi> <mn>25</mn> </msub> <mo>)</mo> </mrow> </semantics></math> for blazars, calculated by determining the ratio (Equation (<a href="#FD9-universe-10-00340" class="html-disp-formula">9</a>)) between the distribution of detected sources and the theoretical distribution. The red squares denote data obtained from [<a href="#B16-universe-10-00340" class="html-bibr">16</a>]. The purple dots indicate the detection efficiency of the LAT high-latitude survey (<math display="inline"><semantics> <mrow> <mrow> <mo>|</mo> <mi>b</mi> <mo>|</mo> <mo>&gt;</mo> </mrow> <msup> <mn>20</mn> <mi>o</mi> </msup> </mrow> </semantics></math>) with the simulated skies from [<a href="#B21-universe-10-00340" class="html-bibr">21</a>], which is compared with our results.</p>
Full article ">Figure 6
<p>(<b>Left</b>): The predicated EGB (solid line) and IGRB (dashed line) spectra for blazars, obtained by using the optical depth model of [<a href="#B38-universe-10-00340" class="html-bibr">38</a>] with <math display="inline"><semantics> <mrow> <mi>z</mi> <mo>=</mo> <mn>0.5</mn> </mrow> </semantics></math>. The black and blue lines represent the intrinsic distribution of indexes used in the calculations as single Gaussian and double Gaussian, respectively. (<b>Right</b>): The predicated EGB spectra for FSRQs with <math display="inline"><semantics> <mrow> <mi>z</mi> <mo>=</mo> <mn>1.0</mn> </mrow> </semantics></math> (dashed lines) and BL Lacs with <math display="inline"><semantics> <mrow> <mi>z</mi> <mo>=</mo> <mn>0.3</mn> </mrow> </semantics></math> (dotted lines). The black solid line is the total EGB spectrum of the subset of blazars. The blue lines represent the results of the EGB spectrum calculated using the jointly fitted spectral index distribution. The observed EGB and IGRB data are taken from [<a href="#B36-universe-10-00340" class="html-bibr">36</a>].</p>
Full article ">
10 pages, 1034 KiB  
Review
X-ray Polarization of Blazars and Radio Galaxies Measured by the Imaging X-ray Polarimetry Explorer
by Alan P. Marscher, Laura Di Gesu, Svetlana G. Jorstad, Dawoon E. Kim, Ioannis Liodakis, Riccardo Middei and Fabrizio Tavecchio
Galaxies 2024, 12(4), 50; https://doi.org/10.3390/galaxies12040050 - 22 Aug 2024
Viewed by 827
Abstract
X-ray polarization, which now can be measured by the Imaging X-ray Polarimetry Explorer (IXPE), is a new probe of jets in the supermassive black hole systems of active galactic nuclei (AGNs). Here, we summarize IXPE observations of radio-loud AGNs that have been published [...] Read more.
X-ray polarization, which now can be measured by the Imaging X-ray Polarimetry Explorer (IXPE), is a new probe of jets in the supermassive black hole systems of active galactic nuclei (AGNs). Here, we summarize IXPE observations of radio-loud AGNs that have been published thus far. Blazars with synchrotron spectral energy distributions (SEDs) that peak at X-ray energies are routinely detected. The degree of X-ray polarization is considerably higher than at longer wavelengths. This is readily explained by energy stratification of the emission regions when electrons lose energy via radiation as they propagate away from the sites of particle acceleration as predicted in shock models. However, the 2–8 keV polarization electric vector is not always aligned with the jet direction as one would expect unless the shock is oblique. Magnetic reconnection may provide an alternative explanation. The rotation of the polarization vector in Mrk421 suggests the presence of a helical magnetic field in the jet. In blazars with lower-frequency peaks and the radio galaxy Centaurus A, the non-detection of X-ray polarization by IXPE constrains the X-ray emission mechanism. Full article
Show Figures

Figure 1

Figure 1
<p>Sketch of the spectral energy distribution of a blazar for three different values of the peak frequency of the synchrotron emission.</p>
Full article ">Figure 2
<p>Sketch (not drawn to scale) of the structure of the magnetic field lines and frequency structure of turbulent plasma flowing across a shock front. The shock could be either stationary or moving down the jet.</p>
Full article ">
33 pages, 2278 KiB  
Review
Axion-like Particle Effects on Photon Polarization in High-Energy Astrophysics
by Giorgio Galanti
Universe 2024, 10(8), 312; https://doi.org/10.3390/universe10080312 - 30 Jul 2024
Viewed by 693
Abstract
In this review, we present a self-contained introduction to axion-like particles (ALPs) with a particular focus on their effects on photon polarization: both theoretical and phenomenological aspects are discussed. We derive the photon survival probability in the presence of photon–ALP interaction, the corresponding [...] Read more.
In this review, we present a self-contained introduction to axion-like particles (ALPs) with a particular focus on their effects on photon polarization: both theoretical and phenomenological aspects are discussed. We derive the photon survival probability in the presence of photon–ALP interaction, the corresponding final photon degree of linear polarization, and the polarization angle in a wide energy interval. The presented results can be tested by current and planned missions such as IXPE (already operative), eXTP, XL-Calibur, NGXP, XPP in the X-ray band and like COSI (approved to launch), e-ASTROGAM, and AMEGO in the high-energy range. Specifically, we describe ALP-induced polarization effects on several astrophysical sources, such as galaxy clusters, blazars, and gamma-ray bursts, and we discuss their real detectability. In particular, galaxy clusters appear as very good observational targets in this respect. Moreover, in the very-high-energy (VHE) band, we discuss a peculiar ALP signature in photon polarization, in principle capable of proving the ALP existence. Unfortunately, present technologies cannot detect photon polarization up to such high energies, but the observational capability of the latter ALP signature in the VHE band could represent an interesting challenge for the future. As a matter of fact, the aim of this review is to show new ways to make progress in the physics of ALPs, thanks to their effects on photon polarization, a topic that has aroused less interest in the past, but which is now timely with the advent of many new polarimetric missions. Full article
Show Figures

Figure 1

Figure 1
<p>Measure of the initial <math display="inline"><semantics> <msub> <mi mathvariant="normal">Π</mi> <mrow> <mi>L</mi> <mo>,</mo> <mn>0</mn> </mrow> </msub> </semantics></math>. <span class="html-italic">Top panels</span>: A typical realization of <math display="inline"><semantics> <msub> <mi>P</mi> <mrow> <mi>γ</mi> <mo>→</mo> <mi>γ</mi> </mrow> </msub> </semantics></math> versus <span class="html-italic">E</span>. <span class="html-italic">Central panels</span>: Observed binned spectra. <span class="html-italic">Bottom panels</span>: Inferred <math display="inline"><semantics> <msub> <mi>P</mi> <mrow> <mi>γ</mi> <mo>→</mo> <mi>γ</mi> </mrow> </msub> </semantics></math> and <math display="inline"><semantics> <msub> <mi>P</mi> <mrow> <mi>γ</mi> <mo>→</mo> <mi>a</mi> </mrow> </msub> </semantics></math> and measure of <math display="inline"><semantics> <msub> <mi mathvariant="normal">Π</mi> <mrow> <mi>L</mi> <mo>,</mo> <mn>0</mn> </mrow> </msub> </semantics></math>. In the <span class="html-italic">left panels</span>, we consider a high-frequency peaked blazar (HBL) placed inside a poor galaxy cluster at redshift <math display="inline"><semantics> <mrow> <mi>z</mi> <mo>=</mo> <mn>0.1</mn> </mrow> </semantics></math> with initial <math display="inline"><semantics> <mrow> <msub> <mi mathvariant="normal">Π</mi> <mrow> <mi>L</mi> <mo>,</mo> <mn>0</mn> </mrow> </msub> <mo>=</mo> <mn>0.3</mn> </mrow> </semantics></math> in the energy range <math display="inline"><semantics> <mrow> <mn>3</mn> <mspace width="0.166667em"/> <mi>eV</mi> <mo>≤</mo> <mi>E</mi> <mo>≤</mo> <mn>3</mn> <mo>×</mo> <msup> <mn>10</mn> <mn>4</mn> </msup> <mspace width="0.166667em"/> <mi>eV</mi> </mrow> </semantics></math>, and we take <math display="inline"><semantics> <mrow> <msub> <mi>m</mi> <mi>a</mi> </msub> <mo>=</mo> <mn>5</mn> <mo>×</mo> <msup> <mn>10</mn> <mrow> <mo>−</mo> <mn>14</mn> </mrow> </msup> <mspace width="4pt"/> <mi>eV</mi> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>g</mi> <mrow> <mi>a</mi> <mi>γ</mi> <mi>γ</mi> </mrow> </msub> <mo>=</mo> <mn>0.5</mn> <mo>×</mo> <msup> <mn>10</mn> <mrow> <mo>−</mo> <mn>11</mn> </mrow> </msup> <mspace width="0.166667em"/> <msup> <mi>GeV</mi> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </mrow> </semantics></math>. In the <span class="html-italic">right panels</span>, we consider an HBL but now placed inside a quite rich galaxy cluster at redshift <math display="inline"><semantics> <mrow> <mi>z</mi> <mo>=</mo> <mn>0.05</mn> </mrow> </semantics></math> with initial <math display="inline"><semantics> <mrow> <msub> <mi mathvariant="normal">Π</mi> <mrow> <mi>L</mi> <mo>,</mo> <mn>0</mn> </mrow> </msub> <mo>=</mo> <mn>0.1</mn> </mrow> </semantics></math> in the energy range <math display="inline"><semantics> <mrow> <mn>2</mn> <mo>×</mo> <msup> <mn>10</mn> <mn>5</mn> </msup> <mspace width="0.166667em"/> <mi>eV</mi> <mo>≤</mo> <mi>E</mi> <mo>≤</mo> <mn>2</mn> <mo>×</mo> <msup> <mn>10</mn> <mn>8</mn> </msup> <mspace width="0.166667em"/> <mi>eV</mi> </mrow> </semantics></math>, and we take <math display="inline"><semantics> <mrow> <msub> <mi>m</mi> <mi>a</mi> </msub> <mo>=</mo> <mn>2</mn> <mo>×</mo> <msup> <mn>10</mn> <mrow> <mo>−</mo> <mn>10</mn> </mrow> </msup> <mspace width="0.166667em"/> <mi>eV</mi> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>g</mi> <mrow> <mi>a</mi> <mi>γ</mi> <mi>γ</mi> </mrow> </msub> <mo>=</mo> <mn>0.5</mn> <mo>×</mo> <msup> <mn>10</mn> <mrow> <mo>−</mo> <mn>11</mn> </mrow> </msup> <mspace width="0.166667em"/> <msup> <mi>GeV</mi> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </mrow> </semantics></math>. The inferred values of <math display="inline"><semantics> <msub> <mi mathvariant="normal">Π</mi> <mrow> <mi>L</mi> <mo>,</mo> <mn>0</mn> </mrow> </msub> </semantics></math> are very close to the simulated ones. (Credit: adapted from [<a href="#B76-universe-10-00312" class="html-bibr">76</a>]).</p>
Full article ">Figure 2
<p>Structure and phenomenology of active galactic nuclei. (Credit: adapted from [<a href="#B103-universe-10-00312" class="html-bibr">103</a>,<a href="#B104-universe-10-00312" class="html-bibr">104</a>,<a href="#B105-universe-10-00312" class="html-bibr">105</a>]).</p>
Full article ">Figure 3
<p>Initial degree of linear polarization <math display="inline"><semantics> <msub> <mi mathvariant="normal">Π</mi> <mrow> <mi>L</mi> <mo>,</mo> <mn>0</mn> </mrow> </msub> </semantics></math> for the blazars OJ 287 and BL Lacertae in the case of both leptonic and hadronic models, as derived in [<a href="#B125-universe-10-00312" class="html-bibr">125</a>]. (Credit: [<a href="#B79-universe-10-00312" class="html-bibr">79</a>]).</p>
Full article ">Figure 4
<p>Perseus cluster. (<b>Top subfigure</b>) Photon survival probability <math display="inline"><semantics> <msub> <mi>P</mi> <mrow> <mi>γ</mi> <mo>→</mo> <mi>γ</mi> </mrow> </msub> </semantics></math> (upper panel), corresponding final degree of linear polarization <math display="inline"><semantics> <msub> <mi mathvariant="normal">Π</mi> <mi>L</mi> </msub> </semantics></math> (central panel), and final polarization angle <math display="inline"><semantics> <mi>χ</mi> </semantics></math> (lower panel) in the energy range <math display="inline"><semantics> <mrow> <mo>(</mo> <msup> <mn>10</mn> <mrow> <mo>−</mo> <mn>3</mn> </mrow> </msup> <mrow> <mo>–</mo> </mrow> <msup> <mn>10</mn> <mn>2</mn> </msup> <mo>)</mo> <mspace width="0.166667em"/> <mi>keV</mi> </mrow> </semantics></math>. We take <math display="inline"><semantics> <mrow> <msub> <mi>g</mi> <mrow> <mi>a</mi> <mi>γ</mi> <mi>γ</mi> </mrow> </msub> <mo>=</mo> <mn>0.5</mn> <mo>×</mo> <msup> <mn>10</mn> <mrow> <mo>−</mo> <mn>11</mn> </mrow> </msup> <mspace width="0.166667em"/> <msup> <mi>GeV</mi> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>m</mi> <mi>a</mi> </msub> <mo>≲</mo> <msup> <mn>10</mn> <mrow> <mo>−</mo> <mn>14</mn> </mrow> </msup> <mspace width="0.166667em"/> <mi>eV</mi> </mrow> </semantics></math>. The initial degree of linear polarization is <math display="inline"><semantics> <mrow> <msub> <mi mathvariant="normal">Π</mi> <mrow> <mi>L</mi> <mo>,</mo> <mn>0</mn> </mrow> </msub> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math>. (<b>Bottom subfigure</b>) Probability density function <math display="inline"><semantics> <msub> <mi>f</mi> <mi mathvariant="normal">Π</mi> </msub> </semantics></math> obtained by interpolating the plotted histogram for several realizations of <math display="inline"><semantics> <msub> <mi mathvariant="normal">Π</mi> <mi>L</mi> </msub> </semantics></math> at <math display="inline"><semantics> <mrow> <mn>1</mn> <mspace width="0.166667em"/> <mi>keV</mi> </mrow> </semantics></math> (upper panel) and <math display="inline"><semantics> <mrow> <mn>10</mn> <mspace width="0.166667em"/> <mi>keV</mi> </mrow> </semantics></math> (lower panel). (Credit: [<a href="#B78-universe-10-00312" class="html-bibr">78</a>]).</p>
Full article ">Figure 5
<p>OJ 287. We consider a leptonic and a hadronic emission mechanism in the left and right columns, respectively. Correspondingly, the initial degree of linear polarization <math display="inline"><semantics> <msub> <mi mathvariant="normal">Π</mi> <mrow> <mi>L</mi> <mo>,</mo> <mn>0</mn> </mrow> </msub> </semantics></math> is also shown (see also <a href="#universe-10-00312-f003" class="html-fig">Figure 3</a>). (<b>Top subfigure</b>) Photon survival probability <math display="inline"><semantics> <msub> <mi>P</mi> <mrow> <mi>γ</mi> <mo>→</mo> <mi>γ</mi> </mrow> </msub> </semantics></math> (upper panels), corresponding final degree of linear polarization <math display="inline"><semantics> <msub> <mi mathvariant="normal">Π</mi> <mi>L</mi> </msub> </semantics></math> (central panels), and final polarization angle <math display="inline"><semantics> <mi>χ</mi> </semantics></math> (lower panels) in the energy range <math display="inline"><semantics> <mrow> <mo>(</mo> <mn>4</mn> <mo>×</mo> <msup> <mn>10</mn> <mrow> <mo>−</mo> <mn>2</mn> </mrow> </msup> <mrow> <mo>–</mo> </mrow> <msup> <mn>10</mn> <mn>2</mn> </msup> <mo>)</mo> <mspace width="0.166667em"/> <mi>keV</mi> </mrow> </semantics></math>. We take <math display="inline"><semantics> <mrow> <msub> <mi>g</mi> <mrow> <mi>a</mi> <mi>γ</mi> <mi>γ</mi> </mrow> </msub> <mo>=</mo> <mn>0.5</mn> <mo>×</mo> <msup> <mn>10</mn> <mrow> <mo>−</mo> <mn>11</mn> </mrow> </msup> <mspace width="0.166667em"/> <msup> <mi>GeV</mi> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>m</mi> <mi>a</mi> </msub> <mo>≲</mo> <msup> <mn>10</mn> <mrow> <mo>−</mo> <mn>14</mn> </mrow> </msup> <mspace width="0.166667em"/> <mi>eV</mi> </mrow> </semantics></math>. (<b>Bottom subfigure</b>) Probability density function <math display="inline"><semantics> <msub> <mi>f</mi> <mi mathvariant="normal">Π</mi> </msub> </semantics></math> obtained by interpolating the plotted histogram for several realizations of <math display="inline"><semantics> <msub> <mi mathvariant="normal">Π</mi> <mi>L</mi> </msub> </semantics></math> at <math display="inline"><semantics> <mrow> <mn>1</mn> <mspace width="0.166667em"/> <mi>keV</mi> </mrow> </semantics></math> (upper panels) and <math display="inline"><semantics> <mrow> <mn>10</mn> <mspace width="0.166667em"/> <mi>keV</mi> </mrow> </semantics></math> (lower panels). (Credit: [<a href="#B79-universe-10-00312" class="html-bibr">79</a>]).</p>
Full article ">Figure 6
<p>Perseus cluster. (<b>Top subfigure</b>) Photon survival probability <math display="inline"><semantics> <msub> <mi>P</mi> <mrow> <mi>γ</mi> <mo>→</mo> <mi>γ</mi> </mrow> </msub> </semantics></math> (upper panel), corresponding final degree of linear polarization <math display="inline"><semantics> <msub> <mi mathvariant="normal">Π</mi> <mi>L</mi> </msub> </semantics></math> (central panel), and final polarization angle <math display="inline"><semantics> <mi>χ</mi> </semantics></math> (lower panel) in the energy range <math display="inline"><semantics> <mrow> <mo>(</mo> <msup> <mn>10</mn> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> <mrow> <mo>–</mo> </mrow> <msup> <mn>10</mn> <mn>4</mn> </msup> <mo>)</mo> <mspace width="0.166667em"/> <mi>MeV</mi> </mrow> </semantics></math>. We take <math display="inline"><semantics> <mrow> <msub> <mi>g</mi> <mrow> <mi>a</mi> <mi>γ</mi> <mi>γ</mi> </mrow> </msub> <mo>=</mo> <mn>0.5</mn> <mo>×</mo> <msup> <mn>10</mn> <mrow> <mo>−</mo> <mn>11</mn> </mrow> </msup> <mspace width="0.166667em"/> <msup> <mi>GeV</mi> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>m</mi> <mi>a</mi> </msub> <mo>≲</mo> <msup> <mn>10</mn> <mrow> <mo>−</mo> <mn>14</mn> </mrow> </msup> <mspace width="0.166667em"/> <mi>eV</mi> </mrow> </semantics></math>. The initial degree of linear polarization is <math display="inline"><semantics> <mrow> <msub> <mi mathvariant="normal">Π</mi> <mrow> <mi>L</mi> <mo>,</mo> <mn>0</mn> </mrow> </msub> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math>. (<b>Bottom subfigure</b>) Probability density function <math display="inline"><semantics> <msub> <mi>f</mi> <mi mathvariant="normal">Π</mi> </msub> </semantics></math> obtained by interpolating the plotted histogram for several realizations of <math display="inline"><semantics> <msub> <mi mathvariant="normal">Π</mi> <mi>L</mi> </msub> </semantics></math> at <math display="inline"><semantics> <mrow> <mn>300</mn> <mspace width="0.166667em"/> <mi>keV</mi> </mrow> </semantics></math> (upper panel) and <math display="inline"><semantics> <mrow> <mn>3</mn> <mspace width="0.166667em"/> <mi>MeV</mi> </mrow> </semantics></math> (lower panel). (Credit: [<a href="#B78-universe-10-00312" class="html-bibr">78</a>]).</p>
Full article ">Figure 7
<p>Perseus cluster. Same as <a href="#universe-10-00312-f006" class="html-fig">Figure 6</a>. We take <math display="inline"><semantics> <mrow> <msub> <mi>g</mi> <mrow> <mi>a</mi> <mi>γ</mi> <mi>γ</mi> </mrow> </msub> <mo>=</mo> <mn>0.5</mn> <mo>×</mo> <msup> <mn>10</mn> <mrow> <mo>−</mo> <mn>11</mn> </mrow> </msup> <mspace width="0.166667em"/> <msup> <mi>GeV</mi> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>m</mi> <mi>a</mi> </msub> <mo>=</mo> <msup> <mn>10</mn> <mrow> <mo>−</mo> <mn>10</mn> </mrow> </msup> <mspace width="0.166667em"/> <mi>eV</mi> </mrow> </semantics></math>. The initial degree of linear polarization is <math display="inline"><semantics> <mrow> <msub> <mi mathvariant="normal">Π</mi> <mrow> <mi>L</mi> <mo>,</mo> <mn>0</mn> </mrow> </msub> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math>. (Credit: [<a href="#B78-universe-10-00312" class="html-bibr">78</a>]).</p>
Full article ">Figure 8
<p>OJ 287. We consider a leptonic and a hadronic emission mechanism in the left and right columns, respectively. Correspondingly, the initial degree of linear polarization <math display="inline"><semantics> <msub> <mi mathvariant="normal">Π</mi> <mrow> <mi>L</mi> <mo>,</mo> <mn>0</mn> </mrow> </msub> </semantics></math> is also shown (see also <a href="#universe-10-00312-f003" class="html-fig">Figure 3</a>). (<b>Top subfigure</b>) Photon survival probability <math display="inline"><semantics> <msub> <mi>P</mi> <mrow> <mi>γ</mi> <mo>→</mo> <mi>γ</mi> </mrow> </msub> </semantics></math> (upper panels), corresponding final degree of linear polarization <math display="inline"><semantics> <msub> <mi mathvariant="normal">Π</mi> <mi>L</mi> </msub> </semantics></math> (central panels), and final polarization angle <math display="inline"><semantics> <mi>χ</mi> </semantics></math> (lower panels) in the energy range <math display="inline"><semantics> <mrow> <mo>(</mo> <msup> <mn>10</mn> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> <mrow> <mo>–</mo> </mrow> <mn>5</mn> <mo>×</mo> <msup> <mn>10</mn> <mn>2</mn> </msup> <mo>)</mo> <mspace width="0.166667em"/> <mi>MeV</mi> </mrow> </semantics></math>. We take <math display="inline"><semantics> <mrow> <msub> <mi>g</mi> <mrow> <mi>a</mi> <mi>γ</mi> <mi>γ</mi> </mrow> </msub> <mo>=</mo> <mn>0.5</mn> <mo>×</mo> <msup> <mn>10</mn> <mrow> <mo>−</mo> <mn>11</mn> </mrow> </msup> <mspace width="0.166667em"/> <msup> <mi>GeV</mi> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>m</mi> <mi>a</mi> </msub> <mo>≲</mo> <msup> <mn>10</mn> <mrow> <mo>−</mo> <mn>14</mn> </mrow> </msup> <mspace width="0.166667em"/> <mi>eV</mi> </mrow> </semantics></math>. (<b>Bottom subfigure</b>) Probability density function <math display="inline"><semantics> <msub> <mi>f</mi> <mi mathvariant="normal">Π</mi> </msub> </semantics></math> obtained by interpolating the plotted histogram for several realizations of <math display="inline"><semantics> <msub> <mi mathvariant="normal">Π</mi> <mi>L</mi> </msub> </semantics></math> at <math display="inline"><semantics> <mrow> <mn>300</mn> <mspace width="0.166667em"/> <mi>keV</mi> </mrow> </semantics></math> (upper panels) and <math display="inline"><semantics> <mrow> <mn>3</mn> <mspace width="0.166667em"/> <mi>MeV</mi> </mrow> </semantics></math> (lower panels). (Credit: [<a href="#B79-universe-10-00312" class="html-bibr">79</a>]).</p>
Full article ">Figure 9
<p>OJ 287. Same as <a href="#universe-10-00312-f008" class="html-fig">Figure 8</a>. We take <math display="inline"><semantics> <mrow> <msub> <mi>g</mi> <mrow> <mi>a</mi> <mi>γ</mi> <mi>γ</mi> </mrow> </msub> <mo>=</mo> <mn>0.5</mn> <mo>×</mo> <msup> <mn>10</mn> <mrow> <mo>−</mo> <mn>11</mn> </mrow> </msup> <mspace width="0.166667em"/> <msup> <mi>GeV</mi> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>m</mi> <mi>a</mi> </msub> <mo>=</mo> <msup> <mn>10</mn> <mrow> <mo>−</mo> <mn>10</mn> </mrow> </msup> <mspace width="0.166667em"/> <mi>eV</mi> </mrow> </semantics></math>. The behavior of the initial degree of linear polarization <math display="inline"><semantics> <msub> <mi mathvariant="normal">Π</mi> <mrow> <mi>L</mi> <mo>,</mo> <mn>0</mn> </mrow> </msub> </semantics></math> is shown in <a href="#universe-10-00312-f003" class="html-fig">Figure 3</a>. (Credit: [<a href="#B79-universe-10-00312" class="html-bibr">79</a>]).</p>
Full article ">Figure 10
<p>BL Lac emitting within the leptonic model and placed inside a rich galaxy cluster. We consider the BL Lac located at a redshift <math display="inline"><semantics> <mrow> <mi>z</mi> <mo>=</mo> <mn>0.03</mn> </mrow> </semantics></math> or at <math display="inline"><semantics> <mrow> <mi>z</mi> <mo>=</mo> <mn>0.4</mn> </mrow> </semantics></math> in the left and right columns, respectively. The initial degree of linear polarization is <math display="inline"><semantics> <mrow> <msub> <mi mathvariant="normal">Π</mi> <mrow> <mi>L</mi> <mo>,</mo> <mn>0</mn> </mrow> </msub> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math>. (<b>Top subfigure</b>) Photon survival probability <math display="inline"><semantics> <msub> <mi>P</mi> <mrow> <mi>γ</mi> <mo>→</mo> <mi>γ</mi> </mrow> </msub> </semantics></math> (upper panels) and corresponding final degree of linear polarization <math display="inline"><semantics> <msub> <mi mathvariant="normal">Π</mi> <mi>L</mi> </msub> </semantics></math> (lower panels) in the energy range <math display="inline"><semantics> <mrow> <mo>(</mo> <msup> <mn>10</mn> <mrow> <mo>−</mo> <mn>2</mn> </mrow> </msup> <mrow> <mo>–</mo> </mrow> <msup> <mn>10</mn> <mn>3</mn> </msup> <mo>)</mo> <mspace width="0.166667em"/> <mi>TeV</mi> </mrow> </semantics></math>. We take <math display="inline"><semantics> <mrow> <msub> <mi>g</mi> <mrow> <mi>a</mi> <mi>γ</mi> <mi>γ</mi> </mrow> </msub> <mo>=</mo> <mn>0.5</mn> <mo>×</mo> <msup> <mn>10</mn> <mrow> <mo>−</mo> <mn>11</mn> </mrow> </msup> <mspace width="0.166667em"/> <msup> <mi>GeV</mi> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>m</mi> <mi>a</mi> </msub> <mo>=</mo> <msup> <mn>10</mn> <mrow> <mo>−</mo> <mn>10</mn> </mrow> </msup> <mspace width="0.166667em"/> <mi>eV</mi> </mrow> </semantics></math>. (<b>Bottom subfigure</b>) Probability density function <math display="inline"><semantics> <msub> <mi>f</mi> <mi mathvariant="normal">Π</mi> </msub> </semantics></math> obtained by interpolating the plotted histogram for several realizations of <math display="inline"><semantics> <msub> <mi mathvariant="normal">Π</mi> <mi>L</mi> </msub> </semantics></math> at different energies (see panels). (Credit: [<a href="#B77-universe-10-00312" class="html-bibr">77</a>]).</p>
Full article ">Figure 11
<p>GRB probability density function <math display="inline"><semantics> <msub> <mi>f</mi> <mi mathvariant="normal">Π</mi> </msub> </semantics></math> for the final photon degree of linear polarization <math display="inline"><semantics> <msub> <mi mathvariant="normal">Π</mi> <mi>L</mi> </msub> </semantics></math> after propagation in the extragalactic space with different values of the initial photon degree of linear polarization <math display="inline"><semantics> <msub> <mi mathvariant="normal">Π</mi> <mn>0</mn> </msub> </semantics></math> (see the legend in the panels). We take <math display="inline"><semantics> <mrow> <msub> <mi>g</mi> <mrow> <mi>a</mi> <mi>γ</mi> </mrow> </msub> <mo>=</mo> <msup> <mn>10</mn> <mrow> <mo>−</mo> <mn>11</mn> </mrow> </msup> <mspace width="0.166667em"/> <msup> <mi>GeV</mi> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>m</mi> <mi>a</mi> </msub> <mo>=</mo> <msup> <mn>10</mn> <mrow> <mo>−</mo> <mn>13</mn> </mrow> </msup> <mspace width="0.166667em"/> <mi>eV</mi> </mrow> </semantics></math>. (<b>Top subfigure</b>) The GRB is placed at redshift <math display="inline"><semantics> <mrow> <mi>z</mi> <mo>=</mo> <mn>0.3</mn> </mrow> </semantics></math>. (<b>Bottom subfigure</b>) The GRB is located at <math display="inline"><semantics> <mrow> <mi>z</mi> <mo>=</mo> <mn>2</mn> </mrow> </semantics></math>. (Credit: [<a href="#B68-universe-10-00312" class="html-bibr">68</a>]).</p>
Full article ">
18 pages, 3160 KiB  
Article
A Supermassive Binary Black Hole Candidate in Mrk 501
by Gustavo Magallanes-Guijón and Sergio Mendoza
Galaxies 2024, 12(3), 30; https://doi.org/10.3390/galaxies12030030 - 18 Jun 2024
Cited by 1 | Viewed by 859
Abstract
Using multifrequency observations, from radio to γ-rays of the blazar Mrk 501, we constructed their corresponding light curves and built periodograms using RobPer and Lomb–Scargle algorithms. Long-term variability was also studied using the power density spectrum and the detrended function analysis. Using [...] Read more.
Using multifrequency observations, from radio to γ-rays of the blazar Mrk 501, we constructed their corresponding light curves and built periodograms using RobPer and Lomb–Scargle algorithms. Long-term variability was also studied using the power density spectrum and the detrended function analysis. Using the software VARTOOLS Version 1.40, we also computed the analysis of variance, box-least squares and discrete fourier transform. The result of these techniques showed an achromatic periodicity ≲229d. This, combined with the result of pink-color noise in the spectra, led us to propose that the periodicity was produced via a secondary eclipsing supermassive binary black hole orbiting the primary one locked inside the central engine of Mrk 501. We built a relativistic eclipsing model of this phenomenon using Jacobi elliptical functions, finding a periodic relativistic eclipse occurring every ∼224d in all the studied wavebands. This implies that the frequency of the emitted gravitational waves falls slightly above 0.1 mHz, well within the operational range of the upcoming LISA space-based interferometer, and as such, these gravitational waves must be considered as a prime science target for future LISA observations. Full article
Show Figures

Figure 1

Figure 1
<p>Multifrequency light curves of the blazar Mrk 501. From left to right and top to bottom, the panels represent radio, optical, X- and <math display="inline"><semantics> <mi>γ</mi> </semantics></math>-rays at a <math display="inline"><semantics> <mrow> <mn>3</mn> <mi>σ</mi> </mrow> </semantics></math> confidence level for light curves, as described in the text.</p>
Full article ">Figure 2
<p>RobPer (magenta) and L-S (teal) periodograms (represented by their normalized coefficient of determination -NCoD), together with their corresponding window function (blue) for radio-, optical-, X- and <math display="inline"><semantics> <mi>γ</mi> </semantics></math>-ray observations of Mrk 501 are shown from left to right, top to bottom panels. The black dotted vertical line shows the mean periodicity between the RobPer and L-S peaks that are common in all frequencies (radio: <math display="inline"><semantics> <mrow> <mn>228.03</mn> <mspace width="0.166667em"/> <mi mathvariant="normal">d</mi> </mrow> </semantics></math>; optical: <math display="inline"><semantics> <mrow> <mn>226.77</mn> <mspace width="0.166667em"/> <mi mathvariant="normal">d</mi> </mrow> </semantics></math>; X-rays: <math display="inline"><semantics> <mrow> <mn>223.20</mn> <mspace width="0.166667em"/> <mi mathvariant="normal">d</mi> </mrow> </semantics></math>; and <math display="inline"><semantics> <mi>γ</mi> </semantics></math>-rays: <math display="inline"><semantics> <mrow> <mn>238.90</mn> <mspace width="0.166667em"/> <mi mathvariant="normal">d</mi> </mrow> </semantics></math>). <a href="#galaxies-12-00030-t002" class="html-table">Table 2</a> shows the periods obtained for the periodograms presented in the figure. The fact that these mean periodicities do not coincide with peaks in the window function reinforces their true periodic character.</p>
Full article ">Figure 3
<p>The figure shows the analysis of variance (AoV) for Mrk 501 using VARTOOLS. The left panel is the AoV for all frequencies: radio is in magenta with a periodicity of <math display="inline"><semantics> <mrow> <mn>227.2</mn> <mspace width="0.166667em"/> <mi mathvariant="normal">d</mi> </mrow> </semantics></math>, optical is in blue with a periodicity of <math display="inline"><semantics> <mrow> <mn>226.73</mn> <mspace width="0.166667em"/> <mi mathvariant="normal">d</mi> </mrow> </semantics></math>, X-rays, in teal, have a periodicity of <math display="inline"><semantics> <mrow> <mn>227.1</mn> <mspace width="0.166667em"/> <mi mathvariant="normal">d</mi> </mrow> </semantics></math> and <math display="inline"><semantics> <mi>γ</mi> </semantics></math>-rays, in yellow with a periodicity of <math display="inline"><semantics> <mrow> <mn>229.2</mn> <mspace width="0.166667em"/> <mi mathvariant="normal">d</mi> </mrow> </semantics></math>. The mean value of <math display="inline"><semantics> <mrow> <mn>227.55</mn> <mspace width="0.166667em"/> <mi mathvariant="normal">d</mi> </mrow> </semantics></math> is represented with a dashed vertical line. The gray vertical band zone represents the statistical range of these peaks. The right panel uses the same coloring scheme as the left one but for the harmonic analysis of variance (AoV-h) of the VARTOOLS software version 1.40. The periodicity of radio, optical, X- and <math display="inline"><semantics> <mi>γ</mi> </semantics></math>-rays are given via the following: <math display="inline"><semantics> <mrow> <mn>228.06</mn> <mspace width="0.166667em"/> <mi mathvariant="normal">d</mi> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mn>227.4</mn> <mspace width="0.166667em"/> <mi mathvariant="normal">d</mi> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mn>223.4</mn> <mspace width="0.166667em"/> <mi mathvariant="normal">d</mi> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mn>219.7</mn> <mspace width="0.166667em"/> <mi mathvariant="normal">d</mi> </mrow> </semantics></math>, respectively, yielding an average value of <math display="inline"><semantics> <mrow> <mn>224.64</mn> <mspace width="0.166667em"/> <mi mathvariant="normal">d</mi> </mrow> </semantics></math>, shown with the vertical dashed line. The vertical values on both panels were normalized to the maximum.</p>
Full article ">Figure 4
<p>The left panel shows the B-L Square algorithm of VARTOOLS used in all wavebands, applying the same coloring scheme of <a href="#galaxies-12-00030-f003" class="html-fig">Figure 3</a>, with the following periodicities in radio, optical, X- and <math display="inline"><semantics> <mi>γ</mi> </semantics></math>-rays: <math display="inline"><semantics> <mrow> <mn>220.96</mn> <mspace width="0.166667em"/> <mi mathvariant="normal">d</mi> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mn>224.141</mn> <mspace width="0.166667em"/> <mi mathvariant="normal">d</mi> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mn>220.96</mn> <mspace width="0.166667em"/> <mi mathvariant="normal">d</mi> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mn>240.404</mn> <mspace width="0.166667em"/> <mi mathvariant="normal">d</mi> </mrow> </semantics></math>, with a mean value of <math display="inline"><semantics> <mrow> <mn>226.616</mn> <mspace width="0.166667em"/> <mi mathvariant="normal">d</mi> </mrow> </semantics></math> represented using a dashed horizontal line. The right panel, with the same coloring scheme, uses the DFT VARTOOLS algorithm with resulting periodicities of <math display="inline"><semantics> <mrow> <mn>228.737</mn> <mspace width="0.166667em"/> <mi mathvariant="normal">d</mi> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mn>225.909</mn> <mspace width="3.33333pt"/> <mi mathvariant="normal">d</mi> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mn>222.374</mn> <mspace width="0.166667em"/> <mi mathvariant="normal">d</mi> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mn>242.818</mn> <mspace width="0.166667em"/> <mi mathvariant="normal">d</mi> </mrow> </semantics></math> and an average value of <math display="inline"><semantics> <mrow> <mn>229.959</mn> <mspace width="0.166667em"/> <mi mathvariant="normal">d</mi> </mrow> </semantics></math>. The vertical values on both panels were normalized to the maximum. The gray vertical band zone represents the statistical range of these peaks.</p>
Full article ">Figure 5
<p>From left to right and top to bottom, the panels in the figure correspond to radio, optical, X- and <math display="inline"><semantics> <mi>γ</mi> </semantics></math>-rays’ power spectrum density (PSD) for the blazar Mrk 501. In all cases, the color of the noise of the signal is pink, according to the results in <a href="#galaxies-12-00030-t005" class="html-table">Table 5</a>.</p>
Full article ">Figure 6
<p>The illustration shows a black hole orbiting a central spherical source of light that eclipses the radiation detected by an observer. For simplicity, and in order to amplify the magnification effect detected by the observer, the example shown in the figure has the line of sight of the observer within the plane of orbit. The right plot shows the radiation flux detected by the observer. It consists of a numerical simulation of a Schwarzschild black hole orbiting a fixed, spherical source of light. Over an orbital period, the passage of the black hole through the line of sight of the observer magnifies the flux detected. The plotted flux and time are normalized to numerical units for a spherical source of radius five emitting isotropic radiation, a Schwarzschild radius of the black hole of one and an orbit of radius thirty. The ray-tracing technique used for this simulation was performed using a squared screen normal to the line of sight at a distance of one thousand. A video of this numerical simulation can be found at <a href="https://archive.org/details/blackhole_magnification" target="_blank">https://archive.org/details/blackhole_magnification</a>, accessed on 15 March 2024, and it was produced using a GNU General Public License (GPL) code named aztekas-shadows, which is under development and will eventually be available at <a href="https://aztekas.org" target="_blank">https://aztekas.org</a>, accessed on 15 March 2024, copyright ©2020 Gustavo Magallanes-Guijón, Sergio Mendoza and Milton Jair Santibañez-Armenta.</p>
Full article ">Figure 7
<p>The figure shows plots of an artificial eclipse that occurs two times. The software that produced them is described in <a href="#sec3dot4-galaxies-12-00030" class="html-sec">Section 3.4</a> and bears the copyright ©2022 Gustavo Magallanes-Guijón and Sergio Mendoza. From top to bottom, different values of the Jacobi elliptic function <math display="inline"><semantics> <mrow> <mi>m</mi> <mo>=</mo> <mn>0.9</mn> <mo>,</mo> <mspace width="0.166667em"/> <mn>0.999</mn> <mo>,</mo> <mspace width="0.166667em"/> <mn>0.99999</mn> </mrow> </semantics></math> were chosen and for all plots with the duration time of the eclipse, <math display="inline"><semantics> <mrow> <msub> <mi>t</mi> <mi mathvariant="normal">e</mi> </msub> <mo>=</mo> <mn>2</mn> </mrow> </semantics></math>, for a quiescent time, <math display="inline"><semantics> <mrow> <msub> <mi>t</mi> <mi mathvariant="normal">q</mi> </msub> <mo>=</mo> <mn>3</mn> </mrow> </semantics></math>, and an amplitude, <math display="inline"><semantics> <mrow> <mi>A</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>. The left column shows relativistic eclipses that produce magnification, which correspond to a plus sign in the simplified Equation (<a href="#FD6-galaxies-12-00030" class="html-disp-formula">6</a>), and the right column represents a standard, non-relativistic eclipse, showing the diminishing of the radiation represented by a minus sign in the same equation.</p>
Full article ">Figure 8
<p>From top to bottom, the figure shows <math display="inline"><semantics> <mrow> <mn>224</mn> <mspace width="0.166667em"/> <mi mathvariant="normal">d</mi> </mrow> </semantics></math> folded light curves for radio, optical, X- and <math display="inline"><semantics> <mi>γ</mi> </semantics></math>-rays. The solid curves are the best fit eclipse model described in <a href="#sec3dot4-galaxies-12-00030" class="html-sec">Section 3.4</a> constructed using the results of <a href="#galaxies-12-00030-t006" class="html-table">Table 6</a>. The shaded zone in each panel represents the duration of the eclipse. The dotted horizontal lines represent the <math display="inline"><semantics> <mrow> <mn>1</mn> <mi>σ</mi> </mrow> </semantics></math> significance level.</p>
Full article ">
9 pages, 852 KiB  
Article
Optical Quasi-Periodic Oscillation of Blazar PKS 1440-389 in the TESS Light Curve
by He Lu, Tingfeng Yi, Yanke Tang, Junjie Wang, Shun Zhang, Liang Wang, Yutong Chen, Yuncai Shen, Liang Dong and Yangwei Zhang
Universe 2024, 10(6), 242; https://doi.org/10.3390/universe10060242 - 31 May 2024
Viewed by 833
Abstract
We report the results of time series analysis of blazar PKS 1440-389, observed by the Transiting Exoplanet Survey Satellite (TESS) in two sectors. We find that the source has a quasi-periodic oscillation (QPO) of about 3.1 days for sector 11 and around 3.7 [...] Read more.
We report the results of time series analysis of blazar PKS 1440-389, observed by the Transiting Exoplanet Survey Satellite (TESS) in two sectors. We find that the source has a quasi-periodic oscillation (QPO) of about 3.1 days for sector 11 and around 3.7 days for sector 38 in the optical band. We use two methods to assess the QPO and its confidence level: Lomb–Scargle periodogram and weighted wavelet Z-transforms. We explore various potential explanations for these rapid quasi-periodic variations and propose that their source most likely resides within the innermost region of the accretion disk. Within this framework, we estimate the mass of the central black hole of this blazar. We obtain black hole masses of 6.65 × 108M (Schwarzschild black hole) and 4.22 × 109M (maximally rotating Kerr black hole), with a main period of 3.7 days. Finally, we utilize the kink instability model to explain the QPO. Full article
(This article belongs to the Section Compact Objects)
Show Figures

Figure 1

Figure 1
<p>The light curves of PKS 1440-389. The black dots represent the fluxes and the gray curves denote the associated errors. The upper and lower plots, respectively, are for the sector 11 and sector 38 observations.</p>
Full article ">Figure 2
<p>The results of the LSP analysis for sectors 11 (<b>left</b>) and 38 (<b>right</b>). The black solid line is the LSP power and the blue dashed line is the 99.99 percent confidence level.</p>
Full article ">Figure 3
<p>The results of the WWZ analysis for sectors 11 and 38. Upper panel: Analysis results of sector 11. Lower panel: Analysis results of sector 38. The black solid line is the WWZ power and the blue dashed line is the 99.99 percent confidence level.</p>
Full article ">Figure 4
<p>Segment-wise LSP analysis for the light curves of PKS 1440-389. The upper and lower panels depict the analysis results for sector 11 and sector 38, respectively. In every plot, the black curve is the LSP. The blue dashed line shows the 99.99 percent confidence level.</p>
Full article ">
49 pages, 1670 KiB  
Article
High-Redshift Quasars at z ≥ 3: Radio Variability and MPS/GPS Candidates
by Yulia Sotnikova, Alexander Mikhailov, Timur Mufakharov, Tao An, Dmitry Kudryavtsev, Marat Mingaliev, Roman Udovitskiy, Anastasia Kudryashova, Vlad Stolyarov and Tamara Semenova
Galaxies 2024, 12(3), 25; https://doi.org/10.3390/galaxies12030025 - 15 May 2024
Cited by 1 | Viewed by 984
Abstract
We present a study of the radio variability of bright, S1.4100 mJy, high-redshift quasars at z3 on timescales of up to 30–40 yrs. The study involved simultaneous RATAN-600 measurements at the frequencies of 2.3, 4.7, 8.2, 11.2, and [...] Read more.
We present a study of the radio variability of bright, S1.4100 mJy, high-redshift quasars at z3 on timescales of up to 30–40 yrs. The study involved simultaneous RATAN-600 measurements at the frequencies of 2.3, 4.7, 8.2, 11.2, and 22.3 GHz in 2017–2020. In addition, data from the literature were used. We have found that the variability index, VS, which quantifies the normalized difference between the maximum and minimum flux density while accounting for measurement uncertainties, ranges from 0.02 to 0.96 for the quasars. Approximately half of the objects in the sample exhibit a variability index within the range from 0.25 to 0.50, which is comparable to that observed in blazars at lower redshifts. The distribution of VS at 22.3 GHz is significantly different from that at 2.3–11.2 GHz, which may be attributed to the fact that a compact AGN core dominates at the source’s rest frame frequencies greater than 45 GHz, leading to higher variability indices obtained at 22.3 GHz (the VS distribution peaks around 0.4) compared to the lower frequencies (the VS distribution at 2.3 and 4.7 GHz peaks around 0.1–0.2). Several source groups with distinctive variability characteristics were found using the cluster analysis of quasars. We propose seven new candidates for gigahertz-peaked spectrum (GPS) sources and five new megahertz-peaked spectrum (MPS) sources based on their spectrum shape and variability features. Only 6 out of the 23 sources previously reported as GPS demonstrate a low variability level typical of classical GPS sources (VS<0.25) at 4.7–22.3 GHz. When excluding the highly variable peaked-spectrum blazars, we expect no more than 20% of the sources in the sample to be GPS candidates and no more than 10% to be MPS candidates. Full article
Show Figures

Figure 1

Figure 1
<p>The variability (<b>top row</b>), modulation (<b>middle row</b>), and fractional variability (<b>bottom row</b>) index distributions for the whole sample, peaked-spectrum (PS) sources, and blazars.</p>
Full article ">Figure 2
<p>The variability index <math display="inline"><semantics> <msub> <mi>V</mi> <msub> <mi>S</mi> <mrow> <mn>4.7</mn> </mrow> </msub> </msub> </semantics></math> versus the number of observations N<sub>obs</sub> for the quasars. The size of the symbols is proportional to the years of monitoring in the rest frame, we define three scales: <math display="inline"><semantics> <mrow> <msub> <mi>t</mi> <mi>rest</mi> </msub> <mo>≤</mo> <mspace width="3.33333pt"/> <mn>5</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mn>5</mn> <mo>&lt;</mo> <msub> <mi>t</mi> <mi>rest</mi> </msub> <mo>≤</mo> <mn>10</mn> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <msub> <mi>t</mi> <mi>rest</mi> </msub> <mo>&gt;</mo> <mn>10</mn> </mrow> </semantics></math> yrs. Bright quasars have been observed more frequently and for a longer period.</p>
Full article ">Figure 3
<p>The distribution of the observational frequencies converted to the rest frame (<b>top</b>), and the distribution of the light curve durations in the rest frame, <math display="inline"><semantics> <msub> <mi>t</mi> <mi>rest</mi> </msub> </semantics></math> in yrs (<b>bottom</b>).</p>
Full article ">Figure 4
<p>The variability indices plotted relatively to the rest frame frequencies. The outlier source is J0941+1145 with <math display="inline"><semantics> <msub> <mi>V</mi> <mi>S</mi> </msub> </semantics></math> equal to 0.86 and 0.96.</p>
Full article ">Figure 5
<p>The variability index <math display="inline"><semantics> <msub> <mi>V</mi> <mi>S</mi> </msub> </semantics></math> at 4.7 (<b>top</b>) and 22.3 GHz (<b>bottom</b>) versus redshift <span class="html-italic">z</span> for blazars (orange circles) and non-blazars (blue triangles). The size of the symbols is defined as in <a href="#galaxies-12-00025-f002" class="html-fig">Figure 2</a>. The five well-known blazars are tagged: J1026+2542 at <math display="inline"><semantics> <mrow> <mi>z</mi> <mo>=</mo> <mn>5.25</mn> </mrow> </semantics></math> [<a href="#B63-galaxies-12-00025" class="html-bibr">63</a>,<a href="#B64-galaxies-12-00025" class="html-bibr">64</a>]; J1430+4204 at <math display="inline"><semantics> <mrow> <mi>z</mi> <mo>=</mo> <mn>4.71</mn> </mrow> </semantics></math> [<a href="#B65-galaxies-12-00025" class="html-bibr">65</a>]; J0324−2918 at <math display="inline"><semantics> <mrow> <mi>z</mi> <mo>=</mo> <mn>4.63</mn> </mrow> </semantics></math> [<a href="#B66-galaxies-12-00025" class="html-bibr">66</a>]; J0525−3343 at <math display="inline"><semantics> <mrow> <mi>z</mi> <mo>=</mo> <mn>4.41</mn> </mrow> </semantics></math> [<a href="#B67-galaxies-12-00025" class="html-bibr">67</a>,<a href="#B68-galaxies-12-00025" class="html-bibr">68</a>]; J1028−0844 at <math display="inline"><semantics> <mrow> <mi>z</mi> <mo>=</mo> <mn>4.27</mn> </mrow> </semantics></math> [<a href="#B69-galaxies-12-00025" class="html-bibr">69</a>].</p>
Full article ">Figure 6
<p>The <math display="inline"><semantics> <msub> <mi>V</mi> <msub> <mi>S</mi> <mrow> <mn>4.7</mn> </mrow> </msub> </msub> </semantics></math> and <math display="inline"><semantics> <msub> <mi>V</mi> <msub> <mi>S</mi> <mrow> <mn>22.3</mn> </mrow> </msub> </msub> </semantics></math> versus the rest frame timescale <math display="inline"><semantics> <msub> <mi>t</mi> <mi>rest</mi> </msub> </semantics></math> for the PS and non-PS quasars (orange and blue triangles). The symbol sizes are proportional to N<sub>obs</sub>, they correspond to 10, 20, 50, 100, and more number of observations. The dashed lines mark the 0.25 and 0.50 variability index levels.</p>
Full article ">Figure 7
<p>The variability indices <math display="inline"><semantics> <msub> <mi>V</mi> <msub> <mi>S</mi> <mrow> <mn>22.3</mn> </mrow> </msub> </msub> </semantics></math> (<b>top</b>) and <math display="inline"><semantics> <msub> <mi>V</mi> <msub> <mi>S</mi> <mrow> <mn>8.2</mn> </mrow> </msub> </msub> </semantics></math> (<b>bottom</b>) versus the high-frequency spectral index <math display="inline"><semantics> <msub> <mi>α</mi> <mi>high</mi> </msub> </semantics></math>, measured from the averaged historical spectra of the PS blazars and PS non-blazars candidates (orange and blue stars) and the blazars/non-blazars with another spectral types (orange and blue circles). The vertical dotted line corresponds to the spectral index <math display="inline"><semantics> <mrow> <mi>α</mi> <mo>=</mo> <mo>−</mo> <mn>0.5</mn> </mrow> </semantics></math>, the horizontal line corresponds to <math display="inline"><semantics> <mrow> <msub> <mi>V</mi> <mi>S</mi> </msub> <mo>=</mo> <mn>0.25</mn> </mrow> </semantics></math>. Some variable quasars with steep-averaged radio spectra are tagged.</p>
Full article ">Figure 8
<p>The relation <math display="inline"><semantics> <mrow> <msub> <mi>α</mi> <mi>high</mi> </msub> <mo>−</mo> <msub> <mi>S</mi> <mrow> <mn>11.2</mn> </mrow> </msub> </mrow> </semantics></math> for the blazar J0646+4451 is shown in the top panel. The spectral index <math display="inline"><semantics> <msub> <mi>α</mi> <mi>high</mi> </msub> </semantics></math> evolution is presented in the middle panel. Corresponding RATAN-600 quasi-simultaneous spectra are shown in the bottom panel (green color) together with the literature data (grey color). The orange line corresponds to the ultra-steep spectrum measured in 2011.</p>
Full article ">Figure 9
<p>The distributions of the parameters for PS sources. The observed and rest frame peak frequencies are on top, and the flux densities at the peak frequency and FWHMs are at the bottom.</p>
Full article ">Figure 10
<p>Redshift versus rest frame peak frequency for 47 PS quasars from the sample under investigation. The PS sources from [<a href="#B105-galaxies-12-00025" class="html-bibr">105</a>] are marked by grey triangles, from [<a href="#B106-galaxies-12-00025" class="html-bibr">106</a>] by star symbols, and from [<a href="#B37-galaxies-12-00025" class="html-bibr">37</a>] by grey squares.</p>
Full article ">Figure A1
<p>Correlation matrix with Kendall correlation coefficients.</p>
Full article ">Figure A2
<p><b>Left</b>: clusters in the primary component (PC) coordinates; <b>right</b>: 2D t-SNE representation of the left panel.</p>
Full article ">Figure A3
<p>Distributions of the considered characteristics for different clusters. Each panel corresponds to a certain characteristic, the <span class="html-italic">y</span>-axes show the cluster ordinal numbers. The distributions are shown as box plots, see description in the text.</p>
Full article ">Figure A4
<p>Comparison of the PCA+k-means clustering (<b>upper left panel</b>) with 5 runs of the SOM training (<b>other panels</b>).</p>
Full article ">Figure A5
<p>The RATAN-600 light curves, the measurements at 22.3 GHz are colored by orange, at 11.2 GHz by magenta, at 8.2 GHz by green, at 4.7 GHz by blue.</p>
Full article ">Figure A6
<p>The RATAN-600 light curves, the measurements at 22.3 GHz are colored by orange, at 11.2 GHz by magenta, at 8.2 GHz by green, at 4.7 GHz by blue.</p>
Full article ">Figure A7
<p>The RATAN-600 light curves, the measurements at 22.3 GHz are colored by orange, at 11.2 GHz by magenta, at 8.2 GHz by green, at 4.7 GHz by blue.</p>
Full article ">Figure A8
<p>The RATAN-600 light curves, the measurements at 22.3 GHz are colored by orange, at 11.2 GHz by magenta, at 8.2 GHz by green, at 4.7 GHz by blue.</p>
Full article ">Figure A9
<p>The RATAN-600 light curves, the measurements at 22.3 GHz are colored by orange, at 11.2 GHz by magenta, at 8.2 GHz by green, at 4.7 GHz by blue.</p>
Full article ">Figure A10
<p>The RATAN-600 light curves, the measurements at 22.3 GHz are colored by orange, at 11.2 GHz by magenta, at 8.2 GHz by green, at 4.7 GHz by blue.</p>
Full article ">Figure A11
<p>The radio spectra of PS quasars constructed using the RATAN-600 (green) and the literature data from CATS (grey).</p>
Full article ">Figure A12
<p>The radio spectra of PS quasars constructed using the RATAN-600 (green) and the literature data from CATS (grey).</p>
Full article ">
16 pages, 1306 KiB  
Review
Investigating the Properties of the Relativistic Jet and Hot Corona in AGN with X-ray Polarimetry
by Dawoon E. Kim, Laura Di Gesu, Frédéric Marin, Alan P. Marscher, Giorgio Matt, Paolo Soffitta, Francesco Tombesi, Enrico Costa and Immacolata Donnarumma
Galaxies 2024, 12(3), 20; https://doi.org/10.3390/galaxies12030020 - 23 Apr 2024
Cited by 1 | Viewed by 1219
Abstract
X-ray polarimetry has been suggested as a prominent tool for investigating the geometrical and physical properties of the emissions from active galactic nuclei (AGN). The successful launch of the Imaging X-ray Polarimetry Explorer (IXPE) on 9 December 2021 has expanded the previously restricted [...] Read more.
X-ray polarimetry has been suggested as a prominent tool for investigating the geometrical and physical properties of the emissions from active galactic nuclei (AGN). The successful launch of the Imaging X-ray Polarimetry Explorer (IXPE) on 9 December 2021 has expanded the previously restricted scope of polarimetry into the X-ray domain, enabling X-ray polarimetric studies of AGN. Over a span of two years, IXPE has observed various AGN populations, including blazars and radio-quiet AGN. In this paper, we summarize the remarkable discoveries achieved thanks to the opening of the new window of X-ray polarimetry of AGN through IXPE observations. We will delve into two primary areas of interest: first, the magnetic field geometry and particle acceleration mechanisms in the jets of radio-loud AGN, such as blazars, where the relativistic acceleration process dominates the spectral energy distribution; and second, the geometry of the hot corona in radio-quiet AGN. Thus far, the IXPE results from blazars favor the energy-stratified shock acceleration model, and they provide evidence of helical magnetic fields inside the jet. Concerning the corona geometry, the IXPE results are consistent with a disk-originated slab-like or wedge-like shape, as could result from Comptonization around the accretion disk. Full article
(This article belongs to the Special Issue Multi-Phase Fueling and Feedback Processes in Jetted AGN)
Show Figures

Figure 1

Figure 1
<p>A schematic representation of SED for RLAGN (HSP: red solid line, and LSP: gray dotted line) and RQAGN (black solid line with labeled colored lines for different emission components). The yellow shaded area indicates the X-ray regime. The figure is reproduced from <a href="#galaxies-12-00020-f001" class="html-fig">Figure 1</a> in [<a href="#B8-galaxies-12-00020" class="html-bibr">8</a>].</p>
Full article ">Figure 2
<p>IXPE observation results of Mrk 501 and Mrk 421. (<b>Left</b>) Multiwavelength polarization degree of Mrk 501 from radio rays to X-rays. The black symbols represent observations conducted between March 8th and 10th, while the red symbols represent observations from March 26th to 28th. The open symbols indicate the intrinsic optical polarization degree corrected for the host galaxy. The figure was reproduced from <a href="#galaxies-12-00020-f003" class="html-fig">Figure 3</a> in [<a href="#B57-galaxies-12-00020" class="html-bibr">57</a>]. (<b>Right</b>) X-ray polarization angle rotation in Mrk 421. The symbols identify multiwavelength polarimetry measurements obtained from telescopes as labeled. The figure was reproduced from <a href="#galaxies-12-00020-f002" class="html-fig">Figure 2</a> in [<a href="#B59-galaxies-12-00020" class="html-bibr">59</a>].</p>
Full article ">Figure 3
<p>Physical properties of energy-stratified shock emissions from HSP blazars. (<b>Left</b>) X-ray polarization vs. the <math display="inline"><semantics> <msub> <mi mathvariant="normal">Π</mi> <mi mathvariant="normal">X</mi> </msub> </semantics></math>/<math display="inline"><semantics> <msub> <mi mathvariant="normal">Π</mi> <mi mathvariant="normal">O</mi> </msub> </semantics></math> ratio; (<b>Right</b>) X-ray power law photon index vs. the <math display="inline"><semantics> <msub> <mi mathvariant="normal">Π</mi> <mi mathvariant="normal">X</mi> </msub> </semantics></math>/<math display="inline"><semantics> <msub> <mi mathvariant="normal">Π</mi> <mi mathvariant="normal">O</mi> </msub> </semantics></math> ratio of HSP blazars observed by IXPE. Each colored point indicates different IXPE observations labeled in the legend.</p>
Full article ">Figure 4
<p>Schematic view of different X-ray corona geometries: slab, conical, and lamppost. The bluish and reddish areas represent the corona and disk emission regions, respectively. Blue and orange arrows indicate upscattered X-ray and UV/optical disk photons, respectively. The black arrow represents the predicted polarization properties (degree in number and angle in direction of the arrow), estimated from [<a href="#B77-galaxies-12-00020" class="html-bibr">77</a>].</p>
Full article ">Figure 5
<p>IXPE observation result of NGC 4151. (<b>Left</b>) Polarization contours (<math display="inline"><semantics> <mrow> <mn>68</mn> <mo>%</mo> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mn>90</mn> <mo>%</mo> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <mn>99</mn> <mo>%</mo> </mrow> </semantics></math> detection significance levels); (<b>middle</b>) X-ray spectrum analysis result; (<b>right</b>) comparison of IXPE measurements and expected X-ray polarization in slab and wedge geometry coronae calculated from MONK simulations. The figure was reproduced with kind permission from Oxford University Press and the Royal Astronomical Society from [<a href="#B78-galaxies-12-00020" class="html-bibr">78</a>].</p>
Full article ">Figure 6
<p>X-ray polarization contours of the integrated analysis of MCG-05-23-16 I and II (red; <math display="inline"><semantics> <mrow> <mn>68</mn> <mo>%</mo> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mn>90</mn> <mo>%</mo> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <mn>99</mn> <mo>%</mo> </mrow> </semantics></math> detection significance levels). The black dashed line indicates the direction of the NLR, while the dotted line denotes the perpendicular direction, implying an angle parallel to the disk. Each colored area represents the expected polarization properties calculated by MONK, with relatively saturated regions indicating the expected degree of polarizaton for inclinations in the range of approximately 30–50°. The figure was reproduced with kind permission from Oxford University Press and the Royal Astronomical Society from Figure 8 in [<a href="#B80-galaxies-12-00020" class="html-bibr">80</a>].</p>
Full article ">
22 pages, 1637 KiB  
Article
The Power of Relativistic Jets: A Comparative Study
by Luigi Foschini, Benedetta Dalla Barba, Merja Tornikoski, Heinz Andernach, Paola Marziani, Alan P. Marscher, Svetlana G. Jorstad, Emilia Järvelä, Sonia Antón and Elena Dalla Bontà
Universe 2024, 10(4), 156; https://doi.org/10.3390/universe10040156 - 27 Mar 2024
Viewed by 1209
Abstract
We present the results of a comparison between different methods to estimate the power of relativistic jets from active galactic nuclei (AGN). We selected a sample of 32 objects (21 flat-spectrum radio quasars, 7 BL Lacertae objects, 2 misaligned AGN, and 2 changing-look [...] Read more.
We present the results of a comparison between different methods to estimate the power of relativistic jets from active galactic nuclei (AGN). We selected a sample of 32 objects (21 flat-spectrum radio quasars, 7 BL Lacertae objects, 2 misaligned AGN, and 2 changing-look AGN) from the very large baseline array (VLBA) observations at 43 GHz of the Boston University blazar program. We then calculated the total, radiative, and kinetic jet power from both radio and high-energy gamma-ray observations, and compared the values. We found an excellent agreement between the radiative power calculated by using the Blandford and Königl model with 37 or 43 GHz data and the values derived from the high-energy γ-ray luminosity. The agreement is still acceptable if 15 GHz data are used, although with a larger dispersion, but it improves if we use a constant fraction of the γ-ray luminosity. We found a good agreement also for the kinetic power calculated with the Blandford and Königl model with 15 GHz data and the value from the extended radio emission. We also propose some easy-to-use equations to estimate the jet power. Full article
(This article belongs to the Special Issue Recent Advances in Gamma Ray Astrophysics and Future Perspectives)
Show Figures

Figure 1

Figure 1
<p>Doppler factor <math display="inline"><semantics> <msub> <mi>δ</mi> <mn>1</mn> </msub> </semantics></math> (case 1) estimated from 43 GHz data and Equation (<a href="#FD15-universe-10-00156" class="html-disp-formula">15</a>) with the cosmology adopted in the present work vs. <math display="inline"><semantics> <msub> <mi>δ</mi> <mn>2</mn> </msub> </semantics></math> (case 2) calculated from the brightness temperature. The continuous line indicates the equality of the two values.</p>
Full article ">Figure 2
<p>Total jet power calculated from Equation (<a href="#FD11-universe-10-00156" class="html-disp-formula">11</a>) and all the data from 15 and 43 GHz observations: (<b>left panel</b>) case 1; (<b>right panel</b>) case 2. The dashed line represents the equality of the two powers, while the continuous line is the linear fit to the data.</p>
Full article ">Figure 3
<p>Distribution of <math display="inline"><semantics> <msub> <mi>k</mi> <mn>2</mn> </msub> </semantics></math> values at 15 and 43 GHz for case 1.</p>
Full article ">Figure 4
<p>(<b>Left panel</b>) Total jet power calculated with Equation (<a href="#FD11-universe-10-00156" class="html-disp-formula">11</a>) and overlapping epoch data from 15 and 43 GHz observations. The dashed line represents the equality of the two powers, while the continuous line is the linear fit to the data. (<b>Right panel</b>) Distribution of <math display="inline"><semantics> <msub> <mi>k</mi> <mn>2</mn> </msub> </semantics></math> values at 15 and 43 GHz.</p>
Full article ">Figure 5
<p>(<b>Left panel</b>) Total jet power derived from 37 GHz flux density and <math display="inline"><semantics> <msub> <mi>k</mi> <mn>2</mn> </msub> </semantics></math> from 15 GHz observations vs. jet power from the same observations. (<b>Right panel</b>) Total jet power calculated by using 37 GHz flux density and <math display="inline"><semantics> <msub> <mi>k</mi> <mn>2</mn> </msub> </semantics></math> from 43 GHz observations vs. jet power from the same observations. The dashed line represents the equality of the two powers, while the continuous line is the linear fit to the data.</p>
Full article ">Figure 6
<p>Comparison of the jet kinetic power as estimated from Equations (<a href="#FD20-universe-10-00156" class="html-disp-formula">20</a>) and (<a href="#FD21-universe-10-00156" class="html-disp-formula">21</a>). The dashed line represents the equality of the two powers, while the continuous line is the linear fit to the data.</p>
Full article ">Figure 7
<p>Kinetic jet power. (<b>Upper panels</b>) Comparison of Equations (<a href="#FD13-universe-10-00156" class="html-disp-formula">13</a>) and (<a href="#FD20-universe-10-00156" class="html-disp-formula">20</a>) with 15 GHz data (<b>left</b>) and 43 GHz data (<b>right</b>). (<b>Lower panels</b>) Comparison of Equations (<a href="#FD13-universe-10-00156" class="html-disp-formula">13</a>) and (<a href="#FD21-universe-10-00156" class="html-disp-formula">21</a>) with 15 GHz data (<b>left</b>) and 43 GHz data (<b>right</b>). The dashed line represents the equality of the two powers, while the continuous line is the linear fit to the data.</p>
Full article ">Figure 8
<p>Radiative jet power. Comparison of values from high-energy <math display="inline"><semantics> <mi>γ</mi> </semantics></math> rays and radio observations at 15 GHz (<b>left panel</b>) and at 43 GHz (<b>right panel</b>). The dashed line represents the equality of the two powers, while the continuous line is the linear fit to the data.</p>
Full article ">Figure 9
<p>Radiative jet power corrected for the Compton dominance. Comparison of values from high-energy <math display="inline"><semantics> <mi>γ</mi> </semantics></math> rays and radio observations at 15 GHz (<b>left panel</b>) and at 43 GHz (<b>right panel</b>). The dashed line represents the equality of the two powers, while the continuous line is the linear fit to the data.</p>
Full article ">Figure 10
<p>Radiative jet power corrected for the Compton dominance. Comparison of values from high-energy <math display="inline"><semantics> <mi>γ</mi> </semantics></math> rays and radio observations at 43 GHz, with the Doppler factor calculated by using the brightness temperature (case 2, <a href="#sec4-universe-10-00156" class="html-sec">Section 4</a>). The dashed line represents the equality of the two powers, while the continuous line is the linear fit to the data.</p>
Full article ">Figure 11
<p>Total jet power calculated with a constant <math display="inline"><semantics> <msub> <mi>k</mi> <mn>2</mn> </msub> </semantics></math> (Equation (<a href="#FD27-universe-10-00156" class="html-disp-formula">27</a>)) and flux densities at 15 (<b>left panel</b>) and 37 GHz (<b>right panel</b>) compared with the power at 43 GHz. The dashed line represents the equality of the two powers, while the continuous line is the linear fit to the data.</p>
Full article ">Figure 12
<p>Radiative jet power calculated with a constant <math display="inline"><semantics> <mrow> <msup> <mo>Γ</mo> <mn>2</mn> </msup> <mo>/</mo> <msup> <mi>δ</mi> <mn>4</mn> </msup> </mrow> </semantics></math> compared with the power estimated with <math display="inline"><semantics> <mrow> <msup> <mo>Γ</mo> <mn>2</mn> </msup> <mo>/</mo> <msup> <mi>δ</mi> <mn>4</mn> </msup> </mrow> </semantics></math> from 15 GHz (<b>left panel</b>) and 43 GHz data (<b>right panel</b>). The dashed line represents the equality of the two powers, while the continuous line is the linear fit to the data.</p>
Full article ">
20 pages, 3011 KiB  
Article
Central Engine and Spectral Energy Distribution Properties of High Redshift Gamma Ray Blazars
by Anilkumar Tolamatti, Krishna Kumar Singh and Kuldeep Kumar Yadav
Galaxies 2024, 12(2), 10; https://doi.org/10.3390/galaxies12020010 - 11 Mar 2024
Viewed by 1430
Abstract
We report on the properties of central engines in the γ-ray blazars located at high redshifts beyond z > 0.4, where the extra-galactic background light (EBL) starts affecting their γ-ray spectra. The physical engine that provides power to the blazars of [...] Read more.
We report on the properties of central engines in the γ-ray blazars located at high redshifts beyond z > 0.4, where the extra-galactic background light (EBL) starts affecting their γ-ray spectra. The physical engine that provides power to the blazars of very high bolometric luminosity is assumed to be a highly collimated jet of matter moving relativistically away from the supermassive black hole (SMBH), located in the central region of the host galaxy, in a direction aligned toward the Earth. Due to their peculiar geometry and special physical conditions, blazars at redshifts beyond z > 0.4 are bright enough to be detected in the γ-ray energy band. In this work, we investigate the physical properties of high-z γ-ray blazars detected by the Large Area Telescope (LAT) on board the Fermi satellite. We also study the properties of their emission regions and the central engines and discuss cosmological and astrophysical implications. Full article
Show Figures

Figure 1

Figure 1
<p>(<b>Left</b>) Histograms of the redshifts for FSRQs, BL Lacs and BCUs taken from 4LAC-DR3 catalog [<a href="#B54-galaxies-12-00010" class="html-bibr">54</a>,<a href="#B55-galaxies-12-00010" class="html-bibr">55</a>]. (<b>Right</b>) The number distributions of FSRQs, BL Lacs and BCUs in the high redshift (<math display="inline"><semantics> <mrow> <mi>z</mi> <mo>&gt;</mo> <mn>0.4</mn> </mrow> </semantics></math>) and low redshift (<math display="inline"><semantics> <mrow> <mi>z</mi> <mo>≤</mo> <mn>0.4</mn> </mrow> </semantics></math>) regimes.</p>
Full article ">Figure 2
<p>(<b>Left</b>) Histograms of the Power-Law (PL) spectral index (<math display="inline"><semantics> <mo>Γ</mo> </semantics></math>), Log Parabola (LP) index (<math display="inline"><semantics> <msup> <mi>α</mi> <mo>′</mo> </msup> </semantics></math>) and curvature parameter (<math display="inline"><semantics> <mi>β</mi> </semantics></math>) of blazars measured by the <span class="html-italic">Fermi</span>-LAT. (<b>Right</b>) Variations of <math display="inline"><semantics> <mo>Γ</mo> </semantics></math>, <math display="inline"><semantics> <msup> <mi>α</mi> <mo>′</mo> </msup> </semantics></math> and <math display="inline"><semantics> <mi>β</mi> </semantics></math> parameters as a function of redshift (log (1 + z)).</p>
Full article ">Figure 3
<p>(<b>Left</b>) Histograms of the luminosities of <math display="inline"><semantics> <mi>γ</mi> </semantics></math>-ray at 1 GeV (log <math display="inline"><semantics> <msub> <mi mathvariant="normal">L</mi> <mi>γ</mi> </msub> </semantics></math>), X-ray at 1 keV (log <math display="inline"><semantics> <msub> <mi mathvariant="normal">L</mi> <mi>X</mi> </msub> </semantics></math>), optical at 2.43 <math display="inline"><semantics> <mrow> <mo>×</mo> <mo> </mo> <msup> <mn>10</mn> <mn>14</mn> </msup> </mrow> </semantics></math> Hz (log <math display="inline"><semantics> <msub> <mi mathvariant="normal">L</mi> <mi>o</mi> </msub> </semantics></math>) and radio at 1.4 GHz (log <math display="inline"><semantics> <msub> <mi mathvariant="normal">L</mi> <mi>R</mi> </msub> </semantics></math>) for sample high and low-z blazars. (<b>Right</b>) Variations of log <math display="inline"><semantics> <msub> <mi mathvariant="normal">L</mi> <mi>γ</mi> </msub> </semantics></math>, log <math display="inline"><semantics> <msub> <mi mathvariant="normal">L</mi> <mi>X</mi> </msub> </semantics></math>, log <math display="inline"><semantics> <msub> <mi mathvariant="normal">L</mi> <mi>o</mi> </msub> </semantics></math> and log <math display="inline"><semantics> <msub> <mi mathvariant="normal">L</mi> <mi>R</mi> </msub> </semantics></math> as a function of luminosity distance (log <math display="inline"><semantics> <msub> <mi>D</mi> <mi>L</mi> </msub> </semantics></math>).</p>
Full article ">Figure 4
<p>(<b>Left</b>) Histograms of synchrotron peak frequency (<math display="inline"><semantics> <msub> <mi>ν</mi> <mrow> <mi>s</mi> <mi>y</mi> <mi>n</mi> </mrow> </msub> </semantics></math>), IC peak frequency (<math display="inline"><semantics> <msub> <mi>ν</mi> <mrow> <mi>I</mi> <mi>C</mi> </mrow> </msub> </semantics></math>), energy fluxes at synchrotron (<math display="inline"><semantics> <mrow> <mi>ν</mi> <msub> <mi>F</mi> <mrow> <mi>ν</mi> <mo>,</mo> <mi>s</mi> <mi>y</mi> <mi>n</mi> </mrow> </msub> </mrow> </semantics></math>) and IC (<math display="inline"><semantics> <mrow> <mi>ν</mi> <msub> <mi>F</mi> <mrow> <mi>ν</mi> <mo>,</mo> <mi>I</mi> <mi>C</mi> </mrow> </msub> </mrow> </semantics></math>) peak frequencies, and Compton dominance parameter (<math display="inline"><semantics> <mrow> <mi>C</mi> <mi>D</mi> </mrow> </semantics></math>). (<b>Right</b>) Variations of log <math display="inline"><semantics> <msub> <mi>ν</mi> <mrow> <mi>s</mi> <mi>y</mi> <mi>n</mi> </mrow> </msub> </semantics></math>, log <math display="inline"><semantics> <msub> <mi>ν</mi> <mrow> <mi>I</mi> <mi>C</mi> </mrow> </msub> </semantics></math>, log <math display="inline"><semantics> <mrow> <mi>ν</mi> <msub> <mi>F</mi> <mrow> <mi>ν</mi> <mo>,</mo> <mi>s</mi> <mi>y</mi> <mi>n</mi> </mrow> </msub> </mrow> </semantics></math>, log <math display="inline"><semantics> <mrow> <mi>ν</mi> <msub> <mi>F</mi> <mrow> <mi>ν</mi> <mo>,</mo> <mi>I</mi> <mi>C</mi> </mrow> </msub> </mrow> </semantics></math> and log <math display="inline"><semantics> <mrow> <mi>C</mi> <mi>D</mi> </mrow> </semantics></math> as a function of log (1 + z).</p>
Full article ">Figure 5
<p>(<b>Left</b>) Histograms of log <math display="inline"><semantics> <msub> <mi mathvariant="normal">M</mi> <mrow> <mi>B</mi> <mi>H</mi> </mrow> </msub> </semantics></math> values for high and low-z blazars. (<b>Right</b>) Scatterplot of log <math display="inline"><semantics> <msub> <mi mathvariant="normal">M</mi> <mrow> <mi>B</mi> <mi>H</mi> </mrow> </msub> </semantics></math> and log (1 + z).</p>
Full article ">Figure 6
<p>(<b>Upper Left</b>) Histograms of <math display="inline"><semantics> <msub> <mi mathvariant="normal">L</mi> <mrow> <mi>D</mi> <mi>i</mi> <mi>s</mi> <mi>k</mi> </mrow> </msub> </semantics></math> for high and low redshift blazars. (<b>Upper Right</b>) Scatter plot of log <math display="inline"><semantics> <msub> <mi mathvariant="normal">L</mi> <mrow> <mi>D</mi> <mi>i</mi> <mi>s</mi> <mi>k</mi> </mrow> </msub> </semantics></math> vs log (1 + z). (<b>Lower Left</b>) Histograms of the Eddington ratios (<math display="inline"><semantics> <msub> <mi>λ</mi> <mrow> <mi>E</mi> <mi>d</mi> <mi>d</mi> </mrow> </msub> </semantics></math>) for high and low redshift blazars. (<b>Lower Right</b>) Scatter plot of log <math display="inline"><semantics> <msub> <mi>λ</mi> <mrow> <mi>E</mi> <mi>d</mi> <mi>d</mi> </mrow> </msub> </semantics></math> as function of log (1 + z).</p>
Full article ">Figure 7
<p>Variations of the estimated seed <math display="inline"><semantics> <msub> <mi mathvariant="normal">M</mi> <mrow> <mi>B</mi> <mi>H</mi> <mo>,</mo> <mi>s</mi> <mi>e</mi> <mi>e</mi> <mi>d</mi> </mrow> </msub> </semantics></math> values at z = 30, required for the formation of observed SMBHs in blazars, as a function of log (1 + z), assuming the BH accretes with observed <math display="inline"><semantics> <msub> <mi>λ</mi> <mrow> <mi>E</mi> <mi>d</mi> <mi>d</mi> <mo>,</mo> <mi>o</mi> <mi>b</mi> <mi>s</mi> </mrow> </msub> </semantics></math> and with <math display="inline"><semantics> <mrow> <mi>η</mi> <mo>=</mo> </mrow> </semantics></math> 0.1 (<b>left panel</b>) and 0.3 (<b>right panel</b>). The shaded regions correspond to expected mass ranges of Population III star BH remnants (10–<math display="inline"><semantics> <mrow> <msup> <mn>10</mn> <mn>3</mn> </msup> <mspace width="4.pt"/> <msub> <mi mathvariant="normal">M</mi> <mo>⊙</mo> </msub> </mrow> </semantics></math>; cyan color), seed black holes from stellar dynamical processes (≥<math display="inline"><semantics> <mrow> <msup> <mn>10</mn> <mn>3</mn> </msup> <mspace width="4.pt"/> <msub> <mi mathvariant="normal">M</mi> <mo>⊙</mo> </msub> </mrow> </semantics></math>; gray color) and black holes from direct collapse (<math display="inline"><semantics> <msup> <mn>10</mn> <mn>4</mn> </msup> </semantics></math>–<math display="inline"><semantics> <mrow> <msup> <mn>10</mn> <mn>6</mn> </msup> <mspace width="4.pt"/> <msub> <mi mathvariant="normal">M</mi> <mo>⊙</mo> </msub> </mrow> </semantics></math>; green color).</p>
Full article ">Figure 8
<p>(<b>Left</b>) Histograms of log B and log <math display="inline"><semantics> <msub> <mi>γ</mi> <mi>p</mi> </msub> </semantics></math> for high and low redshift blazars. (<b>Right</b>) Variation of log B and log <math display="inline"><semantics> <msub> <mi>γ</mi> <mi>p</mi> </msub> </semantics></math> values with log (1 + z).</p>
Full article ">
17 pages, 2169 KiB  
Article
Unveiling the Emission and Variation Mechanism of Mrk 501: Using the Multi-Wavelength Data at Different Time Scale
by Lizhi Liu, Yunguo Jiang, Junhao Deng, Zhaohao Chen and Chenli Ma
Universe 2024, 10(3), 114; https://doi.org/10.3390/universe10030114 - 1 Mar 2024
Cited by 1 | Viewed by 1198
Abstract
Variability study at multi-frequency provides us with rich information of the emission and variation mechanism for blazars. In this work, we present a comprehensive multi-frequency analysis of the high-synchrotron-peaked (HSP) blazar Mrk 501, using γ-ray, X-ray, optical, optical polarization, and radio data. [...] Read more.
Variability study at multi-frequency provides us with rich information of the emission and variation mechanism for blazars. In this work, we present a comprehensive multi-frequency analysis of the high-synchrotron-peaked (HSP) blazar Mrk 501, using γ-ray, X-ray, optical, optical polarization, and radio data. The multiple-wavelength light curves are analyzed by using the localized cross-correlation function to derive locations of their emitting regions. The X-ray, γ-ray, and optical emitting regions are found to be upstream of the radio core region, while the X-ray and γ-ray emitting regions likely coincide. We studied the variation behaviors for three long-term (years), five relatively short-term (months) periods. We find a positive correlation between the optical and X-ray fluxes, and conclude that the variable of Doppler factor is not favored for the one-zone SSC scenario. The study also identifies the existence of a soft γ-ray background in the low-activity state, which could be explained by the spine/layer jet model. Our study on Mrk 501 provides valuable insights to understand the emission processes and variation mechanism for HSP blazars. Full article
(This article belongs to the Section Galaxies and Clusters)
Show Figures

Figure 1

Figure 1
<p>The LCCF results for Optical versus radio, X-ray versus radio, Optical versus X-ray, and <math display="inline"><semantics> <mi>γ</mi> </semantics></math>-ray versus X-ray are presented in panels (<b>a</b>), (<b>b</b>), (<b>c</b>), and (<b>d</b>), respectively. The black dots represent the LCCF results, while the significance levels of 1<math display="inline"><semantics> <mi>σ</mi> </semantics></math>, 2<math display="inline"><semantics> <mi>σ</mi> </semantics></math>, 3<math display="inline"><semantics> <mi>σ</mi> </semantics></math> are indicated by the blue, green, and red lines, respectively.</p>
Full article ">Figure 2
<p>From top to bottom panels, the light curves of <math display="inline"><semantics> <mi>γ</mi> </semantics></math>-ray of 0.9–2.7 GeV, X-ray of 0.3–10 keV, optical <span class="html-italic">V</span>-band, optical <span class="html-italic">R</span>-band and optical PD are plotted, respectively. The red, blue, and green zones are named as period (a), (b), and (c), respectively. Two vertical lines with the same color indicate the periods at short timescales. The magenta, cyan, gold, green-yellow and brown vertical lines corresponds to period (d), (e), (f), (g), and (h), respectively.</p>
Full article ">Figure 3
<p>The logarithm of the <math display="inline"><semantics> <mi>γ</mi> </semantics></math>-ray fluxes versus that of the X-ray fluxes is plotted. The color and symbol of the periods (a, b, c, d, e, f, g, h) are indicated in the lower right corner. The periods (a, b, c) are displayed on the left panel, and (d, f, g, h)) is displayed on the right. We set the period to match the color that the red, blue, green, black, spring-green, magenta, cyan, and brown dots are named as period (a), (b), (c), (d), (e), (f), (g), and (h), respectively. Here, the straight line is the result of linear fitting, and the colors used are consistent with the data points. The results of linear fitting can be located in <a href="#universe-10-00114-t002" class="html-table">Table 2</a>.</p>
Full article ">Figure 4
<p>The logarithm of the <math display="inline"><semantics> <mi>γ</mi> </semantics></math>-ray spectral index versus that of the <math display="inline"><semantics> <mi>γ</mi> </semantics></math>-ray fluxes is plotted. The color and symbol of the periods (a, b, c, d, e, f, g, h) are indicated in the upper left corner. The periods (a, b, c) are displayed on the left panel, and (d, e, f, g, h) is displayed on the right. We set the period to match the color as shown in <a href="#universe-10-00114-f003" class="html-fig">Figure 3</a>.</p>
Full article ">Figure 5
<p><math display="inline"><semantics> <mrow> <mi>V</mi> <mo>−</mo> <mi>R</mi> </mrow> </semantics></math> versus optical <span class="html-italic">V</span>-band magnitude for both the long term periods and short term periods are plotted in the left and right panel, respectively. The color and symbol set is consistent with that used in <a href="#universe-10-00114-f003" class="html-fig">Figure 3</a>. The black line in the left panel represents our best fitting results of the two-component model, and the other lines are the linear fitting results of data at different periods.</p>
Full article ">Figure 6
<p>logPD versus log <math display="inline"><semantics> <msub> <mi mathvariant="normal">F</mi> <mi mathvariant="normal">V</mi> </msub> </semantics></math> is plotted. The color and symbol set is consistent with that used in <a href="#universe-10-00114-f003" class="html-fig">Figure 3</a>. The color and symbol of the periods (a, b, c, d, e, f, g, h) are indicated in the bottom right corner. The periods (a, b, c) are displayed on the left panel, and (d, e, f, g, h) is displayed on the right. The slopes of the linear fits for various periods in the right panel can be found in <a href="#universe-10-00114-t002" class="html-table">Table 2</a>.</p>
Full article ">Figure 7
<p>The broadband SED of Mrk 501 are given. The panel (<b>a</b>–<b>d</b>) represents that the SED of Mrk 501 derived with data from MJD 56,730 to MJD 56,750, MJD 56,850 to MJD 56,870, MJD 56,920 to MJD 56,950, MJD 56,700 to MJD 56,950, respectively. The corresponding model parameters are shown in <a href="#universe-10-00114-t003" class="html-table">Table 3</a>.</p>
Full article ">Figure 8
<p>The SED of <math display="inline"><semantics> <mi>γ</mi> </semantics></math>-ray band in low activity states is expressed. The dots represent energy data points and the inverted triangles represent their upper energy limits. In order to clearly distinguish the data points of different periods, we choose to add a constant to their vertical coordinates. We add 0.5, −0.5, −1.1 to the vertical coordinates of the data points of dark-orange, red, and green colors, respectively. Blue data points are not changed.</p>
Full article ">
17 pages, 1754 KiB  
Article
Revisiting a Core–Jet Laboratory at High Redshift: Analysis of the Radio Jet in the Quasar PKS 2215+020 at z = 3.572
by Sándor Frey, Judit Fogasy, Krisztina Perger, Kateryna Kulish, Petra Benke, Dávid Koller and Krisztina Éva Gabányi
Universe 2024, 10(2), 97; https://doi.org/10.3390/universe10020097 - 17 Feb 2024
Viewed by 2592
Abstract
The prominent radio quasar PKS 2215+020 (J2217+0220) was once labelled as a new laboratory for core–jet physics at redshift z=3.572 because of its exceptionally extended jet structure traceable with very long baseline interferometric (VLBI) observations up to a ∼600 pc projected [...] Read more.
The prominent radio quasar PKS 2215+020 (J2217+0220) was once labelled as a new laboratory for core–jet physics at redshift z=3.572 because of its exceptionally extended jet structure traceable with very long baseline interferometric (VLBI) observations up to a ∼600 pc projected distance from the compact core and a hint of an arcsec-scale radio and an X-ray jet. While the presence of an X-ray jet could not be confirmed later, this active galactic nucleus is still unique at high redshift with its long VLBI jet. Here, we analyse archival multi-epoch VLBI imaging data at five frequency bands from 1.7 to 15.4 GHz covering a period of more than 25 years from 1995 to 2020. We constrain apparent proper motions of jet components in PKS 2215+020 for the first time. Brightness distribution modeling at 8 GHz reveals a nearly 0.02 mas yr−1 proper motion (moderately superluminal with apparently two times the speed of light), and provides δ=11.5 for the Doppler-boosting factor in the inner relativistic jet that is inclined within 2 to the line of sight and has a Γ=6 bulk Lorentz factor. These values qualify PKS 2215+020 as a blazar, with rather typical jet properties in a small sample of only about 20 objects at z>3.5 that have similar measurements to date. According to the 2-GHz VLBI data, the diffuse and extended outer emission feature at ∼60 mas from the core, probably a place where the jet interacts with and decelerated by the ambient galactic medium, is consistent with being stationary, albeit slow motion cannot be excluded based on the presently available data. Full article
(This article belongs to the Section Galaxies and Clusters)
Show Figures

Figure 1

Figure 1
<p>Selected naturally weighted VLBI images of PKS 2215+020 at six different frequencies, <math display="inline"><semantics> <mrow> <mn>1.7</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mn>2.3</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mn>4.4</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mn>7.4</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mn>8.7</mn> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <mn>15.4</mn> </mrow> </semantics></math> GHz. Data sets with relatively long on-source integration and observing epochs close to each other in time (2015–2020) are chosen (see <a href="#universe-10-00097-t001" class="html-table">Table 1</a>). The field of view in the left panels is set to be similar to that of the historical <math display="inline"><semantics> <mrow> <mn>1.6</mn> </mrow> </semantics></math> GHz VSOP image [<a href="#B39-universe-10-00097" class="html-bibr">39</a>] to facilitate easy comparison. In the right panel, the <math display="inline"><semantics> <mrow> <mn>20</mn> <mspace width="0.166667em"/> <mi>mas</mi> <mo>×</mo> <mn>20</mn> <mspace width="0.166667em"/> <mi>mas</mi> </mrow> </semantics></math> field contains the core and the innermost jet section only. The images are centred on their brightness peak. The intensities are shown according to the colour scales on the right-hand side of the panels, as well as with the contours that start at around <math display="inline"><semantics> <mrow> <mo>±</mo> <mn>3</mn> <mi>σ</mi> </mrow> </semantics></math> rms image noise, and the positive levels increase by a factor of 2. Negative contours are marked with dashed lines. The lowest contour level, peak intensity, and the elliptical Gaussian restoring beam parameters are given in <a href="#universe-10-00097-t002" class="html-table">Table 2</a>. The restoring beams (FWHM) are also shown in the lower left corners. We note the gradual disappearance of the complex extended steep-spectrum feature towards the east at ∼60 mas that becomes resolved out as the frequency increases, and the central region being resolved into the flat-spectrum core and the innermost jet components at and above ∼7 GHz.</p>
Full article ">Figure 1 Cont.
<p>Selected naturally weighted VLBI images of PKS 2215+020 at six different frequencies, <math display="inline"><semantics> <mrow> <mn>1.7</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mn>2.3</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mn>4.4</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mn>7.4</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mn>8.7</mn> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <mn>15.4</mn> </mrow> </semantics></math> GHz. Data sets with relatively long on-source integration and observing epochs close to each other in time (2015–2020) are chosen (see <a href="#universe-10-00097-t001" class="html-table">Table 1</a>). The field of view in the left panels is set to be similar to that of the historical <math display="inline"><semantics> <mrow> <mn>1.6</mn> </mrow> </semantics></math> GHz VSOP image [<a href="#B39-universe-10-00097" class="html-bibr">39</a>] to facilitate easy comparison. In the right panel, the <math display="inline"><semantics> <mrow> <mn>20</mn> <mspace width="0.166667em"/> <mi>mas</mi> <mo>×</mo> <mn>20</mn> <mspace width="0.166667em"/> <mi>mas</mi> </mrow> </semantics></math> field contains the core and the innermost jet section only. The images are centred on their brightness peak. The intensities are shown according to the colour scales on the right-hand side of the panels, as well as with the contours that start at around <math display="inline"><semantics> <mrow> <mo>±</mo> <mn>3</mn> <mi>σ</mi> </mrow> </semantics></math> rms image noise, and the positive levels increase by a factor of 2. Negative contours are marked with dashed lines. The lowest contour level, peak intensity, and the elliptical Gaussian restoring beam parameters are given in <a href="#universe-10-00097-t002" class="html-table">Table 2</a>. The restoring beams (FWHM) are also shown in the lower left corners. We note the gradual disappearance of the complex extended steep-spectrum feature towards the east at ∼60 mas that becomes resolved out as the frequency increases, and the central region being resolved into the flat-spectrum core and the innermost jet components at and above ∼7 GHz.</p>
Full article ">Figure 2
<p>The core–jet distance as a function of time in PKS 2215+020 based on 10 epochs of VLBI observations and model fitting at 8 GHz. The slope of the fitted line produces apparent jet component proper motion <math display="inline"><semantics> <mrow> <mi>μ</mi> <mo>=</mo> <mo>(</mo> <mn>0.0188</mn> <mo>±</mo> <mn>0.0005</mn> <mo>)</mo> </mrow> </semantics></math> mas yr<sup>−1</sup>.</p>
Full article ">
13 pages, 361 KiB  
Article
Superluminal Motion and Jet Parameters in the Gamma-ray-Emitting Narrow-Line Seyfert 1 Galaxy TXS 1206+549
by Bettina Kozák, Sándor Frey and Krisztina Éva Gabányi
Galaxies 2024, 12(1), 8; https://doi.org/10.3390/galaxies12010008 - 17 Feb 2024
Cited by 1 | Viewed by 2154
Abstract
Narrow-line Seyfert 1 (NLS1) galaxies are a peculiar subclass of active galactic nuclei (AGN). Among them, TXS 1206+549 belongs to a small group of radio-loud and γ-ray-emitting NLS1 galaxies. We focus on the radio properties of this galaxy by analysing archival, high-resolution, [...] Read more.
Narrow-line Seyfert 1 (NLS1) galaxies are a peculiar subclass of active galactic nuclei (AGN). Among them, TXS 1206+549 belongs to a small group of radio-loud and γ-ray-emitting NLS1 galaxies. We focus on the radio properties of this galaxy by analysing archival, high-resolution, very long baseline interferometry (VLBI) imaging observations taken at 8 GHz frequency in six epochs between 1994 and 2018. Using the milliarcsecond-scale radio structure, we can resolve a core and a jet component whose angular separation increases by (0.055±0.006) mas yr−1. This corresponds to an apparent superluminal jet component motion of (3.5±0.4)c. From the core brightness temperature and the jet component proper motion, we determine the characteristic Doppler-boosting factor, the bulk Lorentz factor, and the jet viewing angle. We find no compelling evidence for a very closely aligned blazar-type jet. The parameters for TXS 1206+549 resemble those of radio-loud quasar jets with a moderate Lorentz factor (Γ4) and ϑ24 inclination to the line of sight. Full article
Show Figures

Figure 1

Figure 1
<p>Naturally weighted 8.7-GHz VLBA images of TXS 1206+549 from 30 July 2018, deconvolved with <span class="html-small-caps">clean</span> components (<b>left</b>) and a model composed of two Gaussian components whose positions and FWHM diameters are indicated with cross-hairs in yellow circles (<b>right</b>). In both images, the peak intensity is 167 mJy beam<sup>−1</sup>, the contour levels start at <math display="inline"><semantics> <mrow> <mo>±</mo> <mn>0.6</mn> </mrow> </semantics></math> mJy beam<sup>−1</sup> (∼<math display="inline"><semantics> <mrow> <mn>3</mn> <mi>σ</mi> </mrow> </semantics></math> image noise), and further positive contours increase by a factor of 2. The elliptical Gaussian restoring beam size is <math display="inline"><semantics> <mrow> <mn>1.69</mn> <mspace width="0.166667em"/> <mi>mas</mi> <mo>×</mo> <mn>0.92</mn> <mspace width="0.166667em"/> <mi>mas</mi> </mrow> </semantics></math> (FWHM), the major axis position angle is <math display="inline"><semantics> <mrow> <msup> <mn>7.2</mn> <mo>∘</mo> </msup> </mrow> </semantics></math> (measured from north through east), as indicated in the bottom left corner of the images.</p>
Full article ">Figure 2
<p>The core–jet separation for the J2 component in TXS 1206+549 as a function of time, based on VLBI observations and model fitting at 8 GHz in five epochs covering a period of about 7 yr. Linear regression indicates <math display="inline"><semantics> <mrow> <mi>μ</mi> <mo>=</mo> <mo>(</mo> <mn>0.055</mn> <mo>±</mo> <mn>0.006</mn> <mo>)</mo> </mrow> </semantics></math> mas yr<sup>−1</sup> apparent proper motion.</p>
Full article ">
Back to TopTop