Nothing Special   »   [go: up one dir, main page]

You seem to have javascript disabled. Please note that many of the page functionalities won't work as expected without javascript enabled.
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,037)

Search Parameters:
Keywords = Caputo fractional derivative

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 326 KiB  
Article
Observer Design for Fractional-Order Polynomial Fuzzy Systems Depending on a Parameter
by Hamdi Gassara, Mohamed Rhaima, Lassaad Mchiri and Abdellatif Ben Makhlouf
Fractal Fract. 2024, 8(12), 693; https://doi.org/10.3390/fractalfract8120693 - 25 Nov 2024
Viewed by 149
Abstract
For fractional-order systems, observer design is remarkable for the estimation of unavailable states from measurable outputs. In addition, the nonlinear dynamics and the presence of parameters that can vary over different operating conditions or time, such as load or temperature, increase the complexity [...] Read more.
For fractional-order systems, observer design is remarkable for the estimation of unavailable states from measurable outputs. In addition, the nonlinear dynamics and the presence of parameters that can vary over different operating conditions or time, such as load or temperature, increase the complexity of the observer design. In view of the aforementioned factors, this paper investigates the observer design problem for a class of Fractional-Order Polynomial Fuzzy Systems (FORPSs) depending on a parameter. The Caputo–Hadamard derivative is considered in this study. First, we prove the practical Mittag-Leffler stability, using the Lyapunov methods, for the general case of Caputo–Hadamard Fractional-Order Systems (CHFOSs) depending on a parameter. Secondly, based on this stability theory, we design an observer for the considered class of FORPSs. The state estimation error is ensured to be practically generalized Mittag-Leffler stable by solving Sum Of Squares (SOSs) conditions using the developed SOSTOOLS. Full article
Show Figures

Figure 1

Figure 1
<p>Time evolution of <math display="inline"><semantics> <mrow> <mi>x</mi> <mo>(</mo> <mi>ζ</mi> <mo>)</mo> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mover accent="true"> <mi>x</mi> <mo>^</mo> </mover> <mrow> <mo>(</mo> <mi>ζ</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> for the initial conditions <math display="inline"><semantics> <mrow> <mi>x</mi> <mrow> <mo>(</mo> <mi>ζ</mi> <mo>)</mo> </mrow> <mo>=</mo> <msup> <mfenced open="[" close="]"> <mtable> <mtr> <mtd> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </mtd> <mtd> <mn>4</mn> </mtd> </mtr> </mtable> </mfenced> <mi>T</mi> </msup> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mover accent="true"> <mi>x</mi> <mo>^</mo> </mover> <mrow> <mo>(</mo> <mi>ζ</mi> <mo>)</mo> </mrow> <mo>=</mo> <msup> <mfenced open="[" close="]"> <mtable> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> </mfenced> <mi>T</mi> </msup> </mrow> </semantics></math>.</p>
Full article ">Figure 2
<p>Time evolution of <math display="inline"><semantics> <mrow> <mi>x</mi> <mo>(</mo> <mi>ζ</mi> <mo>)</mo> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mover accent="true"> <mi>x</mi> <mo>^</mo> </mover> <mrow> <mo>(</mo> <mi>ζ</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> for the initial conditions <math display="inline"><semantics> <mrow> <mi>x</mi> <mrow> <mo>(</mo> <mi>ζ</mi> <mo>)</mo> </mrow> <mo>=</mo> <msup> <mfenced open="[" close="]"> <mtable> <mtr> <mtd> <mrow> <mo>−</mo> <mn>9</mn> </mrow> </mtd> <mtd> <mrow> <mo>−</mo> <mn>2</mn> </mrow> </mtd> </mtr> </mtable> </mfenced> <mi>T</mi> </msup> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mover accent="true"> <mi>x</mi> <mo>^</mo> </mover> <mrow> <mo>(</mo> <mi>ζ</mi> <mo>)</mo> </mrow> <mo>=</mo> <msup> <mfenced open="[" close="]"> <mtable> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> </mfenced> <mi>T</mi> </msup> </mrow> </semantics></math>.</p>
Full article ">
25 pages, 1009 KiB  
Article
Solution for Time-Fractional Coupled Burgers Equations by Generalized-Laplace Transform Methods
by Hassan Eltayeb and Said Mesloub
Fractal Fract. 2024, 8(12), 692; https://doi.org/10.3390/fractalfract8120692 - 25 Nov 2024
Viewed by 190
Abstract
In this work, nonlinear time-fractional coupled Burgers equations are solved utilizing a computational method, which is called the double and triple generalized-Laplace transform and decomposition method. We discuss the proof of triple generalized-Laplace transform for a Caputo fractional derivative. We have given four [...] Read more.
In this work, nonlinear time-fractional coupled Burgers equations are solved utilizing a computational method, which is called the double and triple generalized-Laplace transform and decomposition method. We discuss the proof of triple generalized-Laplace transform for a Caputo fractional derivative. We have given four examples to show the precision and adequacy of the suggested approach. The results show that this method is easy and accurate when compared to the A domain decomposition method (ADM), homotopy perturbation method (HPM), and generalized differential transform method (GDTM). Finally, we have sketched the graphics for all these examples. Full article
Show Figures

Figure 1

Figure 1
<p>Comparison between exact and numerical solutions.</p>
Full article ">Figure 2
<p>The surface of the function <math display="inline"><semantics> <mrow> <mi>ω</mi> <mfenced separators="" open="(" close=")"> <mi>x</mi> <mo>,</mo> <mi>t</mi> </mfenced> </mrow> </semantics></math>.</p>
Full article ">Figure 3
<p>Comparison between exact and numerical solutions.</p>
Full article ">Figure 4
<p>The surface of the function <math display="inline"><semantics> <mrow> <mi>ω</mi> <mfenced separators="" open="(" close=")"> <mi>x</mi> <mo>,</mo> <mi>t</mi> </mfenced> <mo>=</mo> <mi>u</mi> <mfenced separators="" open="(" close=")"> <mi>x</mi> <mo>,</mo> <mi>t</mi> </mfenced> </mrow> </semantics></math>.</p>
Full article ">Figure 5
<p>Comparison between exact and numerical solutions.</p>
Full article ">Figure 6
<p>The surface of the function <math display="inline"><semantics> <mrow> <mi>ψ</mi> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>t</mi> <mo>)</mo> </mrow> </semantics></math>.</p>
Full article ">Figure 7
<p>Comparison between exact and numerical solutions.</p>
Full article ">Figure 8
<p>The surface of the function <math display="inline"><semantics> <mrow> <mi>ψ</mi> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>t</mi> <mo>)</mo> </mrow> </semantics></math>.</p>
Full article ">
21 pages, 7027 KiB  
Article
AVR Fractional-Order Controller Based on Caputo–Fabrizio Fractional Derivatives and Integral Operators
by Andriy Lozynskyy, Jacek Kozyra, Andriy Kutsyk, Zbigniew Łukasik, Aldona Kuśmińska-Fijałkowska, Lidiia Kasha and Andriy Lishchuk
Energies 2024, 17(23), 5913; https://doi.org/10.3390/en17235913 - 25 Nov 2024
Viewed by 210
Abstract
The application of a fractional-order controller (FOC) using the Caputo–Fabrizio representation in the automatic voltage regulation (AVR) system of a synchronous generator is shown in this paper. The mathematical model of the system is created and the adequacy of the model is confirmed. [...] Read more.
The application of a fractional-order controller (FOC) using the Caputo–Fabrizio representation in the automatic voltage regulation (AVR) system of a synchronous generator is shown in this paper. The mathematical model of the system is created and the adequacy of the model is confirmed. The efficiency of the proposed regulator in different operating regimes is demonstrated. In particular, the proposed controller improves voltage regulation in a wide range of changes in the coordinates that characterize the power system operation mode, and it increases the system’s robustness to both uncertainties and nonlinearities that often occur in power systems. The synthesized fractional-order regulator provides higher response and control accuracy compared to traditional regulators used in automatic voltage regulation (AVR) systems. Full article
(This article belongs to the Section F3: Power Electronics)
Show Figures

Figure 1

Figure 1
<p>Functional scheme of the examined system.</p>
Full article ">Figure 2
<p>Calculation scheme of the synchronous machine.</p>
Full article ">Figure 3
<p>Calculation scheme of the power system.</p>
Full article ">Figure 4
<p>Structural scheme of exciter controller.</p>
Full article ">Figure 5
<p>Structural scheme of steam turbine model.</p>
Full article ">Figure 6
<p>Simulation (<b>a</b>), experimental (<b>b</b>) results of the field current (i<sub>f</sub>) and terminal voltage of the generator (u<sub>g</sub>, instantaneous value) for the initial excitation of the generator.</p>
Full article ">Figure 7
<p>Simulation (<b>a</b>), experimental (<b>b</b>) results of the field current (i<sub>f</sub>) and terminal voltage of the generator (u<sub>g</sub>, instantaneous value) for the de-excitation of the generator.</p>
Full article ">Figure 8
<p>Simulation (<b>a</b>), experimental (<b>b</b>) results of the stator current (i<sub>g</sub>), field current (i<sub>f</sub>), and terminal voltage of the generator (u<sub>g</sub>, instantaneous value) for short-circuit in power line.</p>
Full article ">Figure 9
<p>Simulation results for initial excitation in the system with rate feedback on generator excitation voltage.</p>
Full article ">Figure 10
<p>Simulation results for initial excitation in the system with P-voltage controller and lead–lag block in the forward path.</p>
Full article ">Figure 11
<p>Simulation results for initial excitation in the system with proposed fractional-order controller.</p>
Full article ">Figure 12
<p>Simulation results for two-machine system under loading variations: active (black) and reactive (blue)-SM1 (<b>a</b>), active (black) and reactive (blue)-SM2 (<b>b</b>), SM1′s turbine power (<b>c</b>) and frequency at output of SM1 (<b>d</b>).</p>
Full article ">Figure 13
<p>Simulation results for two-machine system under loading variation: SM1′s PSS output (<b>a</b>), SM1’s damper winding current on d- (black) and q- (blue) axis (<b>b</b>).</p>
Full article ">Figure 14
<p>Simulation results for two-machine system under loading variations: field current of SM1 (<b>a</b>), effective value of SM1′s stator phase voltage (<b>b</b>).</p>
Full article ">Figure 15
<p>Simulation results for two-machine system under loading variations: instantaneous value of stator phase current of SM1 (<b>a</b>) and SM2 (<b>b</b>).</p>
Full article ">
15 pages, 6045 KiB  
Article
Numerical Simulation Based on Interpolation Technique for Multi-Term Time-Fractional Convection–Diffusion Equations
by Xindong Zhang, Yan Chen, Leilei Wei and Sunil Kumar
Fractal Fract. 2024, 8(12), 687; https://doi.org/10.3390/fractalfract8120687 - 23 Nov 2024
Viewed by 165
Abstract
This paper introduces a novel approach for solving multi-term time-fractional convection–diffusion equations with the fractional derivatives in the Caputo sense. The proposed highly accurate numerical algorithm is based on the barycentric rational interpolation collocation method (BRICM) in conjunction with the Gauss–Legendre quadrature rule. [...] Read more.
This paper introduces a novel approach for solving multi-term time-fractional convection–diffusion equations with the fractional derivatives in the Caputo sense. The proposed highly accurate numerical algorithm is based on the barycentric rational interpolation collocation method (BRICM) in conjunction with the Gauss–Legendre quadrature rule. The discrete scheme constructed in this paper can achieve high computational accuracy with very few interval partitioning points. To verify the effectiveness of the present discrete scheme, some numerical examples are presented and are compared with the other existing method. Numerical results demonstrate the effectiveness of the method and the correctness of the theoretical analysis. Full article
(This article belongs to the Section Numerical and Computational Methods)
Show Figures

Figure 1

Figure 1
<p>Results of Example 2 with <math display="inline"><semantics> <mrow> <mi>β</mi> <mo>=</mo> <mn>0.2</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msub> <mi>β</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0.1</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 2
<p>Results of Example 2 with <math display="inline"><semantics> <mrow> <mi>β</mi> <mo>=</mo> <mn>0.8</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msub> <mi>β</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0.4</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 3
<p>Results of Example 2 with <math display="inline"><semantics> <mrow> <mi>β</mi> <mo>=</mo> <mn>0.9</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msub> <mi>β</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0.5</mn> </mrow> </semantics></math>. (<b>a</b>) Numerical solution; (<b>b</b>) Numerical solution (special symbols) and exact solution (solid line) at various time levels.</p>
Full article ">Figure 4
<p>Distribution of solution area and solution nodes.</p>
Full article ">Figure 5
<p>Contour plots of absolute error for Example 4 at different <math display="inline"><semantics> <mi>β</mi> </semantics></math>.</p>
Full article ">
31 pages, 11738 KiB  
Article
Computational Evaluation of Heat and Mass Transfer in Cylindrical Flow of Unsteady Fractional Maxwell Fluid Using Backpropagation Neural Networks and LMS
by Waqar Ul Hassan, Khurram Shabbir, Muhammad Imran Khan and Liliana Guran
Mathematics 2024, 12(23), 3654; https://doi.org/10.3390/math12233654 - 21 Nov 2024
Viewed by 417
Abstract
Fractional calculus plays a pivotal role in modern scientific and engineering disciplines, providing more accurate solutions for complex fluid dynamics phenomena due to its non-locality and inherent memory characteristics. In this study, Caputo’s time fractional derivative operator approach is employed for heat and [...] Read more.
Fractional calculus plays a pivotal role in modern scientific and engineering disciplines, providing more accurate solutions for complex fluid dynamics phenomena due to its non-locality and inherent memory characteristics. In this study, Caputo’s time fractional derivative operator approach is employed for heat and mass transfer modeling in unsteady Maxwell fluid within a cylinder. Governing equations within a cylinder involve a system of coupled, nonlinear fractional partial differential equations (PDEs). A machine learning technique based on the Levenberg–Marquardt scheme with a backpropagation neural network (LMS-BPNN) is employed to evaluate the predicted solution of governing flow equations up to the required level of accuracy. The numerical data sheet is obtained using series solution approach Homotopy perturbation methods. The data sheet is divided into three portions i.e., 80% is used for training, 10% for validation, and 10% for testing. The mean-squared error (MSE), error histograms, correlation coefficient (R), and function fitting are computed to examine the effectiveness and consistency of the proposed machine learning technique i.e., LMS-BPNN. Moreover, additional error metrics, such as R-squared, residual plots, and confidence intervals, are incorporated to provide a more comprehensive evaluation of model accuracy. The comparison of predicted solutions with LMS-BPNN and an approximate series solution are compared and the goodness of fit is found. The momentum boundary layer became higher and higher as there was an enhancement in the value of Caputo, fractional order α = 0.5 to α = 0.9. Higher thermal boundary layer (TBL) profiles were observed with the rising value of the heat source. Full article
(This article belongs to the Special Issue Computational Fluid Dynamics II)
Show Figures

Figure 1

Figure 1
<p>Flow geometry.</p>
Full article ">Figure 2
<p>Flow model ML.</p>
Full article ">Figure 3
<p>Representation of ANN.</p>
Full article ">Figure 4
<p>The mean squared error (MSE) for different scenarios of case 1 with LMS-BPNN for the proposed fractional Maxwell fluid model within a cylinder.</p>
Full article ">Figure 4 Cont.
<p>The mean squared error (MSE) for different scenarios of case 1 with LMS-BPNN for the proposed fractional Maxwell fluid model within a cylinder.</p>
Full article ">Figure 5
<p>Error histograms for different scenarios of case 1 with LMS-BPNN for the proposed fractional Maxwell fluid model within a cylinder.</p>
Full article ">Figure 5 Cont.
<p>Error histograms for different scenarios of case 1 with LMS-BPNN for the proposed fractional Maxwell fluid model within a cylinder.</p>
Full article ">Figure 6
<p>Regression line analysis for different scenarios of case 1 with LMS-BPNN for the proposed fractional Maxwell fluid model within a cylinder.</p>
Full article ">Figure 6 Cont.
<p>Regression line analysis for different scenarios of case 1 with LMS-BPNN for the proposed fractional Maxwell fluid model within a cylinder.</p>
Full article ">Figure 7
<p>Function fits for different scenarios of case 1 with LMS-BPNN for the proposed fractional Maxwell fluid model within a cylinder.</p>
Full article ">Figure 7 Cont.
<p>Function fits for different scenarios of case 1 with LMS-BPNN for the proposed fractional Maxwell fluid model within a cylinder.</p>
Full article ">Figure 8
<p>Residual fit for different situations of case 1 with ANN for the proposed fractional Maxwell fluid model within a cylinder.</p>
Full article ">Figure 8 Cont.
<p>Residual fit for different situations of case 1 with ANN for the proposed fractional Maxwell fluid model within a cylinder.</p>
Full article ">Figure 9
<p>Variations in <math display="inline"><semantics> <mrow> <mi>α</mi> </mrow> </semantics></math> for velocity and absolute error.</p>
Full article ">Figure 10
<p>Variations in <math display="inline"><semantics> <mrow> <mi>t</mi> </mrow> </semantics></math> for velocity and absolute error.</p>
Full article ">Figure 11
<p>Variations in <math display="inline"><semantics> <mrow> <mi>H</mi> <mi>a</mi> </mrow> </semantics></math> for velocity and absolute error.</p>
Full article ">Figure 12
<p>Variations in <math display="inline"><semantics> <mrow> <mi>β</mi> </mrow> </semantics></math> for temperature and absolute error.</p>
Full article ">Figure 13
<p>Variations in <math display="inline"><semantics> <mrow> <mi>R</mi> <mi>a</mi> </mrow> </semantics></math> for temperature and absolute error.</p>
Full article ">Figure 14
<p>Variations in <math display="inline"><semantics> <mrow> <mi>K</mi> <mi>c</mi> </mrow> </semantics></math> for concentration and absolute error.</p>
Full article ">Figure 15
<p>Variations in <math display="inline"><semantics> <mrow> <mi>S</mi> <mi>c</mi> </mrow> </semantics></math> for concentration and absolute error.</p>
Full article ">Figure 16
<p>Residual plots for u max: (<b>a</b>) Normal probability plot, (<b>b</b>) Histogram, (<b>c</b>) Observation order.</p>
Full article ">Figure 17
<p>Sensitivity of <math display="inline"><semantics> <mrow> <mi>u</mi> <mtext> </mtext> <mi>m</mi> <mi>a</mi> <mi>x</mi> </mrow> </semantics></math> for (<b>a</b>) <math display="inline"><semantics> <mrow> <mi>A</mi> <mo>=</mo> <mn>0</mn> <mo>,</mo> <mo> </mo> <mi>B</mi> <mo>=</mo> <mo>−</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <mi>C</mi> <mo>=</mo> <mo>−</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <mn>0</mn> <mo>,</mo> <mo> </mo> <mn>1</mn> <mo>;</mo> </mrow> </semantics></math> (<b>b</b>) <math display="inline"><semantics> <mrow> <mi>A</mi> <mo>=</mo> <mn>0</mn> <mo>,</mo> <mo> </mo> <mi>B</mi> <mo>=</mo> <mn>0</mn> <mo>,</mo> <mo> </mo> <mi>C</mi> <mo>=</mo> <mo>−</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <mn>0</mn> <mo>,</mo> <mo> </mo> <mn>1</mn> <mo>;</mo> </mrow> </semantics></math> (<b>c</b>) <math display="inline"><semantics> <mrow> <mi>A</mi> <mo>=</mo> <mn>0</mn> <mo>,</mo> <mo> </mo> <mi>B</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <mi>C</mi> <mo>=</mo> <mo>−</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <mn>0</mn> <mo>,</mo> <mo> </mo> <mn>1</mn> </mrow> </semantics></math>.</p>
Full article ">
29 pages, 401 KiB  
Article
Equivalence Between Fractional Differential Problems and Their Corresponding Integral Forms with the Pettis Integral
by Mieczysław Cichoń, Wafa Shammakh, Kinga Cichoń and Hussein A. H. Salem
Mathematics 2024, 12(23), 3642; https://doi.org/10.3390/math12233642 - 21 Nov 2024
Viewed by 310
Abstract
The problem of equivalence between differential and integral problems is absolutely crucial when applying solution methods based on operators and their properties in function spaces. In this paper, we complement the solution of this important problem by considering the case of general derivatives [...] Read more.
The problem of equivalence between differential and integral problems is absolutely crucial when applying solution methods based on operators and their properties in function spaces. In this paper, we complement the solution of this important problem by considering the case of general derivatives and integrals of fractional order for vector functions for weak topology. Even if a Caputo differential fractional order problem has a right-hand side that is weakly continuous, the equivalence between the differential and integral forms may be affected. In this paper, we present a complete solution to this problem using fractional order Pettis integrals and suitably defined pseudo-derivatives, taking care to construct appropriate Hölder-type spaces on which the operators under study are mutually inverse. In this paper, we prove, in a number of cases, the equivalence of differential and integral problems in Hölder spaces and, by means of appropriate counter-examples, investigate cases where this property of the problems is absent. Full article
(This article belongs to the Special Issue Fractional Calculus and Mathematical Applications, 2nd Edition)
27 pages, 383 KiB  
Article
Qualitative Analysis of Stochastic Caputo–Katugampola Fractional Differential Equations
by Zareen A. Khan, Muhammad Imran Liaqat, Ali Akgül and J. Alberto Conejero
Axioms 2024, 13(11), 808; https://doi.org/10.3390/axioms13110808 - 20 Nov 2024
Viewed by 274
Abstract
Stochastic pantograph fractional differential equations (SPFDEs) combine three intricate components: stochastic processes, fractional calculus, and pantograph terms. These equations are important because they allow us to model and analyze systems with complex behaviors that traditional differential equations cannot capture. In this study, we [...] Read more.
Stochastic pantograph fractional differential equations (SPFDEs) combine three intricate components: stochastic processes, fractional calculus, and pantograph terms. These equations are important because they allow us to model and analyze systems with complex behaviors that traditional differential equations cannot capture. In this study, we achieve significant results for these equations within the context of Caputo–Katugampola derivatives. First, we establish the existence and uniqueness of solutions by employing the contraction mapping principle with a suitably weighted norm and demonstrate that the solutions continuously depend on both the initial values and the fractional exponent. The second part examines the regularity concerning time. Third, we illustrate the results of the averaging principle using techniques involving inequalities and interval translations. We generalize these results in two ways: first, by establishing them in the sense of the Caputo–Katugampola derivative. Applying condition β=1, we derive the results within the framework of the Caputo derivative, while condition β0+ yields them in the context of the Caputo–Hadamard derivative. Second, we establish them in Lp space, thereby generalizing the case for p=2. Full article
(This article belongs to the Special Issue Advances in Mathematical Modeling and Related Topics)
21 pages, 655 KiB  
Article
Approximate Solution of a Kind of Time-Fractional Evolution Equations Based on Fast L1 Formula and Barycentric Lagrange Interpolation
by Ting Liu, Hongyan Liu and Yanying Ma
Fractal Fract. 2024, 8(11), 675; https://doi.org/10.3390/fractalfract8110675 - 20 Nov 2024
Viewed by 336
Abstract
In this paper, an effective numerical approach that combines the fast L1 formula and barycentric Lagrange interpolation is proposed for solving a kind of time-fractional evolution equations. This type of equation contains a nonlocal term involving the time variable, resulting in extremely high [...] Read more.
In this paper, an effective numerical approach that combines the fast L1 formula and barycentric Lagrange interpolation is proposed for solving a kind of time-fractional evolution equations. This type of equation contains a nonlocal term involving the time variable, resulting in extremely high computational complexity of numerical discrete formats in general. To reduce the computational burden, the fast L1 technique based on the L1 formula and sum-of-exponentials approximation is employed to evaluate the Caputo time-fractional derivative. Meanwhile, a fast and unconditionally stable time semi-discrete format is obtained. Subsequently, we utilize the barycentric Lagrange interpolation and its differential matrices to achieve spatial discretizations so as to deduce fully discrete formats. Then error estimates of related fully discrete formats are explored. Eventually, some numerical experiments are simulated to testify to the effective and fast behavior of the presented method. Full article
Show Figures

Figure 1

Figure 1
<p>CPU time of L1 and fast L1 formulas with <math display="inline"><semantics> <mrow> <mi>M</mi> <mo>=</mo> <mn>20</mn> </mrow> </semantics></math> in Example 1.</p>
Full article ">Figure 2
<p>CPU time of L1 and fast L1 formulas with <math display="inline"><semantics> <mrow> <mi>M</mi> <mo>=</mo> <mn>20</mn> </mrow> </semantics></math> in Example 2.</p>
Full article ">Figure 3
<p>CPU time of L1 and fast L1 formulas with <math display="inline"><semantics> <mrow> <mi>M</mi> <mo>=</mo> <mn>20</mn> </mrow> </semantics></math> in Example 3.</p>
Full article ">
14 pages, 4897 KiB  
Article
Novel Dynamic Behaviors in Fractional Chaotic Systems: Numerical Simulations with Caputo Derivatives
by Mohamed A. Abdoon, Diaa Eldin Elgezouli, Borhen Halouani, Amr M. Y. Abdelaty, Ibrahim S. Elshazly, Praveen Ailawalia and Alaa H. El-Qadeem
Axioms 2024, 13(11), 791; https://doi.org/10.3390/axioms13110791 - 16 Nov 2024
Viewed by 518
Abstract
Over the last several years, there has been a considerable improvement in the possible methods for solving fractional-order chaotic systems; however, achieving high accuracy remains a challenge. This work proposes a new precise numerical technique for fractional-order chaotic systems. Through simulations, we obtain [...] Read more.
Over the last several years, there has been a considerable improvement in the possible methods for solving fractional-order chaotic systems; however, achieving high accuracy remains a challenge. This work proposes a new precise numerical technique for fractional-order chaotic systems. Through simulations, we obtain new types of complex and previously undiscussed dynamic behaviors.These phenomena, not recognized in prior numerical results or theoretical estimations, underscore the unique dynamics present in fractional systems. We also study the effects of the fractional parameters β1, β2, and β3 on the system’s behavior, comparing them to integer-order derivatives. It has been demonstrated via the findings that the suggested technique is consistent with conventional numerical methods for integer-order systems while simultaneously providing an even higher level of precision. It is possible to demonstrate the efficacy and precision of this technique through simulations, which demonstrates that this method is useful for the investigation of complicated chaotic models. Full article
(This article belongs to the Special Issue Fractional Calculus and the Applied Analysis)
Show Figures

Figure 1

Figure 1
<p>Time series plots of the systems (1) under parameters <math display="inline"><semantics> <mrow> <mi>a</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>b</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>c</mi> <mo>=</mo> <mn>2</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>d</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math> . Left: <math display="inline"><semantics> <mrow> <mi>β</mi> <mo>=</mo> <mo>[</mo> <mn>1.1</mn> <mo>,</mo> <mn>1</mn> <mo>,</mo> <mn>1</mn> <mo>]</mo> </mrow> </semantics></math>, right: <math display="inline"><semantics> <mrow> <mi>β</mi> <mo>=</mo> <mo>[</mo> <mn>1</mn> <mo>,</mo> <mn>1</mn> <mo>,</mo> <mn>1</mn> <mo>]</mo> </mrow> </semantics></math>.</p>
Full article ">Figure 2
<p>Time series plots of the systems (1) under different parameters. Left: <math display="inline"><semantics> <mrow> <mi>β</mi> <mo>=</mo> <mo>[</mo> <mn>2.1</mn> <mo>,</mo> <mn>1.18</mn> <mo>,</mo> <mn>1.1</mn> <mo>]</mo> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>a</mi> <mo>=</mo> <mn>2</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>b</mi> <mo>=</mo> <mn>3</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>c</mi> <mo>=</mo> <mn>1.19</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>d</mi> <mo>=</mo> <mn>19</mn> </mrow> </semantics></math>. Right: <math display="inline"><semantics> <mrow> <mi>β</mi> <mo>=</mo> <mo>[</mo> <mn>1.2</mn> <mo>,</mo> <mn>2.02</mn> <mo>,</mo> <mn>2.1</mn> <mo>]</mo> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>a</mi> <mo>=</mo> <mn>2</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>b</mi> <mo>=</mo> <mn>3</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>c</mi> <mo>=</mo> <mn>2</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>d</mi> <mo>=</mo> <mn>18</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 3
<p>Time series plots of the systems (1) under different parameters. Left: <math display="inline"><semantics> <mrow> <mi>β</mi> <mo>=</mo> <mo>[</mo> <mn>2.1</mn> <mo>,</mo> <mn>1.18</mn> <mo>,</mo> <mn>0.95</mn> <mo>]</mo> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>a</mi> <mo>=</mo> <mn>2</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>b</mi> <mo>=</mo> <mn>10</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>c</mi> <mo>=</mo> <mn>2</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>d</mi> <mo>=</mo> <mn>15</mn> </mrow> </semantics></math>. Right: <math display="inline"><semantics> <mrow> <mi>β</mi> <mo>=</mo> <mo>[</mo> <mn>2.12</mn> <mo>,</mo> <mn>1.18</mn> <mo>,</mo> <mn>1.1</mn> <mo>]</mo> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>a</mi> <mo>=</mo> <mn>2.12</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>b</mi> <mo>=</mo> <mn>10</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>c</mi> <mo>=</mo> <mn>1.9</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>d</mi> <mo>=</mo> <mn>30</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 4
<p>Numerical simulations for the systems (1) with parameters <math display="inline"><semantics> <mrow> <mi>β</mi> <mo>=</mo> <mo>[</mo> <mn>0.95</mn> <mo>,</mo> <mn>0.93</mn> <mo>,</mo> <mn>0.98</mn> <mo>]</mo> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>a</mi> <mo>=</mo> <mn>2</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>b</mi> <mo>=</mo> <mn>7</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>c</mi> <mo>=</mo> <mn>2</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>d</mi> <mo>=</mo> <mn>10</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 5
<p>Numerical simulations for the systems (1) with varied parameters: <math display="inline"><semantics> <mrow> <mi>β</mi> <mo>=</mo> <mo>[</mo> <mn>0.95</mn> <mo>,</mo> <mn>1.03</mn> <mo>,</mo> <mn>1.08</mn> <mo>]</mo> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>a</mi> <mo>=</mo> <mn>3</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>b</mi> <mo>=</mo> <mn>10</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>c</mi> <mo>=</mo> <mn>2</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>d</mi> <mo>=</mo> <mn>20</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 6
<p>Numerical simulations for the systems (1) with varied parameters: <math display="inline"><semantics> <mrow> <mi>β</mi> <mo>=</mo> <mo>[</mo> <mn>2.95</mn> <mo>,</mo> <mn>2.93</mn> <mo>,</mo> <mn>2.98</mn> <mo>]</mo> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>a</mi> <mo>=</mo> <mn>2</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>b</mi> <mo>=</mo> <mn>9</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>c</mi> <mo>=</mo> <mn>2</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>d</mi> <mo>=</mo> <mn>11</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 7
<p>Numerical simulations for the systems (1) with varied parameters: <math display="inline"><semantics> <mrow> <mi>β</mi> <mo>=</mo> <mo>[</mo> <mn>1.5</mn> <mo>,</mo> <mn>1.3</mn> <mo>,</mo> <mn>1.8</mn> <mo>]</mo> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>a</mi> <mo>=</mo> <mn>2</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>b</mi> <mo>=</mo> <mn>9.3</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>c</mi> <mo>=</mo> <mn>2</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>d</mi> <mo>=</mo> <mn>12</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 8
<p>Numerical simulations for the systems (1) with varied parameters: <math display="inline"><semantics> <mrow> <mi>β</mi> <mo>=</mo> <mo>[</mo> <mn>0.9</mn> <mo>,</mo> <mn>1.23</mn> <mo>,</mo> <mn>1.28</mn> <mo>]</mo> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>a</mi> <mo>=</mo> <mn>2</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>b</mi> <mo>=</mo> <mn>7</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>c</mi> <mo>=</mo> <mn>2</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>d</mi> <mo>=</mo> <mn>7</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 9
<p>Numerical simulations for the systems (1) with varied parameters: <math display="inline"><semantics> <mrow> <mi>β</mi> <mo>=</mo> <mo>[</mo> <mn>1.95</mn> <mo>,</mo> <mn>1.93</mn> <mo>,</mo> <mn>1.98</mn> <mo>]</mo> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>a</mi> <mo>=</mo> <mn>2</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>b</mi> <mo>=</mo> <mn>7</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>c</mi> <mo>=</mo> <mn>2</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>d</mi> <mo>=</mo> <mn>10</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 10
<p>Numerical simulations for the systems (1) with varied parameters: <math display="inline"><semantics> <mrow> <mi>β</mi> <mo>=</mo> <mo>[</mo> <mn>1.5</mn> <mo>,</mo> <mn>1.9</mn> <mo>,</mo> <mn>0.98</mn> <mo>]</mo> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>a</mi> <mo>=</mo> <mn>2</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>b</mi> <mo>=</mo> <mn>7</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>c</mi> <mo>=</mo> <mn>2</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>d</mi> <mo>=</mo> <mn>9</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 11
<p>Numerical simulations for the systems (1) with varied parameters: <math display="inline"><semantics> <mrow> <mi>β</mi> <mo>=</mo> <mo>[</mo> <mn>1.99</mn> <mo>,</mo> <mn>1.98</mn> <mo>,</mo> <mn>0.93</mn> <mo>]</mo> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>a</mi> <mo>=</mo> <mn>2</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>b</mi> <mo>=</mo> <mn>5</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>c</mi> <mo>=</mo> <mn>2</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>d</mi> <mo>=</mo> <mn>10</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 12
<p>Numerical simulations for the systems (1) with varied parameters: <math display="inline"><semantics> <mrow> <mi>β</mi> <mo>=</mo> <mo>[</mo> <mn>2.95</mn> <mo>,</mo> <mn>2.98</mn> <mo>,</mo> <mn>2.93</mn> <mo>]</mo> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>a</mi> <mo>=</mo> <mn>2</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>b</mi> <mo>=</mo> <mn>9</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>c</mi> <mo>=</mo> <mn>2</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>d</mi> <mo>=</mo> <mn>12</mn> </mrow> </semantics></math>.</p>
Full article ">
28 pages, 400 KiB  
Article
Error Analysis for Semilinear Stochastic Subdiffusion with Integrated Fractional Gaussian Noise
by Xiaolei Wu and Yubin Yan
Mathematics 2024, 12(22), 3579; https://doi.org/10.3390/math12223579 - 15 Nov 2024
Viewed by 361
Abstract
We analyze the error estimates of a fully discrete scheme for solving a semilinear stochastic subdiffusion problem driven by integrated fractional Gaussian noise with a Hurst parameter H(0,1). The covariance operator Q of the stochastic fractional [...] Read more.
We analyze the error estimates of a fully discrete scheme for solving a semilinear stochastic subdiffusion problem driven by integrated fractional Gaussian noise with a Hurst parameter H(0,1). The covariance operator Q of the stochastic fractional Wiener process satisfies AρQ1/2HS <  for some ρ[0,1), where ·HS denotes the Hilbert–Schmidt norm. The Caputo fractional derivative and Riemann–Liouville fractional integral are approximated using Lubich’s convolution quadrature formulas, while the noise is discretized via the Euler method. For the spatial derivative, we use the spectral Galerkin method. The approximate solution of the fully discrete scheme is represented as a convolution between a piecewise constant function and the inverse Laplace transform of a resolvent-related function. By using this convolution-based representation and applying the Burkholder–Davis–Gundy inequality for fractional Gaussian noise, we derive the optimal convergence rates for the proposed fully discrete scheme. Numerical experiments confirm that the computed results are consistent with the theoretical findings. Full article
(This article belongs to the Section Computational and Applied Mathematics)
24 pages, 400 KiB  
Article
Theory on New Fractional Operators Using Normalization and Probability Tools
by Marc Jornet
Fractal Fract. 2024, 8(11), 665; https://doi.org/10.3390/fractalfract8110665 - 15 Nov 2024
Viewed by 406
Abstract
We show how a rescaling of fractional operators with bounded kernels may help circumvent their documented deficiencies, for example, the inconsistency at zero or the lack of inverse integral operator. On the other hand, we build a novel class of linear operators with [...] Read more.
We show how a rescaling of fractional operators with bounded kernels may help circumvent their documented deficiencies, for example, the inconsistency at zero or the lack of inverse integral operator. On the other hand, we build a novel class of linear operators with memory effects to extend the L-fractional and the ordinary derivatives, using probability tools. A Mittag–Leffler-type function is introduced to solve linear problems, and nonlinear equations are addressed with power series, illustrating the methods for the SIR epidemic model. The inverse operator is constructed, and a fundamental theorem of calculus and an existence-and-uniqueness result for differintegral equations are proven. A conjecture on deconvolution is raised, which would permit completing the proposed theory. Full article
(This article belongs to the Special Issue Mittag-Leffler Function: Generalizations and Applications)
19 pages, 1393 KiB  
Article
Compact ADI Difference Scheme for the 2D Time Fractional Nonlinear Schrödinger Equation
by Zulayat Abliz, Rena Eskar, Moldir Serik and Pengzhan Huang
Fractal Fract. 2024, 8(11), 658; https://doi.org/10.3390/fractalfract8110658 - 12 Nov 2024
Viewed by 513
Abstract
In this paper, we will introduce a compact alternating direction implicit (ADI) difference scheme for solving the two-dimensional (2D) time fractional nonlinear Schrödinger equation. The difference scheme is constructed by using the L123 formula to approximate the Caputo [...] Read more.
In this paper, we will introduce a compact alternating direction implicit (ADI) difference scheme for solving the two-dimensional (2D) time fractional nonlinear Schrödinger equation. The difference scheme is constructed by using the L123 formula to approximate the Caputo fractional derivative in time and the fourth-order compact difference scheme is adopted in the space direction. The proposed difference scheme with a convergence accuracy of O(τ1+α+hx4+hy4)(α(0,1)) is obtained by adding a small term, where τ, hx, hy are the temporal and spatial step sizes, respectively. The convergence and unconditional stability of the difference scheme are obtained. Moreover, numerical experiments are given to verify the accuracy and efficiency of the difference scheme. Full article
Show Figures

Figure 1

Figure 1
<p>Contour plots of the numerical errors when <math display="inline"><semantics> <mrow> <mi>M</mi> <mo>=</mo> <mi>N</mi> <mo>=</mo> <mn>100</mn> </mrow> </semantics></math> for different values of <math display="inline"><semantics> <mi>α</mi> </semantics></math>.</p>
Full article ">Figure 2
<p>Contour plots of the numerical errors when <math display="inline"><semantics> <mrow> <mi>M</mi> <mo>=</mo> <mi>N</mi> <mo>=</mo> <mn>100</mn> </mrow> </semantics></math> for different values of <math display="inline"><semantics> <mi>α</mi> </semantics></math>.</p>
Full article ">
16 pages, 537 KiB  
Article
Generalized Laplace Transform with Adomian Decomposition Method for Solving Fractional Differential Equations Involving ψ-Caputo Derivative
by Mona Alsulami, Mariam Al-Mazmumy, Maryam Ahmed Alyami and Asrar Saleh Alsulami
Mathematics 2024, 12(22), 3499; https://doi.org/10.3390/math12223499 - 8 Nov 2024
Viewed by 514
Abstract
In this study, we introduced the ψ-Laplace transform Adomian decomposition method, which is a combination of the efficient Adomian decomposition method with the generalization of the classical Laplace transform to treat fractional differential equations with respect to another function, ψ, in [...] Read more.
In this study, we introduced the ψ-Laplace transform Adomian decomposition method, which is a combination of the efficient Adomian decomposition method with the generalization of the classical Laplace transform to treat fractional differential equations with respect to another function, ψ, in the Caputo sense. To validate the effectiveness of this method, we applied the derived recurrent scheme of the ψ-Laplace Adomian decomposition on several test numerical problems, including a real-life scenario in pharmacokinetics that models the movement of drug concentration in human blood. The solutions obtained closely matched the known solutions for the test problems. Additionally, in the pharmacokinetics case, the results were consistent with the available physical data. Consequently, this method simplifies the verification of numerous related aspects and proves advantageous in solving various ψ-fractional differential equations. Full article
(This article belongs to the Section Computational and Applied Mathematics)
Show Figures

Figure 1

Figure 1
<p><math display="inline"><semantics> <mi>ψ</mi> </semantics></math>-LADM solutions with respect to different kernels for (<a href="#FD31-mathematics-12-03499" class="html-disp-formula">31</a>).</p>
Full article ">Figure 2
<p><math display="inline"><semantics> <mi>ψ</mi> </semantics></math>-LADM solutions with respect to the different kernels and <math display="inline"><semantics> <mi>α</mi> </semantics></math> for (<a href="#FD36-mathematics-12-03499" class="html-disp-formula">36</a>).</p>
Full article ">Figure 3
<p><math display="inline"><semantics> <mi>ψ</mi> </semantics></math>-LADM solutions with respect to the different kernels for (<a href="#FD42-mathematics-12-03499" class="html-disp-formula">42</a>).</p>
Full article ">Figure 4
<p><math display="inline"><semantics> <mi>ψ</mi> </semantics></math>-LADM solutions for various <math display="inline"><semantics> <mi>ψ</mi> </semantics></math> functions and various <math display="inline"><semantics> <mi>α</mi> </semantics></math> of (<a href="#FD47-mathematics-12-03499" class="html-disp-formula">47</a>).</p>
Full article ">Figure 5
<p>One-compartment open model: intravenous bolus administration.</p>
Full article ">Figure 6
<p><math display="inline"><semantics> <mi>ψ</mi> </semantics></math>-LADM solutions for the fractional pharmacokinetics IVP in (<a href="#FD54-mathematics-12-03499" class="html-disp-formula">54</a>) and (<a href="#FD59-mathematics-12-03499" class="html-disp-formula">59</a>).</p>
Full article ">
25 pages, 14310 KiB  
Article
A Robust and Versatile Numerical Framework for Modeling Complex Fractional Phenomena: Applications to Riccati and Lorenz Systems
by Waleed Mohammed Abdelfattah, Ola Ragb, Mohamed Salah and Mokhtar Mohamed
Fractal Fract. 2024, 8(11), 647; https://doi.org/10.3390/fractalfract8110647 - 6 Nov 2024
Viewed by 443
Abstract
The fractional differential quadrature method (FDQM) with generalized Caputo derivatives is used in this paper to show a new numerical way to solve fractional Riccati equations and fractional Lorenz systems. Unlike previous FDQM applications that have primarily focused on linear problems, our work [...] Read more.
The fractional differential quadrature method (FDQM) with generalized Caputo derivatives is used in this paper to show a new numerical way to solve fractional Riccati equations and fractional Lorenz systems. Unlike previous FDQM applications that have primarily focused on linear problems, our work pioneers the use of this method for nonlinear fractional initial value problems. By combining Lagrange interpolation polynomials and discrete singular convolution (DSC) shape functions with the generalized Caputo operator, we effectively transform nonlinear fractional equations into algebraic systems. An iterative method is then utilized to address the nonlinearity. Our numerical results, obtained using MATLAB, demonstrate the exceptional accuracy and efficiency of this approach, with convergence rates reaching 10−8. Comparative analysis with existing methods highlights the superior performance of the DSC shape function in terms of accuracy, convergence speed, and reliability. Our results highlight the versatility of our approach in tackling a wider variety of intricate nonlinear fractional differential equations. Full article
(This article belongs to the Special Issue Fractional Mathematical Modelling: Theory, Methods and Applications)
Show Figures

Figure 1

Figure 1
<p>Numerical simulation of <math display="inline"><semantics> <mrow> <mi>υ</mi> <mfenced open="(" close=")"> <mi mathvariant="normal">t</mi> </mfenced> </mrow> </semantics></math> using DSCDQM–RSK for fractional Riccati equation at different times and fraction power <math display="inline"><semantics> <mrow> <mfenced open="(" close=")"> <mrow> <mi mathvariant="sans-serif">α</mi> <mo>,</mo> <mo> </mo> <mi mathvariant="sans-serif">ρ</mi> </mrow> </mfenced> </mrow> </semantics></math> for (<b>a</b>) <math display="inline"><semantics> <mrow> <mi mathvariant="sans-serif">α</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>, and (<b>b</b>) <math display="inline"><semantics> <mrow> <mi mathvariant="sans-serif">α</mi> <mo>=</mo> <mn>0.7</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 2
<p>Numerical simulation of <math display="inline"><semantics> <mrow> <mi mathvariant="sans-serif">υ</mi> <mfenced open="(" close=")"> <mi mathvariant="normal">t</mi> </mfenced> </mrow> </semantics></math> using DSCDQM–RSK for fractional Riccati equation at different fraction power <math display="inline"><semantics> <mrow> <mfenced open="(" close=")"> <mrow> <mi mathvariant="sans-serif">α</mi> <mo>,</mo> <mo> </mo> <mi mathvariant="sans-serif">ρ</mi> </mrow> </mfenced> </mrow> </semantics></math> for (<b>a</b>) t = 1, and (<b>b</b>) t = 2.</p>
Full article ">Figure 3
<p>Variance of (<b>a</b>) X, (<b>b</b>) Y, and (<b>c</b>) Z with time (t) via non-uniform PDQM and DSCDQM–RSK for fractional Chen system with time (T = 1), fraction <math display="inline"><semantics> <mrow> <mfenced open="(" close=")"> <mrow> <mi mathvariant="sans-serif">α</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <mi mathvariant="sans-serif">ρ</mi> <mo>=</mo> <mn>1</mn> </mrow> </mfenced> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mfenced open="(" close=")"> <mrow> <msub> <mi mathvariant="normal">x</mi> <mn>0</mn> </msub> <mo>=</mo> <mn>2.5</mn> <mo>,</mo> <msub> <mi mathvariant="normal">y</mi> <mn>0</mn> </msub> <mo>=</mo> <mn>1</mn> <mo>,</mo> <msub> <mi mathvariant="normal">z</mi> <mn>0</mn> </msub> <mo>=</mo> <mn>0.5</mn> </mrow> </mfenced> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mfenced open="(" close=")"> <mrow> <mi mathvariant="sans-serif">λ</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mi mathvariant="sans-serif">β</mi> <mo>=</mo> <mn>2</mn> <mo>,</mo> <mi mathvariant="sans-serif">ϕ</mi> <mo>=</mo> <mn>1</mn> </mrow> </mfenced> </mrow> </semantics></math>.</p>
Full article ">Figure 4
<p>Chaotic attractor of fractional Lorenz system using DSCDQM–RSK with time (T = 100), fraction <math display="inline"><semantics> <mrow> <mfenced open="(" close=")"> <mrow> <mi mathvariant="sans-serif">α</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <mi mathvariant="sans-serif">ρ</mi> <mo>=</mo> <mn>1.2</mn> </mrow> </mfenced> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mfenced open="(" close=")"> <mrow> <msub> <mi mathvariant="normal">x</mi> <mn>0</mn> </msub> <mo>=</mo> <mn>2.5</mn> <mo>,</mo> <msub> <mi mathvariant="normal">y</mi> <mn>0</mn> </msub> <mo>=</mo> <mn>1</mn> <mo>,</mo> <msub> <mi mathvariant="normal">z</mi> <mn>0</mn> </msub> <mo>=</mo> <mn>0.5</mn> </mrow> </mfenced> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mfenced open="(" close=")"> <mrow> <mi mathvariant="sans-serif">λ</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mi mathvariant="sans-serif">β</mi> <mo>=</mo> <mn>2</mn> <mo>,</mo> <mi mathvariant="sans-serif">ϕ</mi> <mo>=</mo> <mn>1</mn> </mrow> </mfenced> </mrow> </semantics></math>.</p>
Full article ">Figure 5
<p>Chaotic attractor of fractional Lorenz system using DSCDQM–RSK with time (T = 100), fraction <math display="inline"><semantics> <mrow> <mfenced open="(" close=")"> <mrow> <mi mathvariant="sans-serif">α</mi> <mo>=</mo> <mn>0.8</mn> <mo>,</mo> <mo> </mo> <mi mathvariant="sans-serif">ρ</mi> <mo>=</mo> <mn>1.2</mn> </mrow> </mfenced> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mfenced open="(" close=")"> <mrow> <msub> <mi mathvariant="normal">x</mi> <mn>0</mn> </msub> <mo>=</mo> <mn>2.5</mn> <mo>,</mo> <msub> <mi mathvariant="normal">y</mi> <mn>0</mn> </msub> <mo>=</mo> <mn>1</mn> <mo>,</mo> <msub> <mi mathvariant="normal">z</mi> <mn>0</mn> </msub> <mo>=</mo> <mn>0.5</mn> </mrow> </mfenced> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mfenced open="(" close=")"> <mrow> <mi mathvariant="sans-serif">λ</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mi mathvariant="sans-serif">β</mi> <mo>=</mo> <mn>2</mn> <mo>,</mo> <mi mathvariant="sans-serif">ϕ</mi> <mo>=</mo> <mn>1</mn> </mrow> </mfenced> </mrow> </semantics></math>.</p>
Full article ">Figure 6
<p>Chaotic attractor of fractional Lorenz system using DSCDQM–RSK with time (T = 100), fraction <math display="inline"><semantics> <mrow> <mfenced open="(" close=")"> <mrow> <mi mathvariant="sans-serif">α</mi> <mo>=</mo> <mn>0.97</mn> <mo>,</mo> <mo> </mo> <mi mathvariant="sans-serif">ρ</mi> <mo>=</mo> <mn>1</mn> </mrow> </mfenced> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mfenced open="(" close=")"> <mrow> <msub> <mi mathvariant="normal">x</mi> <mn>0</mn> </msub> <mo>=</mo> <mn>2.5</mn> <mo>,</mo> <msub> <mi mathvariant="normal">y</mi> <mn>0</mn> </msub> <mo>=</mo> <mn>1</mn> <mo>,</mo> <msub> <mi mathvariant="normal">z</mi> <mn>0</mn> </msub> <mo>=</mo> <mn>0.5</mn> </mrow> </mfenced> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mfenced open="(" close=")"> <mrow> <mi mathvariant="sans-serif">λ</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mi mathvariant="sans-serif">β</mi> <mo>=</mo> <mn>2</mn> <mo>,</mo> <mi mathvariant="sans-serif">ϕ</mi> <mo>=</mo> <mn>1</mn> </mrow> </mfenced> </mrow> </semantics></math>.</p>
Full article ">Figure 7
<p>Chaotic attractor of fractional Lorenz system using DSCDQM–RSK with time (T = 100), fraction <math display="inline"><semantics> <mrow> <mfenced open="(" close=")"> <mrow> <mi mathvariant="sans-serif">α</mi> <mo>=</mo> <mn>0.9</mn> <mo>,</mo> <mo> </mo> <mi mathvariant="sans-serif">ρ</mi> <mo>=</mo> <mn>0.8</mn> </mrow> </mfenced> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mfenced open="(" close=")"> <mrow> <msub> <mi mathvariant="normal">x</mi> <mn>0</mn> </msub> <mo>=</mo> <mn>2.5</mn> <mo>,</mo> <msub> <mi mathvariant="normal">y</mi> <mn>0</mn> </msub> <mo>=</mo> <mn>1</mn> <mo>,</mo> <msub> <mi mathvariant="normal">z</mi> <mn>0</mn> </msub> <mo>=</mo> <mn>0.5</mn> </mrow> </mfenced> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mfenced open="(" close=")"> <mrow> <mi mathvariant="sans-serif">λ</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mi mathvariant="sans-serif">β</mi> <mo>=</mo> <mn>2</mn> <mo>,</mo> <mi mathvariant="sans-serif">ϕ</mi> <mo>=</mo> <mn>1</mn> </mrow> </mfenced> </mrow> </semantics></math>.</p>
Full article ">Figure 8
<p>Regions of stability at varying fractional orders.</p>
Full article ">Figure 9
<p>Propagation of errors in relation to time and fractional order.</p>
Full article ">
17 pages, 532 KiB  
Article
Numerical Study of Multi-Term Time-Fractional Sub-Diffusion Equation Using Hybrid L1 Scheme with Quintic Hermite Splines
by Priyanka Priyanka, Shelly Arora, Saroj Sahani and Sharandeep Singh
Math. Comput. Appl. 2024, 29(6), 100; https://doi.org/10.3390/mca29060100 - 2 Nov 2024
Viewed by 435
Abstract
Anomalous diffusion of particles has been described by the time-fractional reaction–diffusion equation. A hybrid formulation of numerical technique is proposed to solve the time-fractional-order reaction–diffusion (FRD) equation numerically. The technique comprises the semi-discretization of the time variable using an L1 finite-difference scheme and [...] Read more.
Anomalous diffusion of particles has been described by the time-fractional reaction–diffusion equation. A hybrid formulation of numerical technique is proposed to solve the time-fractional-order reaction–diffusion (FRD) equation numerically. The technique comprises the semi-discretization of the time variable using an L1 finite-difference scheme and space discretization using the quintic Hermite spline collocation method. The hybrid technique reduces the problem to an iterative scheme of an algebraic system of equations. The stability analysis of the proposed numerical scheme and the optimal error bounds for the approximate solution are also studied. A comparative study of the obtained results and an error analysis of approximation show the efficiency, accuracy, and effectiveness of the technique. Full article
Show Figures

Figure 1

Figure 1
<p>The arrangement of collocation points over the spatial domain.</p>
Full article ">Figure 2
<p>The behaviour of approximate solution, exact solution, absolute error and <math display="inline"><semantics> <msub> <mi>L</mi> <mn>2</mn> </msub> </semantics></math>-norm at the node points for Example 1.</p>
Full article ">Figure 3
<p>The behaviour of computed approximate solution, exact solution and absolute error at the node points for Example 2.</p>
Full article ">Figure 4
<p>The behaviour of approximate and exact solution with the comparison by absolute error for Example 3.</p>
Full article ">
Back to TopTop