Model-Free Deep Recurrent Q-Network Reinforcement Learning for Quantum Circuit Architectures Design
<p>The setting of the proposed learning algorithm. (<bold>a</bold>) A LSTM cell and a feed-forward neural network (FNN) are used for history Q-function approximation. (<bold>b</bold>) The RL environment–agent diagram.</p> "> Figure 2
<p>Learning curves for 2-qubit Bell state generation. Each data point is the moving average of 2000 episodes, and the average value (solid line) with one standard deviation error bar (cyan color) over 10 independent curves are reported. (<bold>a</bold>) Reward is plotted against number of episodes; (<bold>b</bold>) number of steps to reach the goal is plotted against number of episodes.</p> "> Figure 3
<p>Learning curves for 3-qubit GHZ state generation. Each data point is the moving average of 2000 episodes, and the average value (solid line) with one standard deviation error bar (cyan color) over 10 independent curves is reported. (<bold>a</bold>) Reward is plotted against number of episodes; (<bold>b</bold>) number of steps to reach the goal is plotted against number of episodes.</p> "> Figure 4
<p>City diagrams for density matrices produced by the learning agent. The best result (highest fidelity) over 10 random seeds and 100 test steps of the policy obtained in the last episode is reported. (<bold>a</bold>) The 2-qubit Bell state experiment. The fidelity is 0.9698. (<bold>b</bold>) The 3-qubit GHZ state experiment. The fidelity is 0.6710.</p> "> Figure 5
<p>Histograms of maximum fidelity over 100 test steps for 10 independent samples. (<bold>a</bold>) The 2-qubit Bell state experiment. (<bold>b</bold>) The 3-qubit GHZ state experiment.</p> ">
Abstract
:1. Introduction
2. Methods
2.1. MDP, POMDP, and QOMDP
2.2. LSTM-Based Deep Recurrent Q-Network
2.3. RL Method
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dunjko, V.; Briegel, H.J. Machine learning & artificial intelligence in the quantum domain: A review of recent progress. Rep. Prog. Phys. 2018, 81, 074001. [Google Scholar] [CrossRef] [PubMed]
- Preskill, J. Quantum Computing in the NISQ era and beyond. Quantum 2018, 2, 79. [Google Scholar] [CrossRef]
- Wiseman, H.M.; Milburn, G.J. Quantum Measurement and Control; Cambridge University Press: Cambridge, UK, 2009; ISBN 978-0-521-80442-4. [Google Scholar]
- Nurdin, H.I.; Yamamoto, N. Linear Dynamical Quantum Systems: Analysis, Synthesis, and Control, 1st ed; Springer: New York, NY, USA, 2017; ISBN 978-3-319-55199-9. [Google Scholar]
- Johansson, J.R.; Nation, P.D.; Nori, F. QuTiP 2: A Python framework for the dynamics of open quantum systems. Comput. Phys. Commun. 2013, 184, 1234–1240. [Google Scholar] [CrossRef]
- Sutton, R.S.; Barto, A.G. Reinforcement Learning: An Introduction, 2nd ed.; Adaptive Computation and Machine Learning Series; Bradford Books: Cambridge, MA, USA, 2018; ISBN 978-0-262-03924-6. [Google Scholar]
- Russell, S.; Norvig, P. Artificial Intelligence: A Modern Approach, 4th ed.Pearson Education Limited: London, UK, 2021; ISBN 978-1-292-40113-3. [Google Scholar]
- Szepesvari, C. Algorithms for Reinforcement Learning, 1st ed.Morgan and Claypool Publishers: San Rafael, CA, USA, 2010; ISBN 978-1-60845-492-1. [Google Scholar]
- Kaelbling, L.P.; Littman, M.L.; Moore, A.W. Reinforcement Learning: A Survey. J. Artif. Intell. Res. 1996, 4, 237–285. [Google Scholar] [CrossRef]
- Geramifard, A.; Walsh, T.J.; Tellex, S.; Chowdhary, G.; Roy, N.; How, J.P. A Tutorial on Linear Function Approximators for Dynamic Programming and Reinforcement Learning. Found. Trends® Mach. Learn. 2013, 6, 375–451. [Google Scholar] [CrossRef]
- Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A.A.; Veness, J.; Bellemare, M.G.; Graves, A.; Riedmiller, M.; Fidjeland, A.K.; Ostrovski, G.; et al. Human-level control through deep reinforcement learning. Nature 2015, 518, 529–533. [Google Scholar] [CrossRef]
- Watkins, C.J.C.H.; Dayan, P. Q-learning. Mach. Learn. 1992, 8, 279–292. [Google Scholar] [CrossRef]
- Silver, D.; Schrittwieser, J.; Simonyan, K.; Antonoglou, I.; Huang, A.; Guez, A.; Hubert, T.; Baker, L.; Lai, M.; Bolton, A.; et al. Mastering the game of Go without human knowledge. Nature 2017, 550, 354–359. [Google Scholar] [CrossRef]
- Bellman, R. Dynamic Programming; Reprint Edition; Dover Publications: Mineola, NY, USA, 2003; ISBN 978-0-486-42809-3. [Google Scholar]
- Aoki, M. Optimal control of partially observable Markovian systems. J. Frankl. Inst. 1965, 280, 367–386. [Google Scholar] [CrossRef]
- Åström, K.J. Optimal control of Markov processes with incomplete state information. J. Math. Anal. Appl. 1965, 10, 174–205. [Google Scholar] [CrossRef] [Green Version]
- Papadimitriou, C.H.; Tsitsiklis, J.N. The Complexity of Markov Decision Processes. Math. Oper. Res. 1987, 12, 441–450. [Google Scholar] [CrossRef]
- Xiang, X.; Foo, S. Recent Advances in Deep Reinforcement Learning Applications for Solving Partially Observable Markov Decision Processes (POMDP) Problems: Part 1—Fundamentals and Applications in Games, Robotics and Natural Language Processing. Mach. Learn. Knowl. Extr. 2021, 3, 554–581. [Google Scholar] [CrossRef]
- Kimura, T.; Shiba, K.; Chen, C.-C.; Sogabe, M.; Sakamoto, K.; Sogabe, T. Variational Quantum Circuit-Based Reinforcement Learning for POMDP and Experimental Implementation. Math. Probl. Eng. 2021, 2021, 3511029. [Google Scholar] [CrossRef]
- Kaelbling, L.P.; Littman, M.L.; Cassandra, A.R. Planning and acting in partially observable stochastic domains. Artif. Intell. 1998, 101, 99–134. [Google Scholar] [CrossRef]
- Singh, S.P.; Jaakkola, T.; Jordan, M.I. Learning without State-Estimation in Partially Observable Markovian Decision Processes. In Machine Learning Proceedings 1994; Cohen, W.W., Hirsh, H., Eds.; Morgan Kaufmann: San Francisco, CA, USA, 1994; pp. 284–292. ISBN 978-1-55860-335-6. [Google Scholar]
- Barry, J.; Barry, D.T.; Aaronson, S. Quantum partially observable Markov decision processes. Phys. Rev. A 2014, 90, 032311. [Google Scholar] [CrossRef]
- Ying, S.; Ying, M. Reachability analysis of quantum Markov decision processes. Inf. Comput. 2018, 263, 31–51. [Google Scholar] [CrossRef]
- Ying, M.-S.; Feng, Y.; Ying, S.-G. Optimal Policies for Quantum Markov Decision Processes. Int. J. Autom. Comput. 2021, 18, 410–421. [Google Scholar] [CrossRef]
- Abhijith, J.; Adedoyin, A.; Ambrosiano, J.; Anisimov, P.; Casper, W.; Chennupati, G.; Coffrin, C.; Djidjev, H.; Gunter, D.; Karra, S.; et al. Quantum Algorithm Implementations for Beginners. ACM Trans. Quantum Comput. 2022, 3, 18:1–18:92. [Google Scholar] [CrossRef]
- Cerezo, M.; Arrasmith, A.; Babbush, R.; Benjamin, S.C.; Endo, S.; Fujii, K.; McClean, J.R.; Mitarai, K.; Yuan, X.; Cincio, L.; et al. Variational quantum algorithms. Nat. Rev. Phys. 2021, 3, 625–644. [Google Scholar] [CrossRef]
- Nielsen, M.A.; Chuang, I.L. Quantum Computation and Quantum Information: 10th Anniversary Edition. Available online: https://www.cambridge.org/highereducation/books/quantum-computation-and-quantum-information/01E10196D0A682A6AEFFEA52D53BE9AE (accessed on 22 August 2022).
- Barenco, A.; Bennett, C.H.; Cleve, R.; DiVincenzo, D.P.; Margolus, N.; Shor, P.; Sleator, T.; Smolin, J.A.; Weinfurter, H. Elementary gates for quantum computation. Phys. Rev. A 1995, 52, 3457–3467. [Google Scholar] [CrossRef] [Green Version]
- Deutsch, D. Quantum theory, the Church–Turing principle and the universal quantum computer. Proc. R. Soc. Lond. Math. Phys. Sci. 1985, 400, 97–117. [Google Scholar] [CrossRef]
- Feynman, R.P. Simulating physics with computers. Int. J. Theor. Phys. 1982, 21, 467–488. [Google Scholar] [CrossRef]
- Mermin, N.D. Quantum Computer Science: An Introduction; Cambridge University Press: Cambridge, UK, 2007; ISBN 978-0-521-87658-2. [Google Scholar]
- Arute, F.; Arya, K.; Babbush, R.; Bacon, D.; Bardin, J.C.; Barends, R.; Biswas, R.; Boixo, S.; Brandao, F.G.S.L.; Buell, D.A.; et al. Quantum supremacy using a programmable superconducting processor. Nature 2019, 574, 505–510. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.-C.; Shiau, S.-Y.; Wu, M.-F.; Wu, Y.-R. Hybrid classical-quantum linear solver using Noisy Intermediate-Scale Quantum machines. Sci. Rep. 2019, 9, 16251. [Google Scholar] [CrossRef] [PubMed]
- Kimura, T.; Shiba, K.; Chen, C.-C.; Sogabe, M.; Sakamoto, K.; Sogabe, T. Quantum circuit architectures via quantum observable Markov decision process planning. J. Phys. Commun. 2022, 6, 075006. [Google Scholar] [CrossRef]
- Borah, S.; Sarma, B.; Kewming, M.; Milburn, G.J.; Twamley, J. Measurement-Based Feedback Quantum Control with Deep Reinforcement Learning for a Double-Well Nonlinear Potential. Phys. Rev. Lett. 2021, 127, 190403. [Google Scholar] [CrossRef]
- Sivak, V.V.; Eickbusch, A.; Liu, H.; Royer, B.; Tsioutsios, I.; Devoret, M.H. Model-Free Quantum Control with Reinforcement Learning. Phys. Rev. X 2022, 12, 011059. [Google Scholar] [CrossRef]
- Niu, M.Y.; Boixo, S.; Smelyanskiy, V.N.; Neven, H. Universal quantum control through deep reinforcement learning. NPJ Quantum Inf. 2019, 5, 33. [Google Scholar] [CrossRef]
- He, R.-H.; Wang, R.; Nie, S.-S.; Wu, J.; Zhang, J.-H.; Wang, Z.-M. Deep reinforcement learning for universal quantum state preparation via dynamic pulse control. EPJ Quantum Technol. 2021, 8, 29. [Google Scholar] [CrossRef]
- Bukov, M.; Day, A.G.R.; Sels, D.; Weinberg, P.; Polkovnikov, A.; Mehta, P. Reinforcement Learning in Different Phases of Quantum Control. Phys. Rev. X 2018, 8, 031086. [Google Scholar] [CrossRef] [Green Version]
- Mackeprang, J.; Dasari, D.B.R.; Wrachtrup, J. A reinforcement learning approach for quantum state engineering. Quantum Mach. Intell. 2020, 2, 5. [Google Scholar] [CrossRef]
- Zhang, X.-M.; Wei, Z.; Asad, R.; Yang, X.-C.; Wang, X. When does reinforcement learning stand out in quantum control? A comparative study on state preparation. NPJ Quantum Inf. 2019, 5, 1–7. [Google Scholar] [CrossRef]
- Baum, Y.; Amico, M.; Howell, S.; Hush, M.; Liuzzi, M.; Mundada, P.; Merkh, T.; Carvalho, A.R.R.; Biercuk, M.J. Experimental Deep Reinforcement Learning for Error-Robust Gate-Set Design on a Superconducting Quantum Computer. PRX Quantum 2021, 2, 040324. [Google Scholar] [CrossRef]
- Kuo, E.-J.; Fang, Y.-L.L.; Chen, S.Y.-C. Quantum Architecture Search via Deep Reinforcement Learning. arXiv 2021, arXiv:2104.07715. [Google Scholar]
- Pirhooshyaran, M.; Terlaky, T. Quantum circuit design search. Quantum Mach. Intell. 2021, 3, 25. [Google Scholar] [CrossRef]
- Ostaszewski, M.; Trenkwalder, L.M.; Masarczyk, W.; Scerri, E.; Dunjko, V. Reinforcement learning for optimization of variational quantum circuit architectures. Adv. Neural Inf. Process. Syst. 2021, 34, 18182–18194. [Google Scholar]
- August, M.; Hernández-Lobato, J.M. Taking Gradients Through Experiments: LSTMs and Memory Proximal Policy Optimization for Black-Box Quantum Control. In Proceedings of the High Performance Computing, Frankfurt, Germany, 24–28 June 2018; Yokota, R., Weiland, M., Shalf, J., Alam, S., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 591–613. [Google Scholar]
- Hausknecht, M.; Stone, P. Deep Recurrent Q-Learning for Partially Observable MDPs. In Proceedings of the 2015 AAAI Fall Symposium Series, Arlington, VA, USA, 12–14 November 2015. [Google Scholar]
- Lample, G.; Chaplot, D.S. Playing FPS Games with Deep Reinforcement Learning. In Proceedings of the AAAI Conference on Artificial Intelligence, San Francisco, CA, USA, 4–9 February 2017; Volume 31. [Google Scholar] [CrossRef]
- Zhu, P.; Li, X.; Poupart, P.; Miao, G. On Improving Deep Reinforcement Learning for POMDPs. arXiv 2018, arXiv:1704.07978. [Google Scholar]
- Kimura, T.; Sakamoto, K.; Sogabe, T. Development of AlphaZero-based Reinforcment Learning Algorithm for Solving Partially Observable Markov Decision Process (POMDP) Problem. Bull. Netw. Comput. Syst. Softw. 2020, 9, 69–73. [Google Scholar]
- Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; The MIT Press: Cambridge, MA, USA, 2016; ISBN 978-0-262-03561-3. [Google Scholar]
- Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef]
- Gers, F.A.; Schmidhuber, J.; Cummins, F. Learning to Forget: Continual Prediction with LSTM. Neural Comput. 2000, 12, 2451–2471. [Google Scholar] [CrossRef]
- Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.; Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.; et al. PyTorch: An Imperative Style, High-Performance Deep Learning Library. In Proceedings of the Advances in Neural Information Processing Systems; Curran Associates, Inc.: Red Hoo, NY, USA, 2019; Volume 32. [Google Scholar]
- Harris, C.R.; Millman, K.J.; van der Walt, S.J.; Gommers, R.; Virtanen, P.; Cournapeau, D.; Wieser, E.; Taylor, J.; Berg, S.; Smith, N.J.; et al. Array programming with NumPy. Nature 2020, 585, 357–362. [Google Scholar] [CrossRef] [PubMed]
- Hunter, J.D. Matplotlib: A 2D Graphics Environment. Comput. Sci. Eng. 2007, 9, 90–95. [Google Scholar] [CrossRef]
- Treinish, M.; Gambetta, J.; Nation, P.; qiskit-bot; Kassebaum, P.; Rodríguez, D.M.; González, S.d.l.P.; Hu, S.; Krsulich, K.; Lishman, J.; et al. Qiskit/qiskit: Qiskit 0.37.1. 2022. Available online: https://elib.uni-stuttgart.de/handle/11682/12385 (accessed on 16 August 2022). [CrossRef]
- Greenberger, D.M.; Horne, M.A.; Zeilinger, A. Going Beyond Bell’s Theorem. In Bell’s Theorem, Quantum Theory and Conceptions of the Universe; Fundamental Theories of Physics; Kafatos, M., Ed.; Springer: Dordrecht, The Netherlands, 1989; pp. 69–72. ISBN 978-94-017-0849-4. [Google Scholar]
- Gasse, M.; Chételat, D.; Ferroni, N.; Charlin, L.; Lodi, A. Exact combinatorial optimization with graph convolutional neural networks. In Proceedings of the 33rd International Conference on Neural Information Processing Systems, Vancouver, BC, Canada, 8–14 December 2019; Curran Associates Inc.: Red Hook, NY, USA, 2019; pp. 15580–15592. [Google Scholar]
- Peruzzo, A.; McClean, J.; Shadbolt, P.; Yung, M.-H.; Zhou, X.-Q.; Love, P.J.; Aspuru-Guzik, A.; O’Brien, J.L. A variational eigenvalue solver on a photonic quantum processor. Nat. Commun. 2014, 5, 4213. [Google Scholar] [CrossRef] [PubMed]
- McClean, J.R.; Romero, J.; Babbush, R.; Aspuru-Guzik, A. The theory of variational hybrid quantum-classical algorithms. New J. Phys. 2016, 18, 023023. [Google Scholar] [CrossRef]
- Kandala, A.; Mezzacapo, A.; Temme, K.; Takita, M.; Brink, M.; Chow, J.M.; Gambetta, J.M. Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets. Nature 2017, 549, 242–246. [Google Scholar] [CrossRef] [Green Version]
Hyperparameter | Value |
---|---|
Target state fidelity threshold | 0.99 |
Maximum steps per episode | 100 |
Number of episodes | 30,000 |
Reply buffer size | 1,000,000 |
Epsilon start | 1.0 |
Epsilon end | 0.01 |
Epsilon decay rate | 0.9997 |
LSTM sequence length | 3 |
LSTM hidden states size | 30 |
FNN hidden states size | 30 |
FNN activation function | linear |
Minibatch size | 32 |
Learning rate | 0.001 |
Soft update rate tau | 0.001 |
Discount rate | 0.95 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sogabe, T.; Kimura, T.; Chen, C.-C.; Shiba, K.; Kasahara, N.; Sogabe, M.; Sakamoto, K. Model-Free Deep Recurrent Q-Network Reinforcement Learning for Quantum Circuit Architectures Design. Quantum Rep. 2022, 4, 380-389. https://doi.org/10.3390/quantum4040027
Sogabe T, Kimura T, Chen C-C, Shiba K, Kasahara N, Sogabe M, Sakamoto K. Model-Free Deep Recurrent Q-Network Reinforcement Learning for Quantum Circuit Architectures Design. Quantum Reports. 2022; 4(4):380-389. https://doi.org/10.3390/quantum4040027
Chicago/Turabian StyleSogabe, Tomah, Tomoaki Kimura, Chih-Chieh Chen, Kodai Shiba, Nobuhiro Kasahara, Masaru Sogabe, and Katsuyoshi Sakamoto. 2022. "Model-Free Deep Recurrent Q-Network Reinforcement Learning for Quantum Circuit Architectures Design" Quantum Reports 4, no. 4: 380-389. https://doi.org/10.3390/quantum4040027
APA StyleSogabe, T., Kimura, T., Chen, C. -C., Shiba, K., Kasahara, N., Sogabe, M., & Sakamoto, K. (2022). Model-Free Deep Recurrent Q-Network Reinforcement Learning for Quantum Circuit Architectures Design. Quantum Reports, 4(4), 380-389. https://doi.org/10.3390/quantum4040027