Nothing Special   »   [go: up one dir, main page]

You seem to have javascript disabled. Please note that many of the page functionalities won't work as expected without javascript enabled.
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,092)

Search Parameters:
Keywords = Caputo fractional derivative

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 422 KiB  
Article
New Results on the Stability and Existence of Langevin Fractional Differential Equations with Boundary Conditions
by Rahman Ullah Khan, Maria Samreen, Gohar Ali and Ioan-Lucian Popa
Fractal Fract. 2025, 9(2), 127; https://doi.org/10.3390/fractalfract9020127 - 18 Feb 2025
Abstract
This manuscript aims to establish the existence, uniqueness, and stability of solutions for Langevin fractional differential equations involving the generalized Liouville-Caputo derivative. Using a novel approach, we derive existence and uniqueness results through fixed-point theorems, extending and generalizing several existing findings in the [...] Read more.
This manuscript aims to establish the existence, uniqueness, and stability of solutions for Langevin fractional differential equations involving the generalized Liouville-Caputo derivative. Using a novel approach, we derive existence and uniqueness results through fixed-point theorems, extending and generalizing several existing findings in the literature. To demonstrate the applicability of our results, we provide a practical example that validates the theoretical framework. Full article
(This article belongs to the Section General Mathematics, Analysis)
Show Figures

Figure 1

Figure 1
<p><math display="inline"><semantics> <mrow> <mi>ω</mi> <mrow> <mo>(</mo> <mi mathvariant="fraktur">r</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac bevelled="false"> <msup> <mi mathvariant="fraktur">r</mi> <mn>4</mn> </msup> <mn>5</mn> </mfrac> </mrow> </semantics></math>.</p>
Full article ">Figure 2
<p><math display="inline"><semantics> <mrow> <mi>ω</mi> <mrow> <mo>(</mo> <mi mathvariant="fraktur">r</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac bevelled="false"> <msup> <mi mathvariant="fraktur">r</mi> <mn>2</mn> </msup> <mn>4</mn> </mfrac> </mrow> </semantics></math>.</p>
Full article ">Figure 3
<p>Graph represents the dynamical behavior of the solutions to the fractional differential equation.</p>
Full article ">
12 pages, 501 KiB  
Article
Concentrated Couple in a Plane and in a Half-Plane in the Framework of Fractional Nonlocal Elasticity
by Yuriy Povstenko, Tamara Kyrylych, Bożena Woźna-Szcześniak, Ireneusz Szcześniak and Andrzej Yatsko
Appl. Sci. 2025, 15(4), 2048; https://doi.org/10.3390/app15042048 - 15 Feb 2025
Viewed by 280
Abstract
In nonlocal elasticity, the constitutive equation for the stress tensor is written in an integral form, with the weight function, referred to as the nonlocality kernel, often being the Green’s function for the partial differential equation. In this paper, we obtain solutions to [...] Read more.
In nonlocal elasticity, the constitutive equation for the stress tensor is written in an integral form, with the weight function, referred to as the nonlocality kernel, often being the Green’s function for the partial differential equation. In this paper, we obtain solutions to elasticity problems for a concentrated couple in a plane and on the boundary of a half-plane within framework of a new theory of nonlocal elasticity, where the nonlocal kernel is the Green’s function of the Cauchy problem for the fractional diffusion equation. The obtained solutions are free from nonphysical singularities that appear in the classical local elasticity solutions. Full article
(This article belongs to the Special Issue Deformation and Fracture Behaviors of Materials)
Show Figures

Figure 1

Figure 1
<p>Concentrated couple in a plane. Dependence of the nonlocal stress component <math display="inline"><semantics> <msub> <mover accent="true"> <mi>t</mi> <mo>¯</mo> </mover> <mrow> <mi>r</mi> <mi>θ</mi> </mrow> </msub> </semantics></math> on the distance. The nondimensional stress <math display="inline"><semantics> <msub> <mover accent="true"> <mi>t</mi> <mo>¯</mo> </mover> <mrow> <mi>r</mi> <mi>θ</mi> </mrow> </msub> </semantics></math> and nondimensional distance <math display="inline"><semantics> <mover accent="true"> <mi>r</mi> <mo>¯</mo> </mover> </semantics></math> (similarity variable) are defined by Equation (<a href="#FD39-applsci-15-02048" class="html-disp-formula">39</a>).</p>
Full article ">Figure 2
<p>Concentrated couple on the boundary of a half-plane. Dependence of the nonlocal stress <math display="inline"><semantics> <msub> <mover accent="true"> <mi>T</mi> <mo>¯</mo> </mover> <mrow> <mi>r</mi> <mi>r</mi> </mrow> </msub> </semantics></math> on the distance. The nondimensional distance <math display="inline"><semantics> <mover accent="true"> <mi>r</mi> <mo>¯</mo> </mover> </semantics></math> (similarity variable) is defined by Equation (<a href="#FD39-applsci-15-02048" class="html-disp-formula">39</a>).</p>
Full article ">
21 pages, 1488 KiB  
Article
Exploring Fractional Damped Burgers’ Equation: A Comparative Analysis of Analytical Methods
by Azzh Saad Alshehry and Rasool Shah
Fractal Fract. 2025, 9(2), 107; https://doi.org/10.3390/fractalfract9020107 - 10 Feb 2025
Viewed by 437
Abstract
This investigation focuses on the study of the fractional damped Burgers’ equation by using the natural residual power series method coupled with the new iteration transform method in the context of the Caputo operator. The equation of Burgers under the damped context is [...] Read more.
This investigation focuses on the study of the fractional damped Burgers’ equation by using the natural residual power series method coupled with the new iteration transform method in the context of the Caputo operator. The equation of Burgers under the damped context is useful when studying one-dimensional nonlinear waves involving damping effect, and is used in fluid dynamics, among other applications. Two new mathematical methods that can be used to obtain an approximate solution to this complex non-linear problem are the natural residual power series method and the new iteration transform method. Therefore, it can be deduced that the Caputo operator aids in modeling of the fractional derivatives, as it provides a better description of the physical realities. Thus, the objective of the present work is to advance the knowledge accumulated on the behavior of solutions to the damped Burgers’ equation, as well as to check the applicability of the proposed approaches to other nonlinear fractional partial differential equations. Full article
(This article belongs to the Special Issue Fractional Systems, Integrals and Derivatives: Theory and Application)
Show Figures

Figure 1

Figure 1
<p>Different fractional order comparison of NRPSM solution (<b>a</b>) with three (<b>b</b>) two dimensional of Problem 1 for <math display="inline"><semantics> <mrow> <mi>t</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math> to 5.</p>
Full article ">Figure 2
<p>Subfigure (<b>a</b>) shows the absolute error for <math display="inline"><semantics> <mrow> <mi>ϱ</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>, (<b>b</b>) shows the absolute error for <math display="inline"><semantics> <mrow> <mi>ϱ</mi> <mo>=</mo> <mn>0.5</mn> </mrow> </semantics></math>, and (<b>c</b>) shows the absolute error for <math display="inline"><semantics> <mrow> <mi>ϱ</mi> <mo>=</mo> <mn>0.1</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 3
<p>Different fractional order comparison (<b>a</b>) with three (<b>b</b>) two dimensional of NRPSM solution of Problem 2 for <math display="inline"><semantics> <mrow> <mi>t</mi> <mo>=</mo> <mn>0.1</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 4
<p>Different fractional order comparison (<b>a</b>) with three (<b>b</b>) two dimensional of NRPSM solution of Problem 2 for <math display="inline"><semantics> <mrow> <mi>t</mi> <mo>=</mo> <mn>0.01</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 5
<p>Figure (<b>a</b>) shows the absolute error for <math display="inline"><semantics> <mrow> <mi>ϱ</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>, (<b>b</b>) shows the absolute error for <math display="inline"><semantics> <mrow> <mi>ϱ</mi> <mo>=</mo> <mn>0.5</mn> </mrow> </semantics></math>, and (<b>c</b>) shows the absolute error for <math display="inline"><semantics> <mrow> <mi>ϱ</mi> <mo>=</mo> <mn>0.1</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 6
<p>Comparison of various fractional-order NITM solutions (<b>a</b>) with three (<b>b</b>) two dimensional of Problem 1 for <math display="inline"><semantics> <mrow> <mi>t</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math> to 5.</p>
Full article ">Figure 7
<p>Figure (<b>a</b>) shows the absolute error for <math display="inline"><semantics> <mrow> <mi>ϱ</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>, (<b>b</b>) shows the absolute error for <math display="inline"><semantics> <mrow> <mi>ϱ</mi> <mo>=</mo> <mn>0.5</mn> </mrow> </semantics></math>, and (<b>c</b>) shows the absolute error for <math display="inline"><semantics> <mrow> <mi>ϱ</mi> <mo>=</mo> <mn>0.1</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 8
<p>Comparison of various fractional-order NITM solutions (<b>a</b>) with three (<b>b</b>) two dimensional of Problem 2 for <math display="inline"><semantics> <mrow> <mi>t</mi> <mo>=</mo> <mn>0.1</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 9
<p>Comparison various fractional-order NITM solutions (<b>a</b>) with three (<b>b</b>) two dimensional of Problem 2 for <math display="inline"><semantics> <mrow> <mi>t</mi> <mo>=</mo> <mn>0.01</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 10
<p>Figure (<b>a</b>) shows the absolute error for <math display="inline"><semantics> <mrow> <mi>ϱ</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>, (<b>b</b>) shows the absolute error for <math display="inline"><semantics> <mrow> <mi>ϱ</mi> <mo>=</mo> <mn>0.5</mn> </mrow> </semantics></math>, and (<b>c</b>) shows the absolute error for <math display="inline"><semantics> <mrow> <mi>ϱ</mi> <mo>=</mo> <mn>0.1</mn> </mrow> </semantics></math>.</p>
Full article ">
24 pages, 619 KiB  
Article
Nonlinear Fractional Evolution Control Modeling via Power Non-Local Kernels: A Generalization of Caputo–Fabrizio, Atangana–Baleanu, and Hattaf Derivatives
by F. Gassem, Mohammed Almalahi, Osman Osman, Blgys Muflh, Khaled Aldwoah, Alwaleed Kamel and Nidal Eljaneid
Fractal Fract. 2025, 9(2), 104; https://doi.org/10.3390/fractalfract9020104 - 8 Feb 2025
Viewed by 374
Abstract
This paper presents a novel framework for modeling nonlinear fractional evolution control systems. This framework utilizes a power non-local fractional derivative (PFD), which is a generalized fractional derivative that unifies several well-known derivatives, including Caputo–Fabrizio, Atangana–Baleanu, and generalized Hattaf derivatives, as special cases. [...] Read more.
This paper presents a novel framework for modeling nonlinear fractional evolution control systems. This framework utilizes a power non-local fractional derivative (PFD), which is a generalized fractional derivative that unifies several well-known derivatives, including Caputo–Fabrizio, Atangana–Baleanu, and generalized Hattaf derivatives, as special cases. It uniquely features a tunable power parameter “p”, providing enhanced control over the representation of memory effects compared to traditional derivatives with fixed kernels. Utilizing the fixed-point theory, we rigorously establish the existence and uniqueness of solutions for these systems under appropriate conditions. Furthermore, we prove the Hyers–Ulam stability of the system, demonstrating its robustness against small perturbations. We complement this framework with a practical numerical scheme based on Lagrange interpolation polynomials, enabling efficient computation of solutions. Examples illustrating the model’s applicability, including symmetric cases, are supported by graphical representations to highlight the approach’s versatility. These findings address a significant gap in the literature and pave the way for further research in fractional calculus and its diverse applications. Full article
Show Figures

Figure 1

Figure 1
<p>Graphical presentations of the PFECM (<a href="#FD23-fractalfract-09-00104" class="html-disp-formula">23</a>) for <math display="inline"><semantics> <mrow> <mi>p</mi> <mo>=</mo> <mn>10</mn> </mrow> </semantics></math>, using the fractional orders <math display="inline"><semantics> <mrow> <mi>β</mi> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mn>0.6</mn> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <mn>0.7</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 2
<p>Graphical presentations of the PFECM (<a href="#FD23-fractalfract-09-00104" class="html-disp-formula">23</a>) for <math display="inline"><semantics> <mrow> <mi>p</mi> <mo>=</mo> <mn>20</mn> </mrow> </semantics></math>, using the fractional orders <math display="inline"><semantics> <mrow> <mi>β</mi> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mn>0.6</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mn>0.7</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 3
<p>Graphical presentations of the PFECM (<a href="#FD23-fractalfract-09-00104" class="html-disp-formula">23</a>) for <math display="inline"><semantics> <mrow> <mi>p</mi> <mo>=</mo> <mn>30</mn> </mrow> </semantics></math>, using the fractional orders <math display="inline"><semantics> <mrow> <mi>β</mi> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mn>0.6</mn> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <mn>0.7</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 4
<p>Graphical presentations of the PFECM (<a href="#FD23-fractalfract-09-00104" class="html-disp-formula">23</a>) for <math display="inline"><semantics> <mrow> <mi>p</mi> <mo>=</mo> <mn>40</mn> </mrow> </semantics></math>, using the fractional orders <math display="inline"><semantics> <mrow> <mi>β</mi> <mo>=</mo> <mn>0.7</mn> <mo>,</mo> <mn>0.75</mn> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <mn>0.8</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 5
<p>Graphical presentations of generalized Hattaf fractional model (<a href="#FD24-fractalfract-09-00104" class="html-disp-formula">24</a>) for <math display="inline"><semantics> <mrow> <mi>p</mi> <mo>=</mo> <mi>e</mi> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>δ</mi> <mo>=</mo> <mn>0.8</mn> </mrow> </semantics></math> using fractional orders <math display="inline"><semantics> <mrow> <mi>β</mi> <mo>=</mo> <mn>0.3</mn> <mo>,</mo> <mn>0.35</mn> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <mn>0.4</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 6
<p>Graphical presentations of Atangana–Baleanu fractional model (<a href="#FD25-fractalfract-09-00104" class="html-disp-formula">25</a>) for <math display="inline"><semantics> <mrow> <mi>p</mi> <mo>=</mo> <mi>e</mi> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>δ</mi> <mo>=</mo> <mi>β</mi> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mn>0.55</mn> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <mn>0.6</mn> </mrow> </semantics></math>, and weight function <math display="inline"><semantics> <mrow> <mi>w</mi> <mfenced open="(" close=")"> <mi>σ</mi> </mfenced> <mo>=</mo> <mn>1</mn> <mo>.</mo> </mrow> </semantics></math></p>
Full article ">Figure 7
<p>Graphical presentations of Caputo–Fabrizio fractional model (<a href="#FD26-fractalfract-09-00104" class="html-disp-formula">26</a>) for <math display="inline"><semantics> <mrow> <mi>δ</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>p</mi> <mo>=</mo> <mi>e</mi> <mo>,</mo> </mrow> </semantics></math> with fractional order <math display="inline"><semantics> <mrow> <mi>β</mi> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mn>0.55</mn> <mo>,</mo> <mn>0.6</mn> </mrow> </semantics></math>, and weight function <math display="inline"><semantics> <mrow> <mi>w</mi> <mfenced open="(" close=")"> <mi>σ</mi> </mfenced> <mo>=</mo> <mn>1</mn> <mo>.</mo> </mrow> </semantics></math></p>
Full article ">
23 pages, 707 KiB  
Article
Novel Fractional Boole’s-Type Integral Inequalities via Caputo Fractional Operator and Their Implications in Numerical Analysis
by Wali Haider, Abdul Mateen, Hüseyin Budak, Asia Shehzadi and Loredana Ciurdariu
Mathematics 2025, 13(4), 551; https://doi.org/10.3390/math13040551 - 7 Feb 2025
Viewed by 342
Abstract
The advancement of fractional calculus, particularly through the Caputo fractional derivative, has enabled more accurate modeling of processes with memory and hereditary effects, driving significant interest in this field. Fractional calculus also extends the concept of classical derivatives and integrals to noninteger (fractional) [...] Read more.
The advancement of fractional calculus, particularly through the Caputo fractional derivative, has enabled more accurate modeling of processes with memory and hereditary effects, driving significant interest in this field. Fractional calculus also extends the concept of classical derivatives and integrals to noninteger (fractional) orders. This generalization allows for more flexible and accurate modeling of complex phenomena that cannot be adequately described using integer-order derivatives. Motivated by its applications in various scientific disciplines, this paper establishes novel n-times fractional Boole’s-type inequalities using the Caputo fractional derivative. For this, a fractional integral identity is first established. Using the newly derived identity, several novel Boole’s-type inequalities are subsequently obtained. The proposed inequalities generalize the classical Boole’s formula to the fractional domain. Further extensions are presented for bounded functions, Lipschitzian functions, and functions of bounded variation, providing sharper bounds compared to their classical counterparts. To demonstrate the precision and applicability of the obtained results, graphical illustrations and numerical examples are provided. These contributions offer valuable insights for applications in numerical analysis, optimization, and the theory of fractional integral equations. Full article
(This article belongs to the Section E: Applied Mathematics)
Show Figures

Figure 1

Figure 1
<p>Combined illustration showing (<b>a</b>) 2D and (<b>b</b>) 3D plots for <math display="inline"><semantics> <mrow> <mo>Θ</mo> <mrow> <mo>(</mo> <mi>μ</mi> <mo>)</mo> </mrow> <mo>=</mo> <msup> <mi>e</mi> <mrow> <mn>2</mn> <mi>μ</mi> </mrow> </msup> </mrow> </semantics></math>. (<b>a</b>) Two-dimensional plot for <math display="inline"><semantics> <mrow> <mo>Θ</mo> <mrow> <mo>(</mo> <mi>μ</mi> <mo>)</mo> </mrow> <mo>=</mo> <msup> <mi>e</mi> <mrow> <mn>2</mn> <mi>μ</mi> </mrow> </msup> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>δ</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>ρ</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>, and <math display="inline"><semantics> <mi>α</mi> </semantics></math> varies from 0 to 1. (<b>b</b>) Three-dimensional plot for <math display="inline"><semantics> <mrow> <mo>Θ</mo> <mrow> <mo>(</mo> <mi>μ</mi> <mo>)</mo> </mrow> <mo>=</mo> <msup> <mi>e</mi> <mrow> <mn>2</mn> <mi>μ</mi> </mrow> </msup> </mrow> </semantics></math>, <math display="inline"><semantics> <mi>α</mi> </semantics></math> varies from 0 to 1 and <math display="inline"><semantics> <mi>ρ</mi> </semantics></math> between 1 and 2.</p>
Full article ">Figure 2
<p>Graphical representation of inequalities of Theorem 3, in Example 1, computed and plotted with Mathematica. (<b>a</b>) Two-dimensional plot for <math display="inline"><semantics> <mrow> <mo>Θ</mo> <mrow> <mo>(</mo> <mi>μ</mi> <mo>)</mo> </mrow> <mo>=</mo> <msup> <mi>μ</mi> <mn>6</mn> </msup> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>δ</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>ρ</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>, and <math display="inline"><semantics> <mi>α</mi> </semantics></math> varies from 1 to 2. (<b>b</b>) Three-dimensional plot for <math display="inline"><semantics> <mrow> <mo>Θ</mo> <mrow> <mo>(</mo> <mi>μ</mi> <mo>)</mo> </mrow> <mo>=</mo> <msup> <mi>μ</mi> <mn>6</mn> </msup> </mrow> </semantics></math>, when <math display="inline"><semantics> <mi>α</mi> </semantics></math> varies from 0 to 1 and <math display="inline"><semantics> <mi>ρ</mi> </semantics></math> between 1 and 2.</p>
Full article ">Figure 3
<p>Graphical representation of inequalities of Theorem 3, in Example 1, computed and plotted with Mathematica. (<b>a</b>) Three-dimensional plot for <math display="inline"><semantics> <mrow> <mo>Θ</mo> <mrow> <mo>(</mo> <mi>μ</mi> <mo>)</mo> </mrow> <mo>=</mo> <msup> <mi>e</mi> <mrow> <mn>2</mn> <mi>μ</mi> </mrow> </msup> </mrow> </semantics></math> when <math display="inline"><semantics> <mi>α</mi> </semantics></math> varies from 0 to 1 and <math display="inline"><semantics> <mi>ρ</mi> </semantics></math> between 1 and <math display="inline"><semantics> <mrow> <mn>1.82</mn> </mrow> </semantics></math>. (<b>b</b>) Three-dimensional plot for <math display="inline"><semantics> <mrow> <mo>Θ</mo> <mrow> <mo>(</mo> <mi>μ</mi> <mo>)</mo> </mrow> <mo>=</mo> <msup> <mi>e</mi> <mrow> <mn>2</mn> <mi>μ</mi> </mrow> </msup> </mrow> </semantics></math> when <math display="inline"><semantics> <mi>α</mi> </semantics></math> varies from 0 to 1 and <math display="inline"><semantics> <mi>ρ</mi> </semantics></math> between <math display="inline"><semantics> <mrow> <mn>1.83</mn> </mrow> </semantics></math> and 2.</p>
Full article ">Figure 4
<p>Graphical representation of inequalities of Theorem 3, in Example 1, computed and plotted with Mathematica. (<b>a</b>) Three-dimensional plot for <math display="inline"><semantics> <mrow> <mo>Θ</mo> <mrow> <mo>(</mo> <mi>μ</mi> <mo>)</mo> </mrow> <mo>=</mo> <msup> <mi>μ</mi> <mn>6</mn> </msup> </mrow> </semantics></math> when <math display="inline"><semantics> <mi>α</mi> </semantics></math> varies from 0 to 1 and <math display="inline"><semantics> <mi>ρ</mi> </semantics></math> between 1 and <math display="inline"><semantics> <mrow> <mn>1.88</mn> </mrow> </semantics></math>. (<b>b</b>) Three-dimensional plot for <math display="inline"><semantics> <mrow> <mo>Θ</mo> <mrow> <mo>(</mo> <mi>μ</mi> <mo>)</mo> </mrow> <mo>=</mo> <msup> <mi>μ</mi> <mn>6</mn> </msup> </mrow> </semantics></math> when <math display="inline"><semantics> <mi>α</mi> </semantics></math> varies from 0 to 1 and <math display="inline"><semantics> <mi>ρ</mi> </semantics></math> between <math display="inline"><semantics> <mrow> <mn>1.88</mn> </mrow> </semantics></math> and 2.</p>
Full article ">
35 pages, 2025 KiB  
Article
Fractional Calculus for Type 2 Interval-Valued Functions
by Mostafijur Rahaman, Dimplekumar Chalishajar, Kamal Hossain Gazi, Shariful Alam, Soheil Salahshour and Sankar Prasad Mondal
Fractal Fract. 2025, 9(2), 102; https://doi.org/10.3390/fractalfract9020102 - 5 Feb 2025
Viewed by 388
Abstract
This paper presents a contemporary introduction of fractional calculus for Type 2 interval-valued functions. Type 2 interval uncertainty involves interval uncertainty with the goal of more assembled perception with reference to impreciseness. In this paper, a Riemann–Liouville fractional-order integral is constructed in Type [...] Read more.
This paper presents a contemporary introduction of fractional calculus for Type 2 interval-valued functions. Type 2 interval uncertainty involves interval uncertainty with the goal of more assembled perception with reference to impreciseness. In this paper, a Riemann–Liouville fractional-order integral is constructed in Type 2 interval delineated vague encompassment. The exploration of fractional calculus is continued with the manifestation of Riemann–Liouville and Caputo fractional derivatives in the cited phenomenon. In addition, Type 2 interval Laplace transformation is proposed in this text. Conclusively, a mathematical model regarding economic lot maintenance is analyzed as a conceivable implementation of this theoretical advancement. Full article
(This article belongs to the Special Issue Mathematical and Physical Analysis of Fractional Dynamical Systems)
Show Figures

Figure 1

Figure 1
<p><inline-formula><mml:math id="mm645"><mml:semantics><mml:mrow><mml:mi mathvariant="script">F</mml:mi><mml:mfenced separators="|"><mml:mrow><mml:mi>x</mml:mi></mml:mrow></mml:mfenced></mml:mrow></mml:semantics></mml:math></inline-formula> versus <inline-formula><mml:math id="mm646"><mml:semantics><mml:mrow><mml:mi>x</mml:mi></mml:mrow></mml:semantics></mml:math></inline-formula> plot corresponding to the function <inline-formula><mml:math id="mm647"><mml:semantics><mml:mrow><mml:mi mathvariant="script">F</mml:mi><mml:mfenced separators="|"><mml:mrow><mml:mi>x</mml:mi></mml:mrow></mml:mfenced><mml:mo>=</mml:mo><mml:mfenced open="[" close="]" separators="|"><mml:mrow><mml:mfenced open="[" close="]" separators="|"><mml:mrow><mml:mi>x</mml:mi><mml:mo>,</mml:mo><mml:mn>2</mml:mn><mml:mi>x</mml:mi></mml:mrow></mml:mfenced><mml:mo>,</mml:mo><mml:mfenced open="[" close="]" separators="|"><mml:mrow><mml:mn>4</mml:mn><mml:mi>x</mml:mi><mml:mo>,</mml:mo><mml:mn>5</mml:mn><mml:mi>x</mml:mi></mml:mrow></mml:mfenced></mml:mrow></mml:mfenced></mml:mrow></mml:semantics></mml:math></inline-formula>.</p>
Full article ">Figure 2
<p><inline-formula><mml:math id="mm648"><mml:semantics><mml:mrow><mml:mi mathvariant="script">W</mml:mi><mml:mfenced separators="|"><mml:mrow><mml:mi mathvariant="script">F</mml:mi><mml:mfenced separators="|"><mml:mrow><mml:mi>x</mml:mi></mml:mrow></mml:mfenced></mml:mrow></mml:mfenced></mml:mrow></mml:semantics></mml:math></inline-formula> versus <inline-formula><mml:math id="mm649"><mml:semantics><mml:mrow><mml:mi>x</mml:mi></mml:mrow></mml:semantics></mml:math></inline-formula> plot corresponding to the function <inline-formula><mml:math id="mm650"><mml:semantics><mml:mrow><mml:mi mathvariant="script">F</mml:mi><mml:mfenced separators="|"><mml:mrow><mml:mi>x</mml:mi></mml:mrow></mml:mfenced><mml:mo>=</mml:mo><mml:mfenced open="[" close="]" separators="|"><mml:mrow><mml:mfenced open="[" close="]" separators="|"><mml:mrow><mml:mi>x</mml:mi><mml:mo>,</mml:mo><mml:mn>2</mml:mn><mml:mi>x</mml:mi></mml:mrow></mml:mfenced><mml:mo>,</mml:mo><mml:mfenced open="[" close="]" separators="|"><mml:mrow><mml:mn>4</mml:mn><mml:mi>x</mml:mi><mml:mo>,</mml:mo><mml:mn>5</mml:mn><mml:mi>x</mml:mi></mml:mrow></mml:mfenced></mml:mrow></mml:mfenced></mml:mrow></mml:semantics></mml:math></inline-formula>.</p>
Full article ">Figure 3
<p><inline-formula><mml:math id="mm651"><mml:semantics><mml:mrow><mml:mi mathvariant="script">W</mml:mi><mml:mfenced separators="|"><mml:mrow><mml:msubsup><mml:mrow><mml:mi>I</mml:mi><mml:mn>2</mml:mn><mml:mi>R</mml:mi><mml:mi>L</mml:mi><mml:mi>F</mml:mi><mml:mi>I</mml:mi><mml:mfenced separators="|"><mml:mrow><mml:mi mathvariant="script">F</mml:mi><mml:mfenced separators="|"><mml:mrow><mml:mi>x</mml:mi></mml:mrow></mml:mfenced></mml:mrow></mml:mfenced></mml:mrow><mml:mrow><mml:mi>a</mml:mi></mml:mrow><mml:mrow><mml:mn>1</mml:mn><mml:mo>−</mml:mo><mml:mi>β</mml:mi></mml:mrow></mml:msubsup></mml:mrow></mml:mfenced></mml:mrow></mml:semantics></mml:math></inline-formula> versus <inline-formula><mml:math id="mm652"><mml:semantics><mml:mrow><mml:mi>x</mml:mi></mml:mrow></mml:semantics></mml:math></inline-formula> plot corresponding to the function <inline-formula><mml:math id="mm653"><mml:semantics><mml:mrow><mml:mi mathvariant="script">F</mml:mi><mml:mfenced separators="|"><mml:mrow><mml:mi>x</mml:mi></mml:mrow></mml:mfenced><mml:mo>=</mml:mo><mml:mfenced open="[" close="]" separators="|"><mml:mrow><mml:mfenced open="[" close="]" separators="|"><mml:mrow><mml:mi>x</mml:mi><mml:mo>,</mml:mo><mml:mn>2</mml:mn><mml:mi>x</mml:mi></mml:mrow></mml:mfenced><mml:mo>,</mml:mo><mml:mfenced open="[" close="]" separators="|"><mml:mrow><mml:mn>4</mml:mn><mml:mi>x</mml:mi><mml:mo>,</mml:mo><mml:mn>5</mml:mn><mml:mi>x</mml:mi></mml:mrow></mml:mfenced></mml:mrow></mml:mfenced></mml:mrow></mml:semantics></mml:math></inline-formula>.</p>
Full article ">Figure 4
<p><inline-formula><mml:math id="mm654"><mml:semantics><mml:mrow><mml:msubsup><mml:mrow><mml:mi>I</mml:mi><mml:mn>2</mml:mn><mml:mi>R</mml:mi><mml:mi>L</mml:mi><mml:mi>F</mml:mi><mml:mi>I</mml:mi><mml:mfenced separators="|"><mml:mrow><mml:mi mathvariant="script">F</mml:mi><mml:mfenced separators="|"><mml:mrow><mml:mi>x</mml:mi></mml:mrow></mml:mfenced></mml:mrow></mml:mfenced></mml:mrow><mml:mrow><mml:mi>a</mml:mi></mml:mrow><mml:mrow><mml:mn>1</mml:mn><mml:mo>−</mml:mo><mml:mi>β</mml:mi></mml:mrow></mml:msubsup></mml:mrow></mml:semantics></mml:math></inline-formula> versus <inline-formula><mml:math id="mm655"><mml:semantics><mml:mrow><mml:mi>x</mml:mi></mml:mrow></mml:semantics></mml:math></inline-formula> plot corresponding to the function <inline-formula><mml:math id="mm656"><mml:semantics><mml:mrow><mml:mi mathvariant="script">F</mml:mi><mml:mfenced separators="|"><mml:mrow><mml:mi>x</mml:mi></mml:mrow></mml:mfenced><mml:mo>=</mml:mo><mml:mfenced open="[" close="]" separators="|"><mml:mrow><mml:mfenced open="[" close="]" separators="|"><mml:mrow><mml:mi>x</mml:mi><mml:mo>,</mml:mo><mml:mn>2</mml:mn><mml:mi>x</mml:mi></mml:mrow></mml:mfenced><mml:mo>,</mml:mo><mml:mfenced open="[" close="]" separators="|"><mml:mrow><mml:mn>4</mml:mn><mml:mi>x</mml:mi><mml:mo>,</mml:mo><mml:mn>5</mml:mn><mml:mi>x</mml:mi></mml:mrow></mml:mfenced></mml:mrow></mml:mfenced></mml:mrow></mml:semantics></mml:math></inline-formula>.</p>
Full article ">Figure 5
<p><inline-formula><mml:math id="mm657"><mml:semantics><mml:mrow><mml:mi mathvariant="script">F</mml:mi><mml:mfenced separators="|"><mml:mrow><mml:mi>x</mml:mi></mml:mrow></mml:mfenced></mml:mrow></mml:semantics></mml:math></inline-formula> versus <inline-formula><mml:math id="mm658"><mml:semantics><mml:mrow><mml:mi>x</mml:mi></mml:mrow></mml:semantics></mml:math></inline-formula> plot corresponding to the function <inline-formula><mml:math id="mm659"><mml:semantics><mml:mrow><mml:mi mathvariant="script">F</mml:mi><mml:mfenced separators="|"><mml:mrow><mml:mi>x</mml:mi></mml:mrow></mml:mfenced><mml:mo>=</mml:mo><mml:mfenced open="[" close="]" separators="|"><mml:mrow><mml:mfenced open="[" close="]" separators="|"><mml:mrow><mml:mfenced separators="|"><mml:mrow><mml:mn>1</mml:mn><mml:mo>−</mml:mo><mml:mi>x</mml:mi></mml:mrow></mml:mfenced><mml:mo>,</mml:mo><mml:mn>2</mml:mn><mml:mfenced separators="|"><mml:mrow><mml:mn>1</mml:mn><mml:mo>−</mml:mo><mml:mi>x</mml:mi></mml:mrow></mml:mfenced></mml:mrow></mml:mfenced><mml:mo>,</mml:mo><mml:mfenced open="[" close="]" separators="|"><mml:mrow><mml:mn>4</mml:mn><mml:mfenced separators="|"><mml:mrow><mml:mn>1</mml:mn><mml:mo>−</mml:mo><mml:mi>x</mml:mi></mml:mrow></mml:mfenced><mml:mo>,</mml:mo><mml:mn>5</mml:mn><mml:mfenced separators="|"><mml:mrow><mml:mn>1</mml:mn><mml:mo>−</mml:mo><mml:mi>x</mml:mi></mml:mrow></mml:mfenced></mml:mrow></mml:mfenced></mml:mrow></mml:mfenced></mml:mrow></mml:semantics></mml:math></inline-formula>.</p>
Full article ">Figure 6
<p><inline-formula><mml:math id="mm660"><mml:semantics><mml:mrow><mml:mi mathvariant="script">W</mml:mi><mml:mfenced separators="|"><mml:mrow><mml:mi mathvariant="script">F</mml:mi><mml:mfenced separators="|"><mml:mrow><mml:mi>x</mml:mi></mml:mrow></mml:mfenced></mml:mrow></mml:mfenced></mml:mrow></mml:semantics></mml:math></inline-formula> versus <inline-formula><mml:math id="mm661"><mml:semantics><mml:mrow><mml:mi>x</mml:mi></mml:mrow></mml:semantics></mml:math></inline-formula> plot corresponding to the function <inline-formula><mml:math id="mm662"><mml:semantics><mml:mrow><mml:mi mathvariant="script">F</mml:mi><mml:mfenced separators="|"><mml:mrow><mml:mi>x</mml:mi></mml:mrow></mml:mfenced><mml:mo>=</mml:mo><mml:mfenced open="[" close="]" separators="|"><mml:mrow><mml:mfenced open="[" close="]" separators="|"><mml:mrow><mml:mfenced separators="|"><mml:mrow><mml:mn>1</mml:mn><mml:mo>−</mml:mo><mml:mi>x</mml:mi></mml:mrow></mml:mfenced><mml:mo>,</mml:mo><mml:mn>2</mml:mn><mml:mfenced separators="|"><mml:mrow><mml:mn>1</mml:mn><mml:mo>−</mml:mo><mml:mi>x</mml:mi></mml:mrow></mml:mfenced></mml:mrow></mml:mfenced><mml:mo>,</mml:mo><mml:mfenced open="[" close="]" separators="|"><mml:mrow><mml:mn>4</mml:mn><mml:mfenced separators="|"><mml:mrow><mml:mn>1</mml:mn><mml:mo>−</mml:mo><mml:mi>x</mml:mi></mml:mrow></mml:mfenced><mml:mo>,</mml:mo><mml:mn>5</mml:mn><mml:mfenced separators="|"><mml:mrow><mml:mn>1</mml:mn><mml:mo>−</mml:mo><mml:mi>x</mml:mi></mml:mrow></mml:mfenced></mml:mrow></mml:mfenced></mml:mrow></mml:mfenced></mml:mrow></mml:semantics></mml:math></inline-formula>.</p>
Full article ">Figure 7
<p><inline-formula><mml:math id="mm663"><mml:semantics><mml:mrow><mml:mi mathvariant="script">W</mml:mi><mml:mfenced separators="|"><mml:mrow><mml:msubsup><mml:mrow><mml:mi>I</mml:mi><mml:mn>2</mml:mn><mml:mi>R</mml:mi><mml:mi>L</mml:mi><mml:mi>F</mml:mi><mml:mi>I</mml:mi><mml:mfenced separators="|"><mml:mrow><mml:mi mathvariant="script">F</mml:mi><mml:mfenced separators="|"><mml:mrow><mml:mi>x</mml:mi></mml:mrow></mml:mfenced></mml:mrow></mml:mfenced></mml:mrow><mml:mrow><mml:mi>a</mml:mi></mml:mrow><mml:mrow><mml:mn>1</mml:mn><mml:mo>−</mml:mo><mml:mi>β</mml:mi></mml:mrow></mml:msubsup></mml:mrow></mml:mfenced></mml:mrow></mml:semantics></mml:math></inline-formula> versus <inline-formula><mml:math id="mm664"><mml:semantics><mml:mrow><mml:mi>x</mml:mi></mml:mrow></mml:semantics></mml:math></inline-formula> plot corresponding to the function <inline-formula><mml:math id="mm665"><mml:semantics><mml:mrow><mml:mi mathvariant="script">F</mml:mi><mml:mfenced separators="|"><mml:mrow><mml:mi>x</mml:mi></mml:mrow></mml:mfenced><mml:mo>=</mml:mo><mml:mfenced open="[" close="]" separators="|"><mml:mrow><mml:mfenced open="[" close="]" separators="|"><mml:mrow><mml:mfenced separators="|"><mml:mrow><mml:mn>1</mml:mn><mml:mo>−</mml:mo><mml:mi>x</mml:mi></mml:mrow></mml:mfenced><mml:mo>,</mml:mo><mml:mn>2</mml:mn><mml:mfenced separators="|"><mml:mrow><mml:mn>1</mml:mn><mml:mo>−</mml:mo><mml:mi>x</mml:mi></mml:mrow></mml:mfenced></mml:mrow></mml:mfenced><mml:mo>,</mml:mo><mml:mfenced open="[" close="]" separators="|"><mml:mrow><mml:mn>4</mml:mn><mml:mfenced separators="|"><mml:mrow><mml:mn>1</mml:mn><mml:mo>−</mml:mo><mml:mi>x</mml:mi></mml:mrow></mml:mfenced><mml:mo>,</mml:mo><mml:mn>5</mml:mn><mml:mfenced separators="|"><mml:mrow><mml:mn>1</mml:mn><mml:mo>−</mml:mo><mml:mi>x</mml:mi></mml:mrow></mml:mfenced></mml:mrow></mml:mfenced></mml:mrow></mml:mfenced></mml:mrow></mml:semantics></mml:math></inline-formula>.</p>
Full article ">Figure 8
<p><inline-formula><mml:math id="mm666"><mml:semantics><mml:mrow><mml:msubsup><mml:mrow><mml:mi>I</mml:mi><mml:mn>2</mml:mn><mml:mi>R</mml:mi><mml:mi>L</mml:mi><mml:mi>F</mml:mi><mml:mi>I</mml:mi><mml:mfenced separators="|"><mml:mrow><mml:mi mathvariant="script">F</mml:mi><mml:mfenced separators="|"><mml:mrow><mml:mi>x</mml:mi></mml:mrow></mml:mfenced></mml:mrow></mml:mfenced></mml:mrow><mml:mrow><mml:mi>a</mml:mi></mml:mrow><mml:mrow><mml:mn>1</mml:mn><mml:mo>−</mml:mo><mml:mi>β</mml:mi></mml:mrow></mml:msubsup></mml:mrow></mml:semantics></mml:math></inline-formula> versus <inline-formula><mml:math id="mm667"><mml:semantics><mml:mrow><mml:mi>x</mml:mi></mml:mrow></mml:semantics></mml:math></inline-formula> plot corresponding to the function <inline-formula><mml:math id="mm668"><mml:semantics><mml:mrow><mml:mi mathvariant="script">F</mml:mi><mml:mfenced separators="|"><mml:mrow><mml:mi>x</mml:mi></mml:mrow></mml:mfenced><mml:mo>=</mml:mo><mml:mfenced open="[" close="]" separators="|"><mml:mrow><mml:mfenced open="[" close="]" separators="|"><mml:mrow><mml:mfenced separators="|"><mml:mrow><mml:mn>1</mml:mn><mml:mo>−</mml:mo><mml:mi>x</mml:mi></mml:mrow></mml:mfenced><mml:mo>,</mml:mo><mml:mn>2</mml:mn><mml:mfenced separators="|"><mml:mrow><mml:mn>1</mml:mn><mml:mo>−</mml:mo><mml:mi>x</mml:mi></mml:mrow></mml:mfenced></mml:mrow></mml:mfenced><mml:mo>,</mml:mo><mml:mfenced open="[" close="]" separators="|"><mml:mrow><mml:mn>4</mml:mn><mml:mfenced separators="|"><mml:mrow><mml:mn>1</mml:mn><mml:mo>−</mml:mo><mml:mi>x</mml:mi></mml:mrow></mml:mfenced><mml:mo>,</mml:mo><mml:mn>5</mml:mn><mml:mfenced separators="|"><mml:mrow><mml:mn>1</mml:mn><mml:mo>−</mml:mo><mml:mi>x</mml:mi></mml:mrow></mml:mfenced></mml:mrow></mml:mfenced></mml:mrow></mml:mfenced></mml:mrow></mml:semantics></mml:math></inline-formula>.</p>
Full article ">
31 pages, 817 KiB  
Article
Qualitative Analysis of Generalized Power Nonlocal Fractional System with p-Laplacian Operator, Including Symmetric Cases: Application to a Hepatitis B Virus Model
by Mohamed S. Algolam, Mohammed A. Almalahi, Muntasir Suhail, Blgys Muflh, Khaled Aldwoah, Mohammed Hassan and Saeed Islam
Fractal Fract. 2025, 9(2), 92; https://doi.org/10.3390/fractalfract9020092 - 1 Feb 2025
Viewed by 410
Abstract
This paper introduces a novel framework for modeling nonlocal fractional system with a p-Laplacian operator under power nonlocal fractional derivatives (PFDs), a generalization encompassing established derivatives like Caputo–Fabrizio, Atangana–Baleanu, weighted Atangana–Baleanu, and weighted Hattaf. The core methodology involves employing a PFD with a [...] Read more.
This paper introduces a novel framework for modeling nonlocal fractional system with a p-Laplacian operator under power nonlocal fractional derivatives (PFDs), a generalization encompassing established derivatives like Caputo–Fabrizio, Atangana–Baleanu, weighted Atangana–Baleanu, and weighted Hattaf. The core methodology involves employing a PFD with a tunable power parameter within a non-singular kernel, enabling a nuanced representation of memory effects not achievable with traditional fixed-kernel derivatives. This flexible framework is analyzed using fixed-point theory, rigorously establishing the existence and uniqueness of solutions for four symmetric cases under specific conditions. Furthermore, we demonstrate the Hyers–Ulam stability, confirming the robustness of these solutions against small perturbations. The versatility and generalizability of this framework is underscored by its application to an epidemiological model of transmission of Hepatitis B Virus (HBV) and numerical simulations for all four symmetric cases. This study presents findings in both theoretical and applied aspects of fractional calculus, introducing an alternative framework for modeling complex systems with memory processes, offering opportunities for more sophisticated and accurate models and new avenues for research in fractional calculus and its applications. Full article
(This article belongs to the Special Issue Advanced Numerical Methods for Fractional Functional Models)
Show Figures

Figure 1

Figure 1
<p>Graphical illustration of approximate solution for susceptible class using different values of <math display="inline"><semantics> <mrow> <mi>β</mi> <mo>∈</mo> <mo>(</mo> <mn>0</mn> <mo>,</mo> <mn>0.75</mn> <mo>)</mo> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <mi>δ</mi> <mo>=</mo> <mstyle scriptlevel="0" displaystyle="true"> <mfrac> <mn>1</mn> <mn>4</mn> </mfrac> </mstyle> </mrow> </semantics></math> with power <math display="inline"><semantics> <mrow> <mi>p</mi> <mo>=</mo> <mn>100</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 2
<p>Graphical illustration of approximate solution for exposed class using different values of <math display="inline"><semantics> <mrow> <mi>β</mi> <mo>∈</mo> <mo>(</mo> <mn>0</mn> <mo>,</mo> <mn>0.75</mn> <mo>)</mo> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <mi>δ</mi> <mo>=</mo> <mstyle scriptlevel="0" displaystyle="true"> <mfrac> <mn>1</mn> <mn>4</mn> </mfrac> </mstyle> </mrow> </semantics></math> with power <math display="inline"><semantics> <mrow> <mi>p</mi> <mo>=</mo> <mn>100</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 3
<p>Graphical illustration of approximate solution for acutely infected class using different values of <math display="inline"><semantics> <mrow> <mi>β</mi> <mo>∈</mo> <mo>(</mo> <mn>0</mn> <mo>,</mo> <mn>0.75</mn> <mo>)</mo> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <mi>δ</mi> <mo>=</mo> <mstyle scriptlevel="0" displaystyle="true"> <mfrac> <mn>1</mn> <mn>4</mn> </mfrac> </mstyle> </mrow> </semantics></math> with power <math display="inline"><semantics> <mrow> <mi>p</mi> <mo>=</mo> <mn>100</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 4
<p>Graphical illustration of approximate solution for asymptomatic carrier class using different values of <math display="inline"><semantics> <mrow> <mi>β</mi> <mo>∈</mo> <mo>(</mo> <mn>0</mn> <mo>,</mo> <mn>0.75</mn> <mo>)</mo> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <mi>δ</mi> <mo>=</mo> <mstyle scriptlevel="0" displaystyle="true"> <mfrac> <mn>1</mn> <mn>4</mn> </mfrac> </mstyle> </mrow> </semantics></math> with power <math display="inline"><semantics> <mrow> <mi>p</mi> <mo>=</mo> <mn>100</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 5
<p>Graphical illustration of approximate solution for chronically class using different values of <math display="inline"><semantics> <mrow> <mi>β</mi> <mo>∈</mo> <mo>(</mo> <mn>0</mn> <mo>,</mo> <mn>0.75</mn> <mo>)</mo> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <mi>δ</mi> <mo>=</mo> <mstyle scriptlevel="0" displaystyle="true"> <mfrac> <mn>1</mn> <mn>4</mn> </mfrac> </mstyle> </mrow> </semantics></math> with power <math display="inline"><semantics> <mrow> <mi>p</mi> <mo>=</mo> <mn>100</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 6
<p>Graphical illustration of approximate solution for recovered class using different values of <math display="inline"><semantics> <mrow> <mi>β</mi> <mo>∈</mo> <mo>(</mo> <mn>0</mn> <mo>,</mo> <mn>0.75</mn> <mo>)</mo> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <mi>δ</mi> <mo>=</mo> <mstyle scriptlevel="0" displaystyle="true"> <mfrac> <mn>1</mn> <mn>4</mn> </mfrac> </mstyle> </mrow> </semantics></math> with power <math display="inline"><semantics> <mrow> <mi>p</mi> <mo>=</mo> <mn>100</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 7
<p>Graphical illustration of approximate solution for susceptible class using different values of <math display="inline"><semantics> <mrow> <mi>β</mi> <mo>∈</mo> <mo>(</mo> <mn>0.70</mn> <mo>,</mo> <mn>1</mn> <mo>)</mo> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <mi>δ</mi> <mo>=</mo> <mstyle scriptlevel="0" displaystyle="true"> <mfrac> <mn>1</mn> <mn>4</mn> </mfrac> </mstyle> </mrow> </semantics></math> with power <math display="inline"><semantics> <mrow> <mi>p</mi> <mo>=</mo> <mi>e</mi> </mrow> </semantics></math>.</p>
Full article ">Figure 8
<p>Graphical illustration of approximate solution for exposed class using different values of <math display="inline"><semantics> <mrow> <mi>β</mi> <mo>∈</mo> <mo>(</mo> <mn>0.70</mn> <mo>,</mo> <mn>1</mn> <mo>)</mo> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <mi>δ</mi> <mo>=</mo> <mstyle scriptlevel="0" displaystyle="true"> <mfrac> <mn>1</mn> <mn>4</mn> </mfrac> </mstyle> </mrow> </semantics></math> with power <math display="inline"><semantics> <mrow> <mi>p</mi> <mo>=</mo> <mi>e</mi> </mrow> </semantics></math>.</p>
Full article ">Figure 9
<p>Graphical illustration of approximate solution for acutely infected class using different values of <math display="inline"><semantics> <mrow> <mi>β</mi> <mo>∈</mo> <mo>(</mo> <mn>0.70</mn> <mo>,</mo> <mn>1</mn> <mo>)</mo> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <mi>δ</mi> <mo>=</mo> <mstyle scriptlevel="0" displaystyle="true"> <mfrac> <mn>1</mn> <mn>4</mn> </mfrac> </mstyle> </mrow> </semantics></math> with power <math display="inline"><semantics> <mrow> <mi>p</mi> <mo>=</mo> <mi>e</mi> </mrow> </semantics></math>.</p>
Full article ">Figure 10
<p>Graphical illustration of approximate solution for asymptomatic carrier class using different values of <math display="inline"><semantics> <mrow> <mi>β</mi> <mo>∈</mo> <mo>(</mo> <mn>0.70</mn> <mo>,</mo> <mn>1</mn> <mo>)</mo> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <mi>δ</mi> <mo>=</mo> <mstyle scriptlevel="0" displaystyle="true"> <mfrac> <mn>1</mn> <mn>4</mn> </mfrac> </mstyle> </mrow> </semantics></math> with power <math display="inline"><semantics> <mrow> <mi>p</mi> <mo>=</mo> <mi>e</mi> </mrow> </semantics></math>.</p>
Full article ">Figure 11
<p>Graphical illustration of approximate solution for chronically class using different values of <math display="inline"><semantics> <mrow> <mi>β</mi> <mo>∈</mo> <mo>(</mo> <mn>0.70</mn> <mo>,</mo> <mn>1</mn> <mo>)</mo> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <mi>δ</mi> <mo>=</mo> <mstyle scriptlevel="0" displaystyle="true"> <mfrac> <mn>1</mn> <mn>4</mn> </mfrac> </mstyle> </mrow> </semantics></math> with power <math display="inline"><semantics> <mrow> <mi>p</mi> <mo>=</mo> <mi>e</mi> </mrow> </semantics></math>.</p>
Full article ">Figure 12
<p>Graphical illustration of approximate solution for recovered class using different values of <math display="inline"><semantics> <mrow> <mi>β</mi> <mo>∈</mo> <mo>(</mo> <mn>0.70</mn> <mo>,</mo> <mn>1</mn> <mo>)</mo> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <mi>δ</mi> <mo>=</mo> <mstyle scriptlevel="0" displaystyle="true"> <mfrac> <mn>1</mn> <mn>4</mn> </mfrac> </mstyle> </mrow> </semantics></math> with power <math display="inline"><semantics> <mrow> <mi>p</mi> <mo>=</mo> <mi>e</mi> </mrow> </semantics></math>.</p>
Full article ">Figure 13
<p>Graphical illustration of approximate solution for susceptible class using different values of <math display="inline"><semantics> <mrow> <mi>δ</mi> <mo>=</mo> <mi>β</mi> <mo>∈</mo> <mo>(</mo> <mn>0.70</mn> <mo>,</mo> <mn>1</mn> <mo>)</mo> </mrow> </semantics></math> with power <math display="inline"><semantics> <mrow> <mi>p</mi> <mo>=</mo> <mi>e</mi> </mrow> </semantics></math>.</p>
Full article ">Figure 14
<p>Graphical illustration of approximate solution for exposed class using different values of <math display="inline"><semantics> <mrow> <mi>δ</mi> <mo>=</mo> <mi>β</mi> <mo>∈</mo> <mo>(</mo> <mn>0.70</mn> <mo>,</mo> <mn>1</mn> <mo>)</mo> </mrow> </semantics></math> with power <math display="inline"><semantics> <mrow> <mi>p</mi> <mo>=</mo> <mi>e</mi> </mrow> </semantics></math>.</p>
Full article ">Figure 15
<p>Graphical illustration of approximate solution for acutely infected class using different values of <math display="inline"><semantics> <mrow> <mi>δ</mi> <mo>=</mo> <mi>β</mi> <mo>∈</mo> <mo>(</mo> <mn>0.70</mn> <mo>,</mo> <mn>1</mn> <mo>)</mo> </mrow> </semantics></math> with power <math display="inline"><semantics> <mrow> <mi>p</mi> <mo>=</mo> <mi>e</mi> </mrow> </semantics></math>.</p>
Full article ">Figure 16
<p>Graphical illustration of approximate solution for asymptomatic carrier class using different values of <math display="inline"><semantics> <mrow> <mi>δ</mi> <mo>=</mo> <mi>β</mi> <mo>∈</mo> <mo>(</mo> <mn>0.70</mn> <mo>,</mo> <mn>1</mn> <mo>)</mo> </mrow> </semantics></math> with power <math display="inline"><semantics> <mrow> <mi>p</mi> <mo>=</mo> <mi>e</mi> </mrow> </semantics></math>.</p>
Full article ">Figure 17
<p>Graphical illustration of approximate solution for chronically class using different values of <math display="inline"><semantics> <mrow> <mi>δ</mi> <mo>=</mo> <mi>β</mi> <mo>∈</mo> <mo>(</mo> <mn>0.70</mn> <mo>,</mo> <mn>1</mn> <mo>)</mo> </mrow> </semantics></math> with power <math display="inline"><semantics> <mrow> <mi>p</mi> <mo>=</mo> <mi>e</mi> </mrow> </semantics></math>.</p>
Full article ">Figure 18
<p>Graphical illustration of approximate solution for recovered class using different values of <math display="inline"><semantics> <mrow> <mi>δ</mi> <mo>=</mo> <mi>β</mi> <mo>∈</mo> <mo>(</mo> <mn>0.70</mn> <mo>,</mo> <mn>1</mn> <mo>)</mo> </mrow> </semantics></math> with power <math display="inline"><semantics> <mrow> <mi>p</mi> <mo>=</mo> <mi>e</mi> </mrow> </semantics></math>.</p>
Full article ">Figure 19
<p>Graphical illustration of approximate solution for susceptible class using different values of <math display="inline"><semantics> <mrow> <mi>δ</mi> <mo>=</mo> <mi>β</mi> <mo>∈</mo> <mo>(</mo> <mn>0.70</mn> <mo>,</mo> <mn>1</mn> <mo>)</mo> </mrow> </semantics></math> with power <math display="inline"><semantics> <mrow> <mi>p</mi> <mo>=</mo> <mi>e</mi> </mrow> </semantics></math>.</p>
Full article ">Figure 20
<p>Graphical illustration of approximate solution for exposed class using different values of <math display="inline"><semantics> <mrow> <mi>δ</mi> <mo>=</mo> <mi>β</mi> <mo>∈</mo> <mo>(</mo> <mn>0.70</mn> <mo>,</mo> <mn>1</mn> <mo>)</mo> </mrow> </semantics></math> with power <math display="inline"><semantics> <mrow> <mi>p</mi> <mo>=</mo> <mi>e</mi> </mrow> </semantics></math>.</p>
Full article ">Figure 21
<p>Graphical illustration of approximate solution for acutely infected class using different values of <math display="inline"><semantics> <mrow> <mi>δ</mi> <mo>=</mo> <mi>β</mi> <mo>∈</mo> <mo>(</mo> <mn>0.70</mn> <mo>,</mo> <mn>1</mn> <mo>)</mo> </mrow> </semantics></math> with power <math display="inline"><semantics> <mrow> <mi>p</mi> <mo>=</mo> <mi>e</mi> </mrow> </semantics></math>.</p>
Full article ">Figure 22
<p>Graphical illustration of approximate solution for asymptomatic carrier class using different values of <math display="inline"><semantics> <mrow> <mi>δ</mi> <mo>=</mo> <mi>β</mi> <mo>∈</mo> <mo>(</mo> <mn>0.70</mn> <mo>,</mo> <mn>1</mn> <mo>)</mo> </mrow> </semantics></math> with power <math display="inline"><semantics> <mrow> <mi>p</mi> <mo>=</mo> <mi>e</mi> </mrow> </semantics></math>.</p>
Full article ">Figure 23
<p>Graphical illustration of approximate solution for chronically class using different values of <math display="inline"><semantics> <mrow> <mi>δ</mi> <mo>=</mo> <mi>β</mi> <mo>∈</mo> <mo>(</mo> <mn>0.70</mn> <mo>,</mo> <mn>1</mn> <mo>)</mo> </mrow> </semantics></math> with power <math display="inline"><semantics> <mrow> <mi>p</mi> <mo>=</mo> <mi>e</mi> </mrow> </semantics></math>.</p>
Full article ">Figure 24
<p>Graphical illustration of approximate solution for recovered class using different values of <math display="inline"><semantics> <mrow> <mi>δ</mi> <mo>=</mo> <mi>β</mi> <mo>∈</mo> <mo>(</mo> <mn>0.70</mn> <mo>,</mo> <mn>1</mn> <mo>)</mo> </mrow> </semantics></math> with power <math display="inline"><semantics> <mrow> <mi>p</mi> <mo>=</mo> <mi>e</mi> </mrow> </semantics></math>.</p>
Full article ">Figure 25
<p>Graphical illustration of approximate solution for susceptible class using different values of <math display="inline"><semantics> <mrow> <mi>δ</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mspace width="4pt"/> <mi>β</mi> <mo>∈</mo> <mo>(</mo> <mn>0.70</mn> <mo>,</mo> <mn>1</mn> <mo>)</mo> </mrow> </semantics></math> with power <math display="inline"><semantics> <mrow> <mi>p</mi> <mo>=</mo> <mi>e</mi> </mrow> </semantics></math>.</p>
Full article ">Figure 26
<p>Graphical illustration of approximate solution for exposed class using different values of <math display="inline"><semantics> <mrow> <mi>δ</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mspace width="4pt"/> <mi>β</mi> <mo>∈</mo> <mo>(</mo> <mn>0.70</mn> <mo>,</mo> <mn>1</mn> <mo>)</mo> </mrow> </semantics></math> with power <math display="inline"><semantics> <mrow> <mi>p</mi> <mo>=</mo> <mi>e</mi> </mrow> </semantics></math>.</p>
Full article ">Figure 27
<p>Graphical illustration of approximate solution for acutely infected class using different values of <math display="inline"><semantics> <mrow> <mi>δ</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mspace width="4pt"/> <mi>β</mi> <mo>∈</mo> <mo>(</mo> <mn>0.70</mn> <mo>,</mo> <mn>1</mn> <mo>)</mo> </mrow> </semantics></math> with power <math display="inline"><semantics> <mrow> <mi>p</mi> <mo>=</mo> <mi>e</mi> </mrow> </semantics></math>.</p>
Full article ">Figure 28
<p>Graphical illustration of approximate solution for asymptomatic carrier class using different values of <math display="inline"><semantics> <mrow> <mi>δ</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mspace width="4pt"/> <mi>β</mi> <mo>∈</mo> <mo>(</mo> <mn>0.70</mn> <mo>,</mo> <mn>1</mn> <mo>)</mo> </mrow> </semantics></math> with power <math display="inline"><semantics> <mrow> <mi>p</mi> <mo>=</mo> <mi>e</mi> </mrow> </semantics></math>.</p>
Full article ">Figure 29
<p>Graphical illustration of approximate solution for chronically class using different values of <math display="inline"><semantics> <mrow> <mi>δ</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mspace width="4pt"/> <mi>β</mi> <mo>∈</mo> <mo>(</mo> <mn>0.70</mn> <mo>,</mo> <mn>1</mn> <mo>)</mo> </mrow> </semantics></math> with power <math display="inline"><semantics> <mrow> <mi>p</mi> <mo>=</mo> <mi>e</mi> </mrow> </semantics></math>.</p>
Full article ">Figure 30
<p>Graphical illustration of approximate solution for recovered class using different values of <math display="inline"><semantics> <mrow> <mi>δ</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mspace width="4pt"/> <mi>β</mi> <mo>∈</mo> <mo>(</mo> <mn>0.70</mn> <mo>,</mo> <mn>1</mn> <mo>)</mo> </mrow> </semantics></math> with power <math display="inline"><semantics> <mrow> <mi>p</mi> <mo>=</mo> <mi>e</mi> </mrow> </semantics></math>.</p>
Full article ">
19 pages, 389 KiB  
Article
On the Existence and Uniqueness of Solutions for Neutral-Type Caputo Fractional Differential Equations with Iterated Delays: Hyers–Ulam–Mittag–Leffler Stability
by Ekaterina Madamlieva and Mihail Konstantinov
Mathematics 2025, 13(3), 484; https://doi.org/10.3390/math13030484 - 31 Jan 2025
Viewed by 488
Abstract
This study investigates nonlinear Caputo-type fractional differential equations with iterated delays, focusing on the neutral type. Initially formulated by D. Bainov and the second author of the current paper between 1972 and 1978, these superneutral equations have been extensively studied in scholarly inquiry. [...] Read more.
This study investigates nonlinear Caputo-type fractional differential equations with iterated delays, focusing on the neutral type. Initially formulated by D. Bainov and the second author of the current paper between 1972 and 1978, these superneutral equations have been extensively studied in scholarly inquiry. The present research seeks to reinvigorate interest in such delays within sophisticated frameworks of differential equations, particularly those involving fractional calculus. The primary objectives are to thoroughly examine neutral-type fractional differential equations with iterated delays and provide novel insights into their existence and uniqueness by applying Bielecki’s and Chebyshev’s norms for solution constraints analysis. Additionally, this work establishes Hyers–Ulam–Mittag–Leffler stability for these equations. Full article
Show Figures

Figure 1

Figure 1
<p>Plot of <math display="inline"><semantics> <mrow> <mstyle scriptlevel="0" displaystyle="true"> <mfrac> <mn>1</mn> <mrow> <mo>Γ</mo> <mo>(</mo> <mi>z</mi> <mo>)</mo> <mo>Γ</mo> <mo>(</mo> <mn>2</mn> <mo>−</mo> <mi>z</mi> <mo>)</mo> </mrow> </mfrac> </mstyle> <mo>&lt;</mo> <mn>1</mn> <mo>,</mo> <mspace width="4pt"/> <mi>z</mi> <mo>∈</mo> <mrow> <mo>[</mo> <mo>−</mo> <mn>15</mn> <mo>,</mo> <mn>16</mn> <mo>]</mo> </mrow> <mo>.</mo> </mrow> </semantics></math></p>
Full article ">Figure 2
<p>Plot of <math display="inline"><semantics> <mrow> <mstyle scriptlevel="0" displaystyle="true"> <mfrac> <mn>1</mn> <mrow> <mo>Γ</mo> <mo>(</mo> <mi>α</mi> <mo>)</mo> <mo>Γ</mo> <mo>(</mo> <mn>2</mn> <mo>−</mo> <mi>α</mi> <mo>)</mo> </mrow> </mfrac> </mstyle> <mo>&lt;</mo> <mn>1</mn> <mo>,</mo> <mspace width="4pt"/> <mi>α</mi> <mo>∈</mo> <mrow> <mo>(</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>.</mo> </mrow> </semantics></math></p>
Full article ">Figure 3
<p>Plot of the solutions <math display="inline"><semantics> <mrow> <msup> <mi>x</mi> <mo>*</mo> </msup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>,</mo> <mspace width="4pt"/> <msub> <mi>x</mi> <mi>c</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> of Example 2.</p>
Full article ">
18 pages, 497 KiB  
Article
Strict Stability of Fractional Differential Equations with a Caputo Fractional Derivative with Respect to Another Function
by Ravi P. Agarwal, Snezhana Hristova and Donal O’Regan
Mathematics 2025, 13(3), 452; https://doi.org/10.3390/math13030452 - 29 Jan 2025
Viewed by 532
Abstract
In this paper, we study nonlinear systems of fractional differential equations with a Caputo fractional derivative with respect to another function (CFDF) and we define the strict stability of the zero solution of the considered nonlinear system. As an auxiliary system, we consider [...] Read more.
In this paper, we study nonlinear systems of fractional differential equations with a Caputo fractional derivative with respect to another function (CFDF) and we define the strict stability of the zero solution of the considered nonlinear system. As an auxiliary system, we consider a system of two scalar fractional equations with CFDF and define a strict stability in the couple. We illustrate both definitions with several examples and, in these examples, we show that the applied function in the fractional derivative has a huge influence on the stability properties of the solutions. In addition, we use Lyapunov functions and their CFDF to obtain several sufficient conditions for strict stability. Full article
(This article belongs to the Special Issue Fractional Calculus and Mathematical Applications, 2nd Edition)
Show Figures

Figure 1

Figure 1
<p>Graphs of <math display="inline"><semantics> <mrow> <msub> <mi>E</mi> <mi>q</mi> </msub> <mrow> <mo>(</mo> <msup> <mrow> <mo>(</mo> <mi>φ</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>−</mo> <mi>φ</mi> <mrow> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> <mo>)</mo> </mrow> <mi>q</mi> </msup> <mo>)</mo> </mrow> </mrow> </semantics></math> for <math display="inline"><semantics> <mrow> <mi>φ</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <msup> <mi>t</mi> <mn>2</mn> </msup> <mo>+</mo> <mi>t</mi> </mrow> </semantics></math> and various <math display="inline"><semantics> <mrow> <mi>q</mi> <mo>=</mo> <mn>0.3</mn> <mo>,</mo> <mi>q</mi> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mi>q</mi> <mo>=</mo> <mn>0.9</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 2
<p>Graphs of <math display="inline"><semantics> <mrow> <msub> <mi>E</mi> <mi>q</mi> </msub> <mrow> <mo>(</mo> <mo>−</mo> <msup> <mrow> <mo>(</mo> <mi>φ</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>−</mo> <mi>φ</mi> <mrow> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> <mo>)</mo> </mrow> <mi>q</mi> </msup> <mo>)</mo> </mrow> </mrow> </semantics></math> for <math display="inline"><semantics> <mrow> <mi>φ</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <msup> <mi>t</mi> <mn>2</mn> </msup> <mo>+</mo> <mi>t</mi> </mrow> </semantics></math> and various <math display="inline"><semantics> <mrow> <mi>q</mi> <mo>=</mo> <mn>0.3</mn> <mo>,</mo> <mi>q</mi> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mi>q</mi> <mo>=</mo> <mn>0.9</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 3
<p>Graphs of <math display="inline"><semantics> <mrow> <msub> <mi>E</mi> <mi>q</mi> </msub> <mrow> <mo>(</mo> <msup> <mrow> <mo>(</mo> <mi>φ</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>−</mo> <mi>φ</mi> <mrow> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> <mo>)</mo> </mrow> <mi>q</mi> </msup> <mo>)</mo> </mrow> </mrow> </semantics></math> and their limits <math display="inline"><semantics> <mrow> <msub> <mi>E</mi> <mi>q</mi> </msub> <mrow> <mo>(</mo> <msup> <mrow> <mo>(</mo> <mi>L</mi> <mo>−</mo> <mi>φ</mi> <mrow> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> <mo>)</mo> </mrow> <mi>q</mi> </msup> <mo>)</mo> </mrow> </mrow> </semantics></math> for <math display="inline"><semantics> <mrow> <mi>φ</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <mstyle scriptlevel="0" displaystyle="true"> <mfrac> <mrow> <mi>t</mi> <mo>+</mo> <mn>1</mn> </mrow> <mrow> <mi>t</mi> <mo>+</mo> <mn>2</mn> </mrow> </mfrac> </mstyle> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>L</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>, and various <math display="inline"><semantics> <mrow> <mi>q</mi> <mo>=</mo> <mn>0.3</mn> <mo>,</mo> <mi>q</mi> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mi>q</mi> <mo>=</mo> <mn>0.9</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 4
<p>Graphs of <math display="inline"><semantics> <mrow> <msub> <mi>E</mi> <mi>q</mi> </msub> <mrow> <mo>(</mo> <mo>−</mo> <msup> <mrow> <mo>(</mo> <mi>φ</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>−</mo> <mi>φ</mi> <mrow> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> <mo>)</mo> </mrow> <mi>q</mi> </msup> <mo>)</mo> </mrow> </mrow> </semantics></math> and their limits <math display="inline"><semantics> <mrow> <msub> <mi>E</mi> <mi>q</mi> </msub> <mrow> <mo>(</mo> <mo>−</mo> <msup> <mrow> <mo>(</mo> <mi>L</mi> <mo>−</mo> <mi>φ</mi> <mrow> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> <mo>)</mo> </mrow> <mi>q</mi> </msup> <mo>)</mo> </mrow> </mrow> </semantics></math> for <math display="inline"><semantics> <mrow> <mi>φ</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <mstyle scriptlevel="0" displaystyle="true"> <mfrac> <mrow> <mi>t</mi> <mo>+</mo> <mn>1</mn> </mrow> <mrow> <mi>t</mi> <mo>+</mo> <mn>2</mn> </mrow> </mfrac> </mstyle> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>L</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>, and various <math display="inline"><semantics> <mrow> <mi>q</mi> <mo>=</mo> <mn>0.3</mn> <mo>,</mo> <mi>q</mi> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mi>q</mi> <mo>=</mo> <mn>0.9</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 5
<p>Graphs of the solutions of (<a href="#FD13-mathematics-13-00452" class="html-disp-formula">13</a>) with <math display="inline"><semantics> <mrow> <mi>λ</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>φ</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <mstyle scriptlevel="0" displaystyle="true"> <mfrac> <mrow> <mi>t</mi> <mo>+</mo> <mn>1</mn> </mrow> <mrow> <mi>t</mi> <mo>+</mo> <mn>2</mn> </mrow> </mfrac> </mstyle> <mo>,</mo> <mspace width="4pt"/> <mi>t</mi> <mo>≥</mo> <mn>0</mn> </mrow> </semantics></math> and various initial values <math display="inline"><semantics> <msub> <mi>x</mi> <mn>0</mn> </msub> </semantics></math>.</p>
Full article ">Figure 6
<p>Graphs of the solutions of (<a href="#FD13-mathematics-13-00452" class="html-disp-formula">13</a>) with <math display="inline"><semantics> <mrow> <mi>λ</mi> <mo>=</mo> <mo>−</mo> <mn>1</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>φ</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <mstyle scriptlevel="0" displaystyle="true"> <mfrac> <mrow> <mi>t</mi> <mo>+</mo> <mn>1</mn> </mrow> <mrow> <mi>t</mi> <mo>+</mo> <mn>2</mn> </mrow> </mfrac> </mstyle> <mo>,</mo> <mspace width="4pt"/> <mi>t</mi> <mo>≥</mo> <mn>0</mn> </mrow> </semantics></math> and various initial values <math display="inline"><semantics> <msub> <mi>x</mi> <mn>0</mn> </msub> </semantics></math>.</p>
Full article ">Figure 7
<p>Graphs of the solutions of (<a href="#FD13-mathematics-13-00452" class="html-disp-formula">13</a>) with <math display="inline"><semantics> <mrow> <mi>λ</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>φ</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <msup> <mi>t</mi> <mn>2</mn> </msup> <mo>+</mo> <mi>t</mi> <mo>,</mo> <mspace width="4pt"/> <mi>t</mi> <mo>≥</mo> <mn>0</mn> </mrow> </semantics></math> and various initial values <math display="inline"><semantics> <msub> <mi>x</mi> <mn>0</mn> </msub> </semantics></math>.</p>
Full article ">Figure 8
<p>Graphs of the solutions of (<a href="#FD13-mathematics-13-00452" class="html-disp-formula">13</a>) with <math display="inline"><semantics> <mrow> <mi>λ</mi> <mo>=</mo> <mo>−</mo> <mn>1</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>φ</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <msup> <mi>t</mi> <mn>2</mn> </msup> <mo>+</mo> <mi>t</mi> <mo>,</mo> <mspace width="4pt"/> <mi>t</mi> <mo>≥</mo> <mn>0</mn> </mrow> </semantics></math> and various initial values <math display="inline"><semantics> <msub> <mi>x</mi> <mn>0</mn> </msub> </semantics></math>.</p>
Full article ">
19 pages, 894 KiB  
Article
Fixed/Preassigned Time Synchronization of Impulsive Fractional-Order Reaction–Diffusion Bidirectional Associative Memory (BAM) Neural Networks
by Rouzimaimaiti Mahemuti, Abdujelil Abdurahman and Ahmadjan Muhammadhaji
Fractal Fract. 2025, 9(2), 88; https://doi.org/10.3390/fractalfract9020088 - 28 Jan 2025
Viewed by 466
Abstract
This study delves into the synchronization issues of the impulsive fractional-order, mainly the Caputo derivative of the order between 0 and 1, bidirectional associative memory (BAM) neural networks incorporating the diffusion term at a fixed time (FXT) and a predefined time (PDT). Initially, [...] Read more.
This study delves into the synchronization issues of the impulsive fractional-order, mainly the Caputo derivative of the order between 0 and 1, bidirectional associative memory (BAM) neural networks incorporating the diffusion term at a fixed time (FXT) and a predefined time (PDT). Initially, this study presents certain characteristics of fractional-order calculus and several lemmas pertaining to the stability of general impulsive nonlinear systems, specifically focusing on FXT and PDT stability. Subsequently, we utilize a novel controller and Lyapunov functions to establish new sufficient criteria for achieving FXT and PDT synchronizations. Finally, a numerical simulation is presented to ascertain the theoretical dependency. Full article
Show Figures

Figure 1

Figure 1
<p>The chaotic attractor of <math display="inline"><semantics> <mrow> <mi>v</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo>,</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> </semantics></math> (left) and <math display="inline"><semantics> <mrow> <mi>w</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo>,</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> </semantics></math> (right) in system (<a href="#FD24-fractalfract-09-00088" class="html-disp-formula">24</a>), where <math display="inline"><semantics> <mrow> <mi>x</mi> <mo>=</mo> <mo>−</mo> <mn>1</mn> </mrow> </semantics></math> is fixed.</p>
Full article ">Figure 2
<p>The chaotic attractor of the system (<a href="#FD24-fractalfract-09-00088" class="html-disp-formula">24</a>), where <math display="inline"><semantics> <mrow> <mi>x</mi> <mo>=</mo> <mo>−</mo> <mn>1</mn> </mrow> </semantics></math> is fixed.</p>
Full article ">Figure 3
<p>The evolution diagram of <math display="inline"><semantics> <mrow> <msub> <mi>ε</mi> <mn>1</mn> </msub> <mrow> <mo stretchy="false">(</mo> <mi>t</mi> <mo>,</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> </mrow> </semantics></math> (<b>left</b>), <math display="inline"><semantics> <mrow> <msub> <mi>ε</mi> <mn>2</mn> </msub> <mrow> <mo stretchy="false">(</mo> <mi>t</mi> <mo>,</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> </mrow> </semantics></math> (<b>middle</b>), and <math display="inline"><semantics> <mrow> <msub> <mi>ε</mi> <mn>3</mn> </msub> <mrow> <mo stretchy="false">(</mo> <mi>t</mi> <mo>,</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> </mrow> </semantics></math> (<b>right</b>).</p>
Full article ">Figure 4
<p>The evolution diagram of <math display="inline"><semantics> <mrow> <msub> <mi>η</mi> <mn>1</mn> </msub> <mrow> <mo stretchy="false">(</mo> <mi>t</mi> <mo>,</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> </mrow> </semantics></math> (<b>left</b>), <math display="inline"><semantics> <mrow> <msub> <mi>η</mi> <mn>2</mn> </msub> <mrow> <mo stretchy="false">(</mo> <mi>t</mi> <mo>,</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> </mrow> </semantics></math> (<b>middle</b>), and <math display="inline"><semantics> <mrow> <msub> <mi>η</mi> <mn>3</mn> </msub> <mrow> <mo stretchy="false">(</mo> <mi>t</mi> <mo>,</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> </mrow> </semantics></math> (<b>right</b>).</p>
Full article ">Figure 5
<p>The time evolution diagram of <math display="inline"><semantics> <mrow> <msub> <mi>ε</mi> <mn>1</mn> </msub> <mrow> <mo stretchy="false">(</mo> <mi>t</mi> <mo>,</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> </mrow> </semantics></math> (<b>left</b>), <math display="inline"><semantics> <mrow> <msub> <mi>ε</mi> <mn>2</mn> </msub> <mrow> <mo stretchy="false">(</mo> <mi>t</mi> <mo>,</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> </mrow> </semantics></math> (<b>middle</b>), and <math display="inline"><semantics> <mrow> <msub> <mi>ε</mi> <mn>3</mn> </msub> <mrow> <mo stretchy="false">(</mo> <mi>t</mi> <mo>,</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> </mrow> </semantics></math> (<b>right</b>).</p>
Full article ">Figure 6
<p>The time evolution diagram of <math display="inline"><semantics> <mrow> <msub> <mi>η</mi> <mn>1</mn> </msub> <mrow> <mo stretchy="false">(</mo> <mi>t</mi> <mo>,</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> </mrow> </semantics></math> (<b>left</b>), <math display="inline"><semantics> <mrow> <msub> <mi>η</mi> <mn>2</mn> </msub> <mrow> <mo stretchy="false">(</mo> <mi>t</mi> <mo>,</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> </mrow> </semantics></math> (<b>middle</b>), and <math display="inline"><semantics> <mrow> <msub> <mi>η</mi> <mn>3</mn> </msub> <mrow> <mo stretchy="false">(</mo> <mi>t</mi> <mo>,</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> </mrow> </semantics></math> (<b>right</b>).</p>
Full article ">Figure 7
<p>The time evolution diagram of <math display="inline"><semantics> <mrow> <mrow> <mo>∥</mo> </mrow> <msub> <mi>ε</mi> <mi>ι</mi> </msub> <msub> <mrow> <mo>∥</mo> </mrow> <mn>2</mn> </msub> </mrow> </semantics></math> (<math display="inline"><semantics> <mrow> <mi>ι</mi> <mo>∈</mo> <mo>{</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mn>3</mn> <mo>}</mo> </mrow> </semantics></math>) and <math display="inline"><semantics> <mrow> <mrow> <mo>∥</mo> </mrow> <msub> <mi>η</mi> <mi>κ</mi> </msub> <msub> <mrow> <mo>∥</mo> </mrow> <mn>2</mn> </msub> </mrow> </semantics></math> (<math display="inline"><semantics> <mrow> <mi>κ</mi> <mo>∈</mo> <mo>{</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mn>3</mn> <mo>}</mo> </mrow> </semantics></math>) for <math display="inline"><semantics> <mrow> <mi>α</mi> <mo>=</mo> <mn>0.8</mn> <mo>,</mo> <mn>0.9</mn> <mo>,</mo> <mn>0.95</mn> <mo>,</mo> <mn>0.98</mn> </mrow> </semantics></math>, respectively.</p>
Full article ">Figure 8
<p>The time evolution diagram of <math display="inline"><semantics> <mrow> <mrow> <mo>∥</mo> </mrow> <msub> <mi>ε</mi> <mi>ι</mi> </msub> <msub> <mrow> <mo>∥</mo> </mrow> <mn>2</mn> </msub> </mrow> </semantics></math> (<math display="inline"><semantics> <mrow> <mi>ι</mi> <mo>∈</mo> <mo>{</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mn>3</mn> <mo>}</mo> </mrow> </semantics></math>) (<b>left</b>) and <math display="inline"><semantics> <mrow> <mrow> <mo>∥</mo> </mrow> <msub> <mi>η</mi> <mi>κ</mi> </msub> <msub> <mrow> <mo>∥</mo> </mrow> <mn>2</mn> </msub> </mrow> </semantics></math> (<math display="inline"><semantics> <mrow> <mi>κ</mi> <mo>∈</mo> <mo>{</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mn>3</mn> <mo>}</mo> </mrow> </semantics></math>) (<b>right</b>) for <math display="inline"><semantics> <mrow> <mi>α</mi> <mo>=</mo> <mn>0.6</mn> </mrow> </semantics></math>.</p>
Full article ">
12 pages, 3493 KiB  
Article
On a Preloaded Compliance System of Fractional Order: Numerical Integration
by Marius-F. Danca
Fractal Fract. 2025, 9(2), 84; https://doi.org/10.3390/fractalfract9020084 - 26 Jan 2025
Viewed by 415
Abstract
In this paper, the use of a class of fractional-order dynamical systems with discontinuous right-hand side defined with Caputo’s derivative is considered. The existence of the solutions is analyzed. For this purpose, differential inclusions theory is used to transform, via the Filippov regularization, [...] Read more.
In this paper, the use of a class of fractional-order dynamical systems with discontinuous right-hand side defined with Caputo’s derivative is considered. The existence of the solutions is analyzed. For this purpose, differential inclusions theory is used to transform, via the Filippov regularization, the discontinuous right-hand side into a set-valued function. Next, via Cellina’s Theorem, the obtained set-valued differential inclusion of fractional order can be restarted as a single-valued continuous differential equation of fractional order, to which the existing numerical schemes for fractional differential equations can be applied. In this way, the delicate problem of integrating discontinuous problems of fractional order, as well as integer order, is solved by transforming the discontinuous problem into a continuous one. Also, it is noted that even the numerical methods for fractional-order differential equations can be applied abruptly to the discontinuous problem, without considering the underlying discontinuity, so the results could be incorrect. The technical example of a single-degree-of-freedom preloaded compliance system of fractional order is presented. Full article
Show Figures

Figure 1

Figure 1
<p>(<b>a</b>) A model of the preloaded system (<a href="#FD3-fractalfract-09-00084" class="html-disp-formula">3</a>); (<b>b</b>) the characteristic of the restoring force <span class="html-italic">f</span>; (<b>c</b>) a graph of the approximate function <math display="inline"><semantics> <msub> <mi>h</mi> <mi>ε</mi> </msub> </semantics></math>.</p>
Full article ">Figure 2
<p>(<b>a</b>) Nonclassical solutions of the IVP (<a href="#FD7-fractalfract-09-00084" class="html-disp-formula">7</a>), existing for <math display="inline"><semantics> <mrow> <mi>t</mi> <mo>&lt;</mo> <msup> <mi>T</mi> <mo>′</mo> </msup> <mo>,</mo> <msup> <mi>T</mi> <mrow> <mo>″</mo> </mrow> </msup> </mrow> </semantics></math>; (<b>b</b>) a graph of the exact solution of the discontinuous FO problem (<a href="#FD7-fractalfract-09-00084" class="html-disp-formula">7</a>) with <math display="inline"><semantics> <mrow> <msub> <mi>x</mi> <mn>0</mn> </msub> <mo>&gt;</mo> </mrow> </semantics></math>, on <math display="inline"><semantics> <mrow> <mo>[</mo> <mn>0</mn> <mo>,</mo> <msup> <mi>T</mi> <mo>′</mo> </msup> <mo>]</mo> </mrow> </semantics></math>, with <math display="inline"><semantics> <mrow> <msup> <mi>T</mi> <mo>′</mo> </msup> <mo>=</mo> <mn>0.0505</mn> </mrow> </semantics></math> (black plot), the solution of the approximated problem (<a href="#FD16-fractalfract-09-00084" class="html-disp-formula">16</a>) (blue plot), and the solution of the discontinuous IVP (<a href="#FD7-fractalfract-09-00084" class="html-disp-formula">7</a>) (red plot) obtained with numerical integration for <math display="inline"><semantics> <mrow> <mi>t</mi> <mo>∈</mo> <mo>[</mo> <mn>0</mn> <mo>,</mo> <msup> <mi>T</mi> <mo>*</mo> </msup> <mo>]</mo> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msup> <mi>T</mi> <mo>*</mo> </msup> <mo>&gt;</mo> <msup> <mi>T</mi> <mo>′</mo> </msup> </mrow> </semantics></math> (without considering the problem of discontinuity).</p>
Full article ">Figure 3
<p>(<b>a</b>) The graph of a set-valued function <span class="html-italic">F</span>; (<b>b</b>) the values of <math display="inline"><semantics> <mrow> <mi>F</mi> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> </semantics></math> for different values of <span class="html-italic">x</span>.</p>
Full article ">Figure 4
<p>(<b>a</b>) A graph of the sgn function; (<b>b</b>) a graph of the set-valued function Sgn; (<b>c</b>) a graph of the discontinuous right-hand side of (<a href="#FD7-fractalfract-09-00084" class="html-disp-formula">7</a>); (<b>d</b>) a graph of the set-valued function of (<a href="#FD7-fractalfract-09-00084" class="html-disp-formula">7</a>).</p>
Full article ">Figure 5
<p>(<b>a</b>) A sketch of a continuous approximation <math display="inline"><semantics> <msub> <mi>f</mi> <mi>ε</mi> </msub> </semantics></math> within a <math display="inline"><semantics> <mi>ε</mi> </semantics></math>-neighborhood of the set-valued function <span class="html-italic">F</span>; (<b>b</b>) a graph of the continuous <math display="inline"><semantics> <mi>ε</mi> </semantics></math>-approximation for system (<a href="#FD7-fractalfract-09-00084" class="html-disp-formula">7</a>).</p>
Full article ">Figure 6
<p>The algorithm of the continuous approximation of the discontinuous IVP (<a href="#FD6-fractalfract-09-00084" class="html-disp-formula">6</a>).</p>
Full article ">Figure 7
<p>(<b>a</b>) The trajectory of the system (<a href="#FD17-fractalfract-09-00084" class="html-disp-formula">17</a>) in space <math display="inline"><semantics> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>x</mi> <mn>2</mn> </msub> <mo>,</mo> <mi>ν</mi> <mo>)</mo> </mrow> </semantics></math>; (<b>b</b>) attractive fixed point-like. The zoomed-in detail reveals the influence of the sgn function; (<b>c</b>) periodic-like trajectory; (<b>d</b>) chaotic trajectory.</p>
Full article ">
21 pages, 631 KiB  
Article
Fractional Mathieu Equation with Two Fractional Derivatives and Some Applications
by Ahmed Salem, Hunida Malaikah and Naif Alsobhi
Fractal Fract. 2025, 9(2), 80; https://doi.org/10.3390/fractalfract9020080 - 24 Jan 2025
Viewed by 544
Abstract
The importance of this research comes from the several applications of the Mathieu equation and its generalizations in many scientific fields. Two models of fractional Mathieu equations are provided using Katugampola fractional derivatives in the sense of Riemann-Liouville and Caputo. Each model contains [...] Read more.
The importance of this research comes from the several applications of the Mathieu equation and its generalizations in many scientific fields. Two models of fractional Mathieu equations are provided using Katugampola fractional derivatives in the sense of Riemann-Liouville and Caputo. Each model contains two fractional derivatives with unique fractional orders, periodic forcing of the cosine stiffness coefficient, and many extensions and generalizations. The Banach contraction principle is used to prove that each model under consideration has a unique solution. Our results are applied to four real-life problems: the nonlinear Mathieu equation for parametric damping and the Duffing oscillator, the quadratically damped Mathieu equation, the fractional Mathieu equation’s transition curves, and the tempered fractional model of the linearly damped ion motion with an octopole. Full article
(This article belongs to the Section General Mathematics, Analysis)
Show Figures

Figure 1

Figure 1
<p>The region of the unique solution to Equation (<a href="#FD3-fractalfract-09-00080" class="html-disp-formula">3</a>) at various values of <math display="inline"><semantics> <mi>ω</mi> </semantics></math>.</p>
Full article ">Figure 2
<p>The region of the unique solution to Equation (<a href="#FD3-fractalfract-09-00080" class="html-disp-formula">3</a>) at various values of <math display="inline"><semantics> <mi>ω</mi> </semantics></math> and <span class="html-italic">a</span>.</p>
Full article ">Figure 3
<p>The region of the unique solution to Equation (<a href="#FD4-fractalfract-09-00080" class="html-disp-formula">4</a>) in <math display="inline"><semantics> <mrow> <mi>δ</mi> <mi>ϵ</mi> <mi>b</mi> </mrow> </semantics></math>-space and in <math display="inline"><semantics> <mrow> <mi>δ</mi> <mi>ϵ</mi> </mrow> </semantics></math>-plane at various values of <span class="html-italic">b</span>.</p>
Full article ">Figure 4
<p>The region of the unique solution to Equation (<a href="#FD5-fractalfract-09-00080" class="html-disp-formula">5</a>) at various values of fractional order <math display="inline"><semantics> <mi>α</mi> </semantics></math>.</p>
Full article ">Figure 5
<p>The region of the unique solution to Equation (<a href="#FD5-fractalfract-09-00080" class="html-disp-formula">5</a>) at various values of <span class="html-italic">c</span> and supremum value of fractional order <math display="inline"><semantics> <mrow> <mi>α</mi> <mo>→</mo> <mn>1</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 6
<p>The region of the unique solution to Equation (<a href="#FD9-fractalfract-09-00080" class="html-disp-formula">9</a>) at various values of the fractional derivative type <math display="inline"><semantics> <mi>ϱ</mi> </semantics></math>.</p>
Full article ">Figure 7
<p>The region of the unique solution to Equation (<a href="#FD9-fractalfract-09-00080" class="html-disp-formula">9</a>) at various values of the fractional order <span class="html-italic">r</span>.</p>
Full article ">Figure 8
<p>The region of the unique solution to Equation (<a href="#FD9-fractalfract-09-00080" class="html-disp-formula">9</a>) at various values of the fractional derivative type <math display="inline"><semantics> <mi>ϱ</mi> </semantics></math> and fractional order <span class="html-italic">r</span>.</p>
Full article ">Figure 9
<p>The region of the unique solution to Equation (<a href="#FD9-fractalfract-09-00080" class="html-disp-formula">9</a>) at <math display="inline"><semantics> <mrow> <mi>q</mi> <mo>=</mo> <mi>γ</mi> </mrow> </semantics></math> and various values of the fractional derivative type <math display="inline"><semantics> <mi>ϱ</mi> </semantics></math> and fractional order <span class="html-italic">r</span>.</p>
Full article ">
25 pages, 437 KiB  
Article
Hermite–Hadamard-Type Inequalities for Harmonically Convex Functions via Proportional Caputo-Hybrid Operators with Applications
by Saad Ihsan Butt, Muhammad Umar, Dawood Khan, Youngsoo Seol and Sanja Tipurić-Spužević
Fractal Fract. 2025, 9(2), 77; https://doi.org/10.3390/fractalfract9020077 - 24 Jan 2025
Viewed by 520
Abstract
In this paper, we aim to establish new inequalities of Hermite–Hadamard (H.H) type for harmonically convex functions using proportional Caputo-Hybrid (P.C.H) fractional operators. Parameterized by α, these operators offer a unique flexibility: setting α=1 recovers the classical inequalities for harmonically [...] Read more.
In this paper, we aim to establish new inequalities of Hermite–Hadamard (H.H) type for harmonically convex functions using proportional Caputo-Hybrid (P.C.H) fractional operators. Parameterized by α, these operators offer a unique flexibility: setting α=1 recovers the classical inequalities for harmonically convex functions, while setting α=0 yields inequalities for differentiable harmonically convex functions. This framework allows us to unify classical and fractional cases within a single operator. To validate the theoretical results, we provide several illustrative examples supported by graphical representations, marking the first use of such visualizations for inequalities derived via P.C.H operators. Additionally, we demonstrate practical applications of the results by deriving new fractional-order recurrence relations for the modified Bessel function of type-1, which are useful in mathematical modeling, engineering, and physics. The findings contribute to the growing body of research in fractional inequalities and harmonic convexity, paving the way for further exploration of generalized convexities and higher-order fractional operators. Full article
Show Figures

Figure 1

Figure 1
<p>Graphical illustration confirming the authenticity of Theorem 5 for <inline-formula><mml:math id="mm341"><mml:semantics><mml:mrow><mml:msub><mml:mi mathvariant="normal">u</mml:mi><mml:mi>o</mml:mi></mml:msub><mml:mo>∈</mml:mo><mml:mrow><mml:mo>[</mml:mo><mml:mn>0.1</mml:mn><mml:mo>,</mml:mo><mml:mn>0.5</mml:mn><mml:mo>]</mml:mo></mml:mrow></mml:mrow></mml:semantics></mml:math></inline-formula>, <inline-formula><mml:math id="mm342"><mml:semantics><mml:mrow><mml:msub><mml:mi mathvariant="normal">v</mml:mi><mml:mi>o</mml:mi></mml:msub><mml:mo>∈</mml:mo><mml:mrow><mml:mo>[</mml:mo><mml:mn>1</mml:mn><mml:mo>,</mml:mo><mml:mn>2</mml:mn><mml:mo>]</mml:mo></mml:mrow></mml:mrow></mml:semantics></mml:math></inline-formula> and <inline-formula><mml:math id="mm343"><mml:semantics><mml:mrow><mml:mi>α</mml:mi><mml:mo>=</mml:mo><mml:mn>0.5</mml:mn></mml:mrow></mml:semantics></mml:math></inline-formula>.</p>
Full article ">Figure 2
<p>Graphical illustration confirming the authenticity of Theorem 6 for <inline-formula><mml:math id="mm344"><mml:semantics><mml:mrow><mml:msub><mml:mi mathvariant="normal">u</mml:mi><mml:mi>o</mml:mi></mml:msub><mml:mo>∈</mml:mo><mml:mrow><mml:mo>[</mml:mo><mml:mn>0.1</mml:mn><mml:mo>,</mml:mo><mml:mn>0.7</mml:mn><mml:mo>]</mml:mo></mml:mrow></mml:mrow></mml:semantics></mml:math></inline-formula>, <inline-formula><mml:math id="mm345"><mml:semantics><mml:mrow><mml:msub><mml:mi mathvariant="normal">v</mml:mi><mml:mi>o</mml:mi></mml:msub><mml:mo>∈</mml:mo><mml:mrow><mml:mo>[</mml:mo><mml:mn>1</mml:mn><mml:mo>,</mml:mo><mml:mn>1.99</mml:mn><mml:mo>]</mml:mo></mml:mrow></mml:mrow></mml:semantics></mml:math></inline-formula>, <inline-formula><mml:math id="mm346"><mml:semantics><mml:mrow><mml:msub><mml:mi mathvariant="normal">q</mml:mi><mml:mi>o</mml:mi></mml:msub><mml:mo>=</mml:mo><mml:mn>3</mml:mn></mml:mrow></mml:semantics></mml:math></inline-formula>, and <inline-formula><mml:math id="mm347"><mml:semantics><mml:mrow><mml:mi>α</mml:mi><mml:mo>=</mml:mo><mml:mn>0.5</mml:mn></mml:mrow></mml:semantics></mml:math></inline-formula>.</p>
Full article ">Figure 3
<p>Graphical illustration confirming the authenticity of Theorem 10 for <inline-formula><mml:math id="mm348"><mml:semantics><mml:mrow><mml:msub><mml:mi mathvariant="normal">u</mml:mi><mml:mi>o</mml:mi></mml:msub><mml:mo>∈</mml:mo><mml:mrow><mml:mo>[</mml:mo><mml:mn>1</mml:mn><mml:mo>,</mml:mo><mml:mn>1.99</mml:mn><mml:mo>]</mml:mo></mml:mrow></mml:mrow></mml:semantics></mml:math></inline-formula>, <inline-formula><mml:math id="mm349"><mml:semantics><mml:mrow><mml:msub><mml:mi mathvariant="normal">v</mml:mi><mml:mi>o</mml:mi></mml:msub><mml:mo>∈</mml:mo><mml:mrow><mml:mo>[</mml:mo><mml:mn>2</mml:mn><mml:mo>,</mml:mo><mml:mn>2.8</mml:mn><mml:mo>]</mml:mo></mml:mrow></mml:mrow></mml:semantics></mml:math></inline-formula>, <inline-formula><mml:math id="mm350"><mml:semantics><mml:mrow><mml:msub><mml:mi mathvariant="normal">q</mml:mi><mml:mi>o</mml:mi></mml:msub><mml:mo>=</mml:mo><mml:mn>3</mml:mn></mml:mrow></mml:semantics></mml:math></inline-formula>, and <inline-formula><mml:math id="mm351"><mml:semantics><mml:mrow><mml:mi>α</mml:mi><mml:mo>=</mml:mo><mml:mn>0.5</mml:mn></mml:mrow></mml:semantics></mml:math></inline-formula>.</p>
Full article ">
16 pages, 399 KiB  
Article
Fractional Calculus of Piecewise Continuous Functions
by Manuel Duarte Ortigueira
Fractal Fract. 2025, 9(2), 75; https://doi.org/10.3390/fractalfract9020075 - 24 Jan 2025
Viewed by 668
Abstract
The fractional derivative computation of piecewise continuous functions is treated with generality. It is shown why some applications give incorrect results and why Caputo derivative give strange results. Some examples are described. Full article
(This article belongs to the Special Issue Mathematical and Physical Analysis of Fractional Dynamical Systems)
Show Figures

Figure 1

Figure 1
<p>Derivatives of a rectangular pulse defined in Example 3, for <math display="inline"><semantics> <mrow> <mi>α</mi> <mo>=</mo> <mn>0.18</mn> <mo>,</mo> <mn>0.14</mn> <mo>,</mo> <mn>0.1</mn> <mo>,</mo> <mn>0.06</mn> <mo>,</mo> <mn>0.02</mn> </mrow> </semantics></math> (<b>above</b>) and <math display="inline"><semantics> <mrow> <mi>α</mi> <mo>=</mo> <mo>−</mo> <mn>0.1</mn> <mo>,</mo> <mo>−</mo> <mn>0.3</mn> <mo>,</mo> <mo>−</mo> <mn>0.5</mn> <mo>,</mo> <mo>−</mo> <mn>0.7</mn> <mo>,</mo> <mo>−</mo> <mn>0.9</mn> </mrow> </semantics></math> (<b>below</b>).</p>
Full article ">Figure 2
<p>Solution of differential equation in Example 4, for <math display="inline"><semantics> <mrow> <mi>α</mi> <mo>=</mo> <mn>0.25</mn> <mo>,</mo> <mn>0.5</mn> <mo>,</mo> <mn>0.75</mn> <mo>,</mo> <mn>1</mn> </mrow> </semantics></math> (from below) with <math display="inline"><semantics> <mrow> <mi>a</mi> <mo>=</mo> <mn>3</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 3
<p>Solution of differential equation in Example 5, for (from left) <math display="inline"><semantics> <mrow> <mi>α</mi> <mo>=</mo> <mn>0.25</mn> <mo>,</mo> <mn>0.5</mn> <mo>,</mo> <mn>0.75</mn> <mo>,</mo> <mn>1</mn> </mrow> </semantics></math>.</p>
Full article ">
31 pages, 17297 KiB  
Article
Construction of the Closed Form Wave Solutions for TFSMCH and (1 + 1) Dimensional TFDMBBM Equations via the EMSE Technique
by Md. Asaduzzaman and Farhana Jesmin
Fractal Fract. 2025, 9(2), 72; https://doi.org/10.3390/fractalfract9020072 - 24 Jan 2025
Viewed by 900
Abstract
The purpose of this study is to investigate a series of novel exact closed form traveling wave solutions for the TFSMCH equation and (1 + 1) dimensional TFDMBBM equation using the EMSE technique. The considered FONLEEs are used to delineate the characteristic of [...] Read more.
The purpose of this study is to investigate a series of novel exact closed form traveling wave solutions for the TFSMCH equation and (1 + 1) dimensional TFDMBBM equation using the EMSE technique. The considered FONLEEs are used to delineate the characteristic of diffusion in the creation of shapes in liquid beads arising in plasma physics and fluid flow and to estimate the external long waves in nonlinear dispersive media. These equations are also used to characterize various types of waves, such as hydromagnetic waves, acoustic waves, and acoustic gravity waves. Here, we utilize the Caputo-type fractional order derivative to fractionalize the considered FONLEEs. Some trigonometric and hyperbolic trigonometric functions have been used to represent the obtained closed form traveling wave solutions. Furthermore, here, we reveal that the EMSE technique is a suitable, significant, and dominant mathematical tool for finding the exact traveling wave solutions for various FONLEEs in mathematical physics. We draw some 3D, 2D, and contour plots to describe the various wave behaviors and analyze the physical consequence of the attained solutions. Finally, we make a numerical comparison of our obtained solutions and other analogous solutions obtained using various techniques. Full article
Show Figures

Figure 1

Figure 1
<p>The 3D, 2D, and contour modulus figures for the solution <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>u</mi> </mrow> <mrow> <mo stretchy="false">(</mo> <mn>1,2</mn> <mo stretchy="false">)</mo> </mrow> </msub> </mrow> </semantics></math> in (41), which is the periodic traveling wave profile when <math display="inline"><semantics> <mrow> <mi>w</mi> <mo>=</mo> <mn>5</mn> <mo>,</mo> <mo> </mo> <mi>k</mi> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mo> </mo> <mi>β</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <mi mathvariant="normal">a</mi> <mi mathvariant="normal">n</mi> <mi mathvariant="normal">d</mi> <mo> </mo> <mi>α</mi> <mo>=</mo> <mn>0.5</mn> </mrow> </semantics></math> considering <math display="inline"><semantics> <mrow> <mn>0</mn> <mo>≤</mo> <mi>x</mi> <mo>,</mo> <mo> </mo> <mi>t</mi> <mo>≤</mo> <mn>20</mn> </mrow> </semantics></math> for the 3D and contour figures and <math display="inline"><semantics> <mrow> <mi>t</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math> for the 2D figure.</p>
Full article ">Figure 2
<p>The 3D, 2D, and contour modulus figures for the solution <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>u</mi> </mrow> <mrow> <mo stretchy="false">(</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo stretchy="false">)</mo> </mrow> </msub> </mrow> </semantics></math> in (41), which is the periodic traveling wave profile when <math display="inline"><semantics> <mrow> <mi>w</mi> <mo>=</mo> <mn>5</mn> <mo>,</mo> <mo> </mo> <mi>k</mi> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mo> </mo> <mi>β</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <mi mathvariant="normal">a</mi> <mi mathvariant="normal">n</mi> <mi mathvariant="normal">d</mi> <mo> </mo> <mi>α</mi> <mo>=</mo> <mn>0.65</mn> </mrow> </semantics></math> considering <math display="inline"><semantics> <mrow> <mn>0</mn> <mo>≤</mo> <mi>x</mi> <mo>,</mo> <mo> </mo> <mi>t</mi> <mo>≤</mo> <mn>20</mn> </mrow> </semantics></math> for the 3D and contour figures and <math display="inline"><semantics> <mrow> <mi>t</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math> for the 2D figure.</p>
Full article ">Figure 3
<p>The 3D, 2D, and contour modulus figures for the solution <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>u</mi> </mrow> <mrow> <mo stretchy="false">(</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo stretchy="false">)</mo> </mrow> </msub> </mrow> </semantics></math> in (41), which is the periodic traveling wave profile when <math display="inline"><semantics> <mrow> <mi>w</mi> <mo>=</mo> <mn>5</mn> <mo>,</mo> <mo> </mo> <mi>k</mi> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mo> </mo> <mi>β</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <mi mathvariant="normal">a</mi> <mi mathvariant="normal">n</mi> <mi mathvariant="normal">d</mi> <mo> </mo> <mi>α</mi> <mo>=</mo> <mn>0.95</mn> </mrow> </semantics></math> considering <math display="inline"><semantics> <mrow> <mn>0</mn> <mo>≤</mo> <mi>x</mi> <mo>,</mo> <mo> </mo> <mi>t</mi> <mo>≤</mo> <mn>20</mn> </mrow> </semantics></math> for the 3D and contour figures and <math display="inline"><semantics> <mrow> <mi>t</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math> for the 2D figure.</p>
Full article ">Figure 3 Cont.
<p>The 3D, 2D, and contour modulus figures for the solution <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>u</mi> </mrow> <mrow> <mo stretchy="false">(</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo stretchy="false">)</mo> </mrow> </msub> </mrow> </semantics></math> in (41), which is the periodic traveling wave profile when <math display="inline"><semantics> <mrow> <mi>w</mi> <mo>=</mo> <mn>5</mn> <mo>,</mo> <mo> </mo> <mi>k</mi> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mo> </mo> <mi>β</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <mi mathvariant="normal">a</mi> <mi mathvariant="normal">n</mi> <mi mathvariant="normal">d</mi> <mo> </mo> <mi>α</mi> <mo>=</mo> <mn>0.95</mn> </mrow> </semantics></math> considering <math display="inline"><semantics> <mrow> <mn>0</mn> <mo>≤</mo> <mi>x</mi> <mo>,</mo> <mo> </mo> <mi>t</mi> <mo>≤</mo> <mn>20</mn> </mrow> </semantics></math> for the 3D and contour figures and <math display="inline"><semantics> <mrow> <mi>t</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math> for the 2D figure.</p>
Full article ">Figure 4
<p>The 3D, 2D, and contour modulus figures for the solution <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>u</mi> </mrow> <mrow> <mo stretchy="false">(</mo> <mn>3</mn> <mo>,</mo> <mn>4</mn> <mo stretchy="false">)</mo> </mrow> </msub> </mrow> </semantics></math> in (42), which is the periodic traveling wave profile when <math display="inline"><semantics> <mrow> <mi>w</mi> <mo>=</mo> <mn>5</mn> <mo>,</mo> <mo> </mo> <mi>k</mi> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mo> </mo> <mi>β</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <mi mathvariant="normal">a</mi> <mi mathvariant="normal">n</mi> <mi mathvariant="normal">d</mi> <mo> </mo> <mi>α</mi> <mo>=</mo> <mn>0.5</mn> </mrow> </semantics></math> considering <math display="inline"><semantics> <mrow> <mn>0</mn> <mo>≤</mo> <mi>x</mi> <mo>,</mo> <mo> </mo> <mi>t</mi> <mo>≤</mo> <mn>20</mn> </mrow> </semantics></math> for the 3D and contour figures and <math display="inline"><semantics> <mrow> <mi>t</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math> for the 2D figure.</p>
Full article ">Figure 5
<p>The 3D, 2D, and contour modulus figures for the solution <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>u</mi> </mrow> <mrow> <mo stretchy="false">(</mo> <mn>3</mn> <mo>,</mo> <mn>4</mn> <mo stretchy="false">)</mo> </mrow> </msub> </mrow> </semantics></math> in (42), which is the periodic traveling wave profile when <math display="inline"><semantics> <mrow> <mi>w</mi> <mo>=</mo> <mn>15</mn> <mo>,</mo> <mo> </mo> <mi>k</mi> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mo> </mo> <mi>β</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <mi mathvariant="normal">a</mi> <mi mathvariant="normal">n</mi> <mi mathvariant="normal">d</mi> <mo> </mo> <mi>α</mi> <mo>=</mo> <mn>0.5</mn> </mrow> </semantics></math> considering <math display="inline"><semantics> <mrow> <mn>0</mn> <mo>≤</mo> <mi>x</mi> <mo>,</mo> <mo> </mo> <mi>t</mi> <mo>≤</mo> <mn>20</mn> </mrow> </semantics></math> for the 3D and contour figures and <math display="inline"><semantics> <mrow> <mi>t</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math> for the 2D figure.</p>
Full article ">Figure 6
<p>The 3D, 2D, and contour modulus figures of the solution <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>u</mi> </mrow> <mrow> <mo stretchy="false">(</mo> <mn>3</mn> <mo>,</mo> <mn>4</mn> <mo stretchy="false">)</mo> </mrow> </msub> </mrow> </semantics></math> in (42), which is the periodic traveling wave profile when <math display="inline"><semantics> <mrow> <mi>w</mi> <mo>=</mo> <mn>5</mn> <mo>,</mo> <mo> </mo> <mi>k</mi> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mo> </mo> <mi>β</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <mi mathvariant="normal">a</mi> <mi mathvariant="normal">n</mi> <mi mathvariant="normal">d</mi> <mo> </mo> <mi>α</mi> <mo>=</mo> <mn>0.95</mn> </mrow> </semantics></math> considering <math display="inline"><semantics> <mrow> <mn>0</mn> <mo>≤</mo> <mi>x</mi> <mo>,</mo> <mo> </mo> <mi>t</mi> <mo>≤</mo> <mn>20</mn> </mrow> </semantics></math> for the 3D and contour figures and <math display="inline"><semantics> <mrow> <mi>t</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math> for the 2D figure.</p>
Full article ">Figure 6 Cont.
<p>The 3D, 2D, and contour modulus figures of the solution <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>u</mi> </mrow> <mrow> <mo stretchy="false">(</mo> <mn>3</mn> <mo>,</mo> <mn>4</mn> <mo stretchy="false">)</mo> </mrow> </msub> </mrow> </semantics></math> in (42), which is the periodic traveling wave profile when <math display="inline"><semantics> <mrow> <mi>w</mi> <mo>=</mo> <mn>5</mn> <mo>,</mo> <mo> </mo> <mi>k</mi> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mo> </mo> <mi>β</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <mi mathvariant="normal">a</mi> <mi mathvariant="normal">n</mi> <mi mathvariant="normal">d</mi> <mo> </mo> <mi>α</mi> <mo>=</mo> <mn>0.95</mn> </mrow> </semantics></math> considering <math display="inline"><semantics> <mrow> <mn>0</mn> <mo>≤</mo> <mi>x</mi> <mo>,</mo> <mo> </mo> <mi>t</mi> <mo>≤</mo> <mn>20</mn> </mrow> </semantics></math> for the 3D and contour figures and <math display="inline"><semantics> <mrow> <mi>t</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math> for the 2D figure.</p>
Full article ">Figure 7
<p>The 3D, 2D, and contour modulus figures of the solution <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>u</mi> </mrow> <mrow> <mo stretchy="false">(</mo> <mn>5</mn> <mo>,</mo> <mn>6</mn> <mo stretchy="false">)</mo> </mrow> </msub> </mrow> </semantics></math> in (43), which is the solitary wave profile when <math display="inline"><semantics> <mrow> <mi>w</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <mi>k</mi> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mo> </mo> <mi>β</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <mi mathvariant="normal">a</mi> <mi mathvariant="normal">n</mi> <mi mathvariant="normal">d</mi> <mo> </mo> <mi>α</mi> <mo>=</mo> <mn>0.5</mn> </mrow> </semantics></math> considering <math display="inline"><semantics> <mrow> <mn>0</mn> <mo>≤</mo> <mi>x</mi> <mo>,</mo> <mo> </mo> <mi>t</mi> <mo>≤</mo> <mn>20</mn> </mrow> </semantics></math> for the 3D and contour figures and <math display="inline"><semantics> <mrow> <mi>t</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math> for the 2D figure.</p>
Full article ">Figure 8
<p>The 3D, 2D, and contour modulus figures of the solution <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>u</mi> </mrow> <mrow> <mo stretchy="false">(</mo> <mn>5</mn> <mo>,</mo> <mn>6</mn> <mo stretchy="false">)</mo> </mrow> </msub> </mrow> </semantics></math> in (43), which is the solitary wave profile when <math display="inline"><semantics> <mrow> <mi>w</mi> <mo>=</mo> <mn>2</mn> <mo>,</mo> <mo> </mo> <mi>k</mi> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mo> </mo> <mi>β</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <mi mathvariant="normal">a</mi> <mi mathvariant="normal">n</mi> <mi mathvariant="normal">d</mi> <mo> </mo> <mi>α</mi> <mo>=</mo> <mn>0.5</mn> </mrow> </semantics></math> considering <math display="inline"><semantics> <mrow> <mn>0</mn> <mo>≤</mo> <mi>x</mi> <mo>,</mo> <mo> </mo> <mi>t</mi> <mo>≤</mo> <mn>20</mn> </mrow> </semantics></math> for the 3D and contour figures and <math display="inline"><semantics> <mrow> <mi>t</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math> for the 2D figure.</p>
Full article ">Figure 9
<p>The 3D, 2D, and contour modulus figures of the solution <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>u</mi> </mrow> <mrow> <mo stretchy="false">(</mo> <mn>7</mn> <mo>,</mo> <mn>8</mn> <mo stretchy="false">)</mo> </mrow> </msub> </mrow> </semantics></math> in (44), which is the soliton wave profile when <math display="inline"><semantics> <mrow> <mi>w</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <mi>k</mi> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mo> </mo> <mi>β</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <mi mathvariant="normal">a</mi> <mi mathvariant="normal">n</mi> <mi mathvariant="normal">d</mi> <mo> </mo> <mi>α</mi> <mo>=</mo> <mn>0.5</mn> </mrow> </semantics></math> considering <math display="inline"><semantics> <mrow> <mn>0</mn> <mo>≤</mo> <mi>x</mi> <mo>,</mo> <mo> </mo> <mi>t</mi> <mo>≤</mo> <mn>20</mn> </mrow> </semantics></math> for the 3D and contour figures and <math display="inline"><semantics> <mrow> <mi>t</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math> for the 2D figure.</p>
Full article ">Figure 9 Cont.
<p>The 3D, 2D, and contour modulus figures of the solution <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>u</mi> </mrow> <mrow> <mo stretchy="false">(</mo> <mn>7</mn> <mo>,</mo> <mn>8</mn> <mo stretchy="false">)</mo> </mrow> </msub> </mrow> </semantics></math> in (44), which is the soliton wave profile when <math display="inline"><semantics> <mrow> <mi>w</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <mi>k</mi> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mo> </mo> <mi>β</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <mi mathvariant="normal">a</mi> <mi mathvariant="normal">n</mi> <mi mathvariant="normal">d</mi> <mo> </mo> <mi>α</mi> <mo>=</mo> <mn>0.5</mn> </mrow> </semantics></math> considering <math display="inline"><semantics> <mrow> <mn>0</mn> <mo>≤</mo> <mi>x</mi> <mo>,</mo> <mo> </mo> <mi>t</mi> <mo>≤</mo> <mn>20</mn> </mrow> </semantics></math> for the 3D and contour figures and <math display="inline"><semantics> <mrow> <mi>t</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math> for the 2D figure.</p>
Full article ">Figure 10
<p>The 3D, 2D, and contour modulus figures of the solution <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>u</mi> </mrow> <mrow> <mo stretchy="false">(</mo> <mn>7</mn> <mo>,</mo> <mn>8</mn> <mo stretchy="false">)</mo> </mrow> </msub> </mrow> </semantics></math> in (44), which is the soliton wave profile when <math display="inline"><semantics> <mrow> <mi>w</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <mi>k</mi> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mo> </mo> <mi>β</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <mi mathvariant="normal">a</mi> <mi mathvariant="normal">n</mi> <mi mathvariant="normal">d</mi> <mo> </mo> <mi>α</mi> <mo>=</mo> <mn>0.95</mn> </mrow> </semantics></math> considering <math display="inline"><semantics> <mrow> <mn>0</mn> <mo>≤</mo> <mi>x</mi> <mo>,</mo> <mo> </mo> <mi>t</mi> <mo>≤</mo> <mn>20</mn> </mrow> </semantics></math> for the 3D and contour figures and <math display="inline"><semantics> <mrow> <mi>t</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math> for the 2D figure.</p>
Full article ">Figure 11
<p>The 3D, 2D, and contour modulus figures of the solution <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>u</mi> </mrow> <mrow> <mo stretchy="false">(</mo> <mn>9</mn> <mo>,</mo> <mn>10</mn> <mo stretchy="false">)</mo> </mrow> </msub> </mrow> </semantics></math> in (67), which is the solitary wave profile when <math display="inline"><semantics> <mrow> <mi>w</mi> <mo>=</mo> <mn>0.75</mn> <mo>,</mo> <mo> </mo> <mi>γ</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <mi mathvariant="normal">a</mi> <mi mathvariant="normal">n</mi> <mi mathvariant="normal">d</mi> <mo> </mo> <mi>α</mi> <mo>=</mo> <mn>0</mn> <mrow> <mo>.</mo> <mn>96</mn> </mrow> </mrow> </semantics></math> considering <math display="inline"><semantics> <mrow> <mo>−</mo> <mn>4</mn> <mo>≤</mo> <mi>x</mi> <mo>≤</mo> <mn>4</mn> <mo>,</mo> <mo> </mo> <mn>0</mn> <mo>≤</mo> <mi>t</mi> <mo>≤</mo> <mn>5</mn> </mrow> </semantics></math> for the 3D and contour figures and <math display="inline"><semantics> <mrow> <mi>t</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math> for the 2D figure.</p>
Full article ">Figure 12
<p>The 3D, 2D, and contour modulus figures of the solution <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>u</mi> </mrow> <mrow> <mo stretchy="false">(</mo> <mn>9</mn> <mo>,</mo> <mn>10</mn> <mo stretchy="false">)</mo> </mrow> </msub> </mrow> </semantics></math> in (67), which is the solitary wave profile when <math display="inline"><semantics> <mrow> <mi>w</mi> <mo>=</mo> <mn>0.67</mn> <mo>,</mo> <mo> </mo> <mi>γ</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <mi mathvariant="normal">a</mi> <mi mathvariant="normal">n</mi> <mi mathvariant="normal">d</mi> <mo> </mo> <mi>α</mi> <mo>=</mo> <mn>0.5</mn> </mrow> </semantics></math> considering <math display="inline"><semantics> <mrow> <mo>−</mo> <mn>4</mn> <mo>≤</mo> <mi>x</mi> <mo>≤</mo> <mn>4</mn> <mo>,</mo> <mo> </mo> <mn>0</mn> <mo>≤</mo> <mi>t</mi> <mo>≤</mo> <mn>5</mn> </mrow> </semantics></math> for the 3D and contour figures and <math display="inline"><semantics> <mrow> <mi>t</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math> for the 2D figure.</p>
Full article ">Figure 12 Cont.
<p>The 3D, 2D, and contour modulus figures of the solution <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>u</mi> </mrow> <mrow> <mo stretchy="false">(</mo> <mn>9</mn> <mo>,</mo> <mn>10</mn> <mo stretchy="false">)</mo> </mrow> </msub> </mrow> </semantics></math> in (67), which is the solitary wave profile when <math display="inline"><semantics> <mrow> <mi>w</mi> <mo>=</mo> <mn>0.67</mn> <mo>,</mo> <mo> </mo> <mi>γ</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <mi mathvariant="normal">a</mi> <mi mathvariant="normal">n</mi> <mi mathvariant="normal">d</mi> <mo> </mo> <mi>α</mi> <mo>=</mo> <mn>0.5</mn> </mrow> </semantics></math> considering <math display="inline"><semantics> <mrow> <mo>−</mo> <mn>4</mn> <mo>≤</mo> <mi>x</mi> <mo>≤</mo> <mn>4</mn> <mo>,</mo> <mo> </mo> <mn>0</mn> <mo>≤</mo> <mi>t</mi> <mo>≤</mo> <mn>5</mn> </mrow> </semantics></math> for the 3D and contour figures and <math display="inline"><semantics> <mrow> <mi>t</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math> for the 2D figure.</p>
Full article ">Figure 13
<p>The 3D, 2D, and contour modulus figures of the solution <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>u</mi> </mrow> <mrow> <mo stretchy="false">(</mo> <mn>11</mn> <mo>,</mo> <mn>12</mn> <mo stretchy="false">)</mo> </mrow> </msub> </mrow> </semantics></math> in (68), which is the kink (topological soliton) wave profile when <math display="inline"><semantics> <mrow> <mi>w</mi> <mo>=</mo> <mn>0.67</mn> <mo>,</mo> <mo> </mo> <mi>γ</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <mi mathvariant="normal">a</mi> <mi mathvariant="normal">n</mi> <mi mathvariant="normal">d</mi> <mo> </mo> <mi>α</mi> <mo>=</mo> <mn>0.5</mn> </mrow> </semantics></math> considering <math display="inline"><semantics> <mrow> <mo>−</mo> <mn>4</mn> <mo>≤</mo> <mi>x</mi> <mo>≤</mo> <mn>4</mn> <mo>,</mo> <mo> </mo> <mn>0</mn> <mo>≤</mo> <mi>t</mi> <mo>≤</mo> <mn>5</mn> </mrow> </semantics></math> for the 3D and contour figures and <math display="inline"><semantics> <mrow> <mi>t</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math> for the 2D figure.</p>
Full article ">Figure 14
<p>The 3D, 2D, and contour modulus figures of the solution <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>u</mi> </mrow> <mrow> <mo stretchy="false">(</mo> <mn>11</mn> <mo>,</mo> <mn>12</mn> <mo stretchy="false">)</mo> </mrow> </msub> </mrow> </semantics></math> in (68), which is the kink (topological soliton) wave profile when <math display="inline"><semantics> <mrow> <mi>w</mi> <mo>=</mo> <mn>0.20</mn> <mo>,</mo> <mo> </mo> <mi>γ</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <mi mathvariant="normal">a</mi> <mi mathvariant="normal">n</mi> <mi mathvariant="normal">d</mi> <mo> </mo> <mi>α</mi> <mo>=</mo> <mn>0.5</mn> </mrow> </semantics></math> considering <math display="inline"><semantics> <mrow> <mo>−</mo> <mn>4</mn> <mo>≤</mo> <mi>x</mi> <mo>≤</mo> <mn>4</mn> <mo>,</mo> <mo> </mo> <mn>0</mn> <mo>≤</mo> <mi>t</mi> <mo>≤</mo> <mn>5</mn> </mrow> </semantics></math> for the 3D and contour figures and <math display="inline"><semantics> <mrow> <mi>t</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math> for the 2D figure.</p>
Full article ">Figure 15
<p>The 3D, 2D, and contour modulus figures of the solution <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>u</mi> </mrow> <mrow> <mo stretchy="false">(</mo> <mn>13</mn> <mo>,</mo> <mn>14</mn> <mo stretchy="false">)</mo> </mrow> </msub> </mrow> </semantics></math> in (69), which is the periodic traveling wave profile when <math display="inline"><semantics> <mrow> <mi>w</mi> <mo>=</mo> <mn>0.28</mn> <mo>,</mo> <mo> </mo> <mi>γ</mi> <mo>=</mo> <mn>2</mn> <mo>,</mo> <mo> </mo> <mi mathvariant="normal">a</mi> <mi mathvariant="normal">n</mi> <mi mathvariant="normal">d</mi> <mo> </mo> <mi>α</mi> <mo>=</mo> <mn>0.5</mn> </mrow> </semantics></math> considering <math display="inline"><semantics> <mrow> <mo>−</mo> <mn>4</mn> <mo>≤</mo> <mi>x</mi> <mo>≤</mo> <mn>4</mn> <mo>,</mo> <mo> </mo> <mn>0</mn> <mo>≤</mo> <mi>t</mi> <mo>≤</mo> <mn>5</mn> </mrow> </semantics></math> for the 3D and contour figures and <math display="inline"><semantics> <mrow> <mi>t</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math> for the 2D figure.</p>
Full article ">Figure 15 Cont.
<p>The 3D, 2D, and contour modulus figures of the solution <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>u</mi> </mrow> <mrow> <mo stretchy="false">(</mo> <mn>13</mn> <mo>,</mo> <mn>14</mn> <mo stretchy="false">)</mo> </mrow> </msub> </mrow> </semantics></math> in (69), which is the periodic traveling wave profile when <math display="inline"><semantics> <mrow> <mi>w</mi> <mo>=</mo> <mn>0.28</mn> <mo>,</mo> <mo> </mo> <mi>γ</mi> <mo>=</mo> <mn>2</mn> <mo>,</mo> <mo> </mo> <mi mathvariant="normal">a</mi> <mi mathvariant="normal">n</mi> <mi mathvariant="normal">d</mi> <mo> </mo> <mi>α</mi> <mo>=</mo> <mn>0.5</mn> </mrow> </semantics></math> considering <math display="inline"><semantics> <mrow> <mo>−</mo> <mn>4</mn> <mo>≤</mo> <mi>x</mi> <mo>≤</mo> <mn>4</mn> <mo>,</mo> <mo> </mo> <mn>0</mn> <mo>≤</mo> <mi>t</mi> <mo>≤</mo> <mn>5</mn> </mrow> </semantics></math> for the 3D and contour figures and <math display="inline"><semantics> <mrow> <mi>t</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math> for the 2D figure.</p>
Full article ">Figure 16
<p>The 3D, 2D, and contour modulus figures of the solution <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>u</mi> </mrow> <mrow> <mo stretchy="false">(</mo> <mn>13</mn> <mo>,</mo> <mn>14</mn> <mo stretchy="false">)</mo> </mrow> </msub> </mrow> </semantics></math> in (69), which is the periodic traveling wave profile when <math display="inline"><semantics> <mrow> <mi>w</mi> <mo>=</mo> <mn>2</mn> <mo>,</mo> <mo> </mo> <mi>γ</mi> <mo>=</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <mi mathvariant="normal">a</mi> <mi mathvariant="normal">n</mi> <mi mathvariant="normal">d</mi> <mo> </mo> <mi>α</mi> <mo>=</mo> <mn>0.5</mn> </mrow> </semantics></math> considering <math display="inline"><semantics> <mrow> <mo>−</mo> <mn>4</mn> <mo>≤</mo> <mi>x</mi> <mo>≤</mo> <mn>4</mn> <mo>,</mo> <mo> </mo> <mn>0</mn> <mo>≤</mo> <mi>t</mi> <mo>≤</mo> <mn>5</mn> </mrow> </semantics></math> for the 3D and contour figures and <math display="inline"><semantics> <mrow> <mi>t</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math> for the 2D figure.</p>
Full article ">Figure 17
<p>The 3D, 2D, and contour modulus figures of the solution <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>u</mi> </mrow> <mrow> <mo stretchy="false">(</mo> <mn>15</mn> <mo>,</mo> <mn>16</mn> <mo stretchy="false">)</mo> </mrow> </msub> </mrow> </semantics></math> in (70), which is the periodic traveling wave profile when <math display="inline"><semantics> <mrow> <mi>w</mi> <mo>=</mo> <mn>2.56</mn> <mo>,</mo> <mo> </mo> <mi>γ</mi> <mo>=</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <mi mathvariant="normal">a</mi> <mi mathvariant="normal">n</mi> <mi mathvariant="normal">d</mi> <mo> </mo> <mi>α</mi> <mo>=</mo> <mn>0.5</mn> </mrow> </semantics></math> considering <math display="inline"><semantics> <mrow> <mo>−</mo> <mn>4</mn> <mo>≤</mo> <mi>x</mi> <mo>≤</mo> <mn>4</mn> <mo>,</mo> <mo> </mo> <mn>0</mn> <mo>≤</mo> <mi>t</mi> <mo>≤</mo> <mn>5</mn> </mrow> </semantics></math> for the 3D and contour figures and <math display="inline"><semantics> <mrow> <mi>t</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math> for the 2D figure.</p>
Full article ">Figure 18
<p>The 3D, 2D, and contour modulus figures of the solution <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>u</mi> </mrow> <mrow> <mo stretchy="false">(</mo> <mn>15</mn> <mo>,</mo> <mn>16</mn> <mo stretchy="false">)</mo> </mrow> </msub> </mrow> </semantics></math> in (70), which is the periodic traveling wave profile when <math display="inline"><semantics> <mrow> <mi>w</mi> <mo>=</mo> <mn>2</mn> <mo>,</mo> <mo> </mo> <mi>γ</mi> <mo>=</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <mi mathvariant="normal">a</mi> <mi mathvariant="normal">n</mi> <mi mathvariant="normal">d</mi> <mo> </mo> <mi>α</mi> <mo>=</mo> <mn>0.5</mn> </mrow> </semantics></math> considering <math display="inline"><semantics> <mrow> <mo>−</mo> <mn>4</mn> <mo>≤</mo> <mi>x</mi> <mo>≤</mo> <mn>4</mn> <mo>,</mo> <mo> </mo> <mn>0</mn> <mo>≤</mo> <mi>t</mi> <mo>≤</mo> <mn>5</mn> </mrow> </semantics></math> for the 3D and contour figures and <math display="inline"><semantics> <mrow> <mi>t</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math> for the 2D figure.</p>
Full article ">Figure 18 Cont.
<p>The 3D, 2D, and contour modulus figures of the solution <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>u</mi> </mrow> <mrow> <mo stretchy="false">(</mo> <mn>15</mn> <mo>,</mo> <mn>16</mn> <mo stretchy="false">)</mo> </mrow> </msub> </mrow> </semantics></math> in (70), which is the periodic traveling wave profile when <math display="inline"><semantics> <mrow> <mi>w</mi> <mo>=</mo> <mn>2</mn> <mo>,</mo> <mo> </mo> <mi>γ</mi> <mo>=</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <mi mathvariant="normal">a</mi> <mi mathvariant="normal">n</mi> <mi mathvariant="normal">d</mi> <mo> </mo> <mi>α</mi> <mo>=</mo> <mn>0.5</mn> </mrow> </semantics></math> considering <math display="inline"><semantics> <mrow> <mo>−</mo> <mn>4</mn> <mo>≤</mo> <mi>x</mi> <mo>≤</mo> <mn>4</mn> <mo>,</mo> <mo> </mo> <mn>0</mn> <mo>≤</mo> <mi>t</mi> <mo>≤</mo> <mn>5</mn> </mrow> </semantics></math> for the 3D and contour figures and <math display="inline"><semantics> <mrow> <mi>t</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math> for the 2D figure.</p>
Full article ">
Back to TopTop