What Is the Predictive Capacity of Sesamum indicum L. Bioparameters Using Machine Learning with Red–Green–Blue (RGB) Images?
<p>Spatial location of the experimental area, Serra Talhada, Pernambuco, Brazil.</p> "> Figure 2
<p>Details of the Mavic 2 Enterprise Dual: (<b>A</b>) General view of the complete equipment, and detailed view of the integrated RGB and thermal sensors (<b>B</b>).</p> "> Figure 3
<p>Plots delineated by the shapefile layer (<b>A</b>), soil removal (<b>B</b>), and applied vegetation index (<b>C</b>).</p> "> Figure 4
<p>Correlation analysis of vegetation indices and leaf area index (<b>A</b>); application of the CRITIC method to vegetation indices (<b>B</b>). The asterisk (*) represents a statistically significant difference (<span class="html-italic">p</span> < 0.05).</p> "> Figure 5
<p>Correlation analysis of vegetation indices and photosynthetic pigments (<b>A</b>); and application of the CRITIC method to vegetation indices (<b>B</b>). The asterisk (*) represents a statistically significant difference (<span class="html-italic">p</span> < 0.05).</p> "> Figure 6
<p>Leaf area index (LAI) estimated by the XGBoost algorithm using the significance cutoff correlation method (<b>A</b>) and the CRITIC weighting method (<b>B</b>).</p> "> Figure 7
<p>Chlorophyll a (<b>A</b>,<b>B</b>), chlorophyll b (<b>C</b>,<b>D</b>), total chlorophyll (<b>E</b>,<b>F</b>), and carotenoids (<b>G</b>,<b>H</b>) estimated by the XGBoost algorithm using the significance cutoff correlation method and the CRITIC weighting method.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Location and Climate of the Study Area
2.2. Experimental Design
2.3. Planting and Cultivation of Sesame
2.4. Data Collection
2.4.1. Determination of Leaf Area Index
2.4.2. Determination of Pigment Concentrations in Sesame Leaves
2.4.3. Acquisition of Aerial Images with UAVs
2.5. Data Processing
2.5.1. Image Processing and Index Generation
2.5.2. Selection of Indices and Model Estimation
2.5.3. Parameter Modeling
2.5.4. Statistical Analysis of the Models
3. Results
3.1. Correlation Analysis and Index Weighting for Selection
3.2. Modeling Using Cutoff Methods
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Medina, H.; Tian, D.; Abebe, A. On Optimizing a MODIS-Based Framework for in-Season Corn Yield Forecast. Int. J. Appl. Earth Obs. Geoinf. 2021, 95, 102258. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhu, L. A Review on Unmanned Aerial Vehicle Remote Sensing: Platforms, Sensors, Data Processing Methods, and Applications. Drones 2023, 7, 398. [Google Scholar] [CrossRef]
- Ji, Z.; Pan, Y.; Zhu, X.; Zhang, D.; Dai, J. Prediction of Corn Yield in the USA Corn Belt Using Satellite Data and Machine Learning: From an Evapotranspiration Perspective. Agriculture 2022, 12, 1263. [Google Scholar] [CrossRef]
- Sishodia, R.P.; Ray, R.L.; Singh, S.K. Applications of Remote Sensing in Precision Agriculture: A Review. Remote Sens. 2020, 12, 3136. [Google Scholar] [CrossRef]
- Schut, A.G.T.; Traore, P.C.S.; Blaes, X.; de By, R.A. Assessing Yield and Fertilizer Response in Heterogeneous Smallholder Fields with UAVs and Satellites. Field Crops Res. 2018, 221, 98–107. [Google Scholar] [CrossRef]
- Feng, H.; Tao, H.; Li, Z.; Yang, G.; Zhao, C. Comparison of UAV RGB Imagery and Hyperspectral Remote-Sensing Data for Monitoring Winter Wheat Growth. Remote Sens. 2022, 14, 3811. [Google Scholar] [CrossRef]
- Zhang, C.; Yi, Y.; Wang, L.; Zhang, X.; Chen, S.; Su, Z.; Zhang, S.; Xue, Y. Estimation of the Bio-Parameters of Winter Wheat by Combining Feature Selection with Machine Learning Using Multi-Temporal Unmanned Aerial Vehicle Multispectral Images. Remote Sens. 2024, 16, 469. [Google Scholar] [CrossRef]
- Jeon, Y.-J.; Park, S.J.; Lee, H.; Kim, H.-Y.; Jung, D.-H. Deep Learning-Based Model for Effective Classification of Ziziphus Jujuba Using RGB Images. AgriEngineering 2024, 6, 4604–4619. [Google Scholar] [CrossRef]
- Amarasingam, N.; Gonzalez, F.; Salgadoe, A.S.A.; Sandino, J.; Powell, K. Detection of White Leaf Disease in Sugarcane Crops Using UAV-Derived RGB Imagery with Existing Deep Learning Models. Remote Sens. 2022, 14, 6137. [Google Scholar] [CrossRef]
- Zeng, L.; Peng, G.; Meng, R.; Man, J.; Li, W.; Xu, B.; Lv, Z.; Sun, R. Wheat Yield Prediction Based on Unmanned Aerial Vehicles-Collected Red–Green–Blue Imagery. Remote Sens. 2021, 13, 2937. [Google Scholar] [CrossRef]
- Lu, N.; Zhou, J.; Han, Z.; Li, D.; Cao, Q.; Yao, X.; Tian, Y.; Zhu, Y.; Cao, W.; Cheng, T. Improved Estimation of Aboveground Biomass in Wheat from RGB Imagery and Point Cloud Data Acquired with a Low-Cost Unmanned Aerial Vehicle System. Plant Methods 2019, 15, 17. [Google Scholar] [CrossRef] [PubMed]
- Dwyer, L.M.; Stewart, D.W. Effect of Leaf Age and Position on Net Photosynthetic Rates in Maize (Zea mays L.). Agric. Meteorol. 1986, 37, 29–46. [Google Scholar] [CrossRef]
- Mendoza Pérez, C.; Ramirez Ayala, C.; Martinez Ruiz, A.; Ojeda Bustamante, W.; del Ruelas Islas, J.R.; Ascencio Hernández, R.; López Ordaz, A.; Núñez Ramírez, F. Leaf Area and Its Impact in Yield and Quality of Greenhouse Tomato (Solanum lycopersicum L.). Rev. Fac. Cienc. Agrar. UNCuyo 2022, 54, 57–69. [Google Scholar] [CrossRef]
- Cui, B.; Zhao, Q.; Huang, W.; Song, X.; Ye, H.; Zhou, X. A New Integrated Vegetation Index for the Estimation of Winter Wheat Leaf Chlorophyll Content. Remote Sens. 2019, 11, 974. [Google Scholar] [CrossRef]
- Doğru, A. Effects of Heat Stress on Photosystem II Activity and Antioxidant Enzymes in Two Maize Cultivars. Planta 2021, 253, 85. [Google Scholar] [CrossRef]
- Gholizadeh, A.; Saberioon, M.; Borůvka, L.; Wayayok, A.; Mohd Soom, M.A. Leaf Chlorophyll and Nitrogen Dynamics and Their Relationship to Lowland Rice Yield for Site-Specific Paddy Management. Inf. Process. Agric. 2017, 4, 259–268. [Google Scholar] [CrossRef]
- Zhang, H.; Ge, Y.; Xie, X.; Atefi, A.; Wijewardane, N.K.; Thapa, S. High Throughput Analysis of Leaf Chlorophyll Content in Sorghum Using RGB, Hyperspectral, and Fluorescence Imaging and Sensor Fusion. Plant Methods 2022, 18, 60. [Google Scholar] [CrossRef]
- Impollonia, G.; Croci, M.; Blandinières, H.; Marcone, A.; Amaducci, S. Comparison of PROSAIL Model Inversion Methods for Estimating Leaf Chlorophyll Content and LAI Using UAV Imagery for Hemp Phenotyping. Remote Sens. 2022, 14, 5801. [Google Scholar] [CrossRef]
- Li, D.; Chen, J.M.; Zhang, X.; Yan, Y.; Zhu, J.; Zheng, H.; Zhou, K.; Yao, X.; Tian, Y.; Zhu, Y.; et al. Improved Estimation of Leaf Chlorophyll Content of Row Crops from Canopy Reflectance Spectra through Minimizing Canopy Structural Effects and Optimizing Off-Noon Observation Time. Remote Sens. Environ. 2020, 248, 111985. [Google Scholar] [CrossRef]
- Shao, G.; Han, W.; Zhang, H.; Liu, S.; Wang, Y.; Zhang, L.; Cui, X. Mapping Maize Crop Coefficient Kc Using Random Forest Algorithm Based on Leaf Area Index and UAV-Based Multispectral Vegetation Indices. Agric. Water Manag. 2021, 252, 106906. [Google Scholar] [CrossRef]
- Xu, X.Q.; Lu, J.S.; Zhang, N.; Yang, T.C.; He, J.Y.; Yao, X.; Cheng, T.; Zhu, Y.; Cao, W.X.; Tian, Y.C. Inversion of Rice Canopy Chlorophyll Content and Leaf Area Index Based on Coupling of Radiative Transfer and Bayesian Network Models. ISPRS J. Photogramm. Remote Sens. 2019, 150, 185–196. [Google Scholar] [CrossRef]
- Shah, S.H.; Angel, Y.; Houborg, R.; Ali, S.; McCabe, M.F. A Random Forest Machine Learning Approach for the Retrieval of Leaf Chlorophyll Content in Wheat. Remote Sens. 2019, 11, 920. [Google Scholar] [CrossRef]
- Sun, Q.; Jiao, Q.; Chen, X.; Xing, H.; Huang, W.; Zhang, B. Machine Learning Algorithms for the Retrieval of Canopy Chlorophyll Content and Leaf Area Index of Crops Using the PROSAIL-D Model with the Adjusted Average Leaf Angle. Remote Sens. 2023, 15, 2264. [Google Scholar] [CrossRef]
- FAO. Production Crops. Available online: https://www.fao.org/faostat/en/#data/QCL/visualize (accessed on 21 August 2024).
- Dias, A.S.; de Lima, G.S.; Pinheiro, F.W.A.; Gheyi, H.R.; dos Anjos Soares, L.A.; Nobre, R.G.; de Padua Souza, L.; da Silva, S.S.; de Oliveira, S.G. Gas Exchanges and Growth of Sesame (’Sesamum indicum’, L.) Cultivated under Saline Waters and Nitrogen-Potassium Fertilizers. Aust. J. Crop Sci. 2019, 13, 1526–1532. [Google Scholar]
- Lemes, E.M.; dos Santos, M.A.; Coelho, L.; de Andrade, S.L.; dos Oliveira, A.S.; Pessoa, I.D.; Cunha, J.P.A.R. Use of Visible Spectral Index and Soybean Plant Variables to Study Hidden Nematicide Phytotoxicity. AgriEngineering 2023, 5, 1737–1753. [Google Scholar] [CrossRef]
- Neupane, K.; Baysal-Gurel, F. Automatic Identification and Monitoring of Plant Diseases Using Unmanned Aerial Vehicles: A Review. Remote Sens. 2021, 13, 3841. [Google Scholar] [CrossRef]
- de Andrade, O.B.; de Montenegro, A.A.A.; da Silva Neto, M.A.; de Sousa, L.B.; Almeida, T.A.B.; de Lima, J.L.M.P.; de Carvalho, A.A.; da Silva, M.V.; de Medeiros, V.W.C.; Soares, R.G.F.; et al. UAV-Based Classification of Intercropped Forage Cactus: A Comparison of RGB and Multispectral Sample Spaces Using Machine Learning in an Irrigated Area. AgriEngineering 2024, 6, 509–525. [Google Scholar] [CrossRef]
- dos Lima, C.S.; Junior, D.F.U.; Carvalho, I.R.; Bredemeier, C. Use of Phenomics in the Selection of UAV-Based Vegetation Indices and Prediction of Agronomic Traits in Soybean Subjected to Flooding. AgriEngineering 2024, 6, 3261–3278. [Google Scholar] [CrossRef]
- Sánchez-Sastre, L.F.; Alte da Veiga, N.M.S.; Ruiz-Potosme, N.M.; Carrión-Prieto, P.; Marcos-Robles, J.L.; Navas-Gracia, L.M.; Martín-Ramos, P. Assessment of RGB Vegetation Indices to Estimate Chlorophyll Content in Sugar Beet Leaves in the Final Cultivation Stage. AgriEngineering 2020, 2, 128–149. [Google Scholar] [CrossRef]
- Alvares, C.A.; Stape, J.L.; Sentelhas, P.C.; de Moraes Gonçalves, J.L.; Sparovek, G. Köppen’s Climate Classification Map for Brazil. Meteorol. Z. 2013, 22, 711–728. [Google Scholar] [CrossRef]
- de Sá Souza, M.; do Araújo Júnior, G.N.; de Souza, L.S.B.; Maniçoba da Rosa Ferraz Jardim, A.; da Silva, G.I.N.; de Araújo, G.G.L.; Campos, F.S.; de Leite, M.L.M.V.; Tabosa, J.N.; da Silva, T.G.F. Forage Yield, Competition and Economic Benefit of Intercropping Cactus and Millet with Mulch in a Semi-Arid Environment. Afr. J. Range Forage Sci. 2023, 40, 219–230. [Google Scholar] [CrossRef]
- Arriel, N.H.C.; Beltrao, N.D.M.; Firmino, P.D.T. Gergelim: O Produtor Pergunta, a Embrapa Responde; Embrapa Informação Tecnológica; Embrapa Algodão: Campina Grande, Brazil, 2009. [Google Scholar]
- Arriel, N.H.C.; de Gondim, T.M.S.; de Beltrão, N.E.M.; de Vasconcelos, R.A.; da Silveira, N.A.; de Sousa, S.L.; Dantas, E.S.B.; Pereira, J.R. Gergelim BRS Seda, 3rd ed.; Embrapa Informação Tecnológica; Empresa Brasileira de Pesquisa Agropecuária: Campina Grande, Brazil, 2007; ISBN 8573834420. [Google Scholar]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration—Guidelines for Computing Crop Water Requirements—FAO Irrigation and Drainage Paper 56; FAO: Rome, Italy, 1998; Volume 300, p. D05109. [Google Scholar]
- Lourenço, E.R.C.; de Azevedo, P.V.; Pereira, A.R.; Bezerra, J.R.C.; Saboya, L.M.F.; Zonta, J.H. Necessidades Hídricas Da Cultura Do Gergelim Na Região Da Chapada Do Apodi, Rio Grande Do Norte (Water Consumption of Sesame Crop in the Region of the Plateau of Apodi-RN, Brazil). Rev. Bras. Geogr. Física 2018, 11, 1275–1289. [Google Scholar] [CrossRef]
- Pizarro, F. Drenaje Agrícola y Recuperación de Suelos Salinos; Editura Agricola Española: Madrid, Spain, 1985; Volume 2. [Google Scholar]
- Hiscox, J.D.; Israelstam, G.F. A Method for the Extraction of Chlorophyll from Leaf Tissue without Maceration. Can. J. Bot. 1979, 57, 1332–1334. [Google Scholar] [CrossRef]
- Santos, R.P.; Da Cruz, A.C.F.; Iarema, L.; Fernandes, K.R.G.; Kuki, K.N.; Otoni, W.C. Avaliação Da Eficiência Do Dimetilsulfóxido Na Extração de Pigmentos de Vitis Vinifera × V. rotundifolia e V. riparia Propagadas in Vitro. Rev. Bras. Biociências 2007, 5, 888–890. [Google Scholar]
- Wellburn, A.R. The Spectral Determination of Chlorophylls a and b, as Well as Total Carotenoids, Using Various Solvents with Spectrophotometers of Different Resolution. J. Plant Physiol. 1994, 144, 307–313. [Google Scholar] [CrossRef]
- Tondato Arantes, L.; Henrique Tondato Arantes, B.; Rogerio Giongo, P.; Zavatti Ceccato, G.; Hugo Moraes, V.; Kamei Saito, Y.; Fernando Gomes, L.; Carlos de Oliveira Castro, A. Comportamento Espectral e Detecção de Laranjeiras (Citrus sinensis L. Osbeck) Com Estresse Hídrico, Por Meio de Drone. Rev. Bras. Geogr. Física 2021, 13, 3625–3635. [Google Scholar] [CrossRef]
- Matias, F.I.; Caraza-Harter, M.V.; Endelman, J.B. FIELDimageR: An R Package to Analyze Orthomosaic Images from Agricultural Field Trials. Plant Phenome J. 2020, 3, e20005. [Google Scholar] [CrossRef]
- Louhaichi, M.; Borman, M.M.; Johnson, D.E. Spatially Located Platform and Aerial Photography for Documentation of Grazing Impacts on Wheat. Geocarto Int. 2001, 16, 65–70. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Kaufman, Y.J.; Stark, R.; Rundquist, D. Novel Algorithms for Remote Estimation of Vegetation Fraction. Remote Sens. Environ. 2002, 80, 76–87. [Google Scholar]
- Tucker, C.J. Red and Photographic Infrared Linear Combinations for Monitoring Vegetation. Remote Sens. Environ. 1979, 8, 127–150. [Google Scholar] [CrossRef]
- Bendig, J.; Yu, K.; Aasen, H.; Bolten, A.; Bennertz, S.; Broscheit, J.; Gnyp, M.L.; Bareth, G. Combining UAV-Based Plant Height from Crop Surface Models, Visible, and near Infrared Vegetation Indices for Biomass Monitoring in Barley. Int. J. Appl. Earth Obs. Geoinf. 2015, 39, 79–87. [Google Scholar] [CrossRef]
- Meyer, G.E.; Neto, J.C. Verification of Color Vegetation Indices for Automated Crop Imaging Applications. Comput. Electron. Agric. 2008, 63, 282–293. [Google Scholar] [CrossRef]
- Guijarro, M.; Pajares, G.; Riomoros, I.; Herrera, P.J.; Burgos-Artizzu, X.P.; Ribeiro, A. Automatic Segmentation of Relevant Textures in Agricultural Images. Comput. Electron. Agric. 2011, 75, 75–83. [Google Scholar] [CrossRef]
- Hague, T.; Tillett, N.D.; Wheeler, H. Automated Crop and Weed Monitoring in Widely Spaced Cereals. Precis. Agric. 2006, 7, 21–32. [Google Scholar] [CrossRef]
- Woebbecke, D.M.; Meyer, G.E.; Von Bargen, K.; Mortensen, D.A.M. Color Indices for Weed Identification Under Various Soil, Residue, and Lighting Conditions. Trans. ASAE 1995, 38, 259–269. [Google Scholar] [CrossRef]
- Diakoulaki, D.; Mavrotas, G.; Papayannakis, L. Determining Objective Weights in Multiple Criteria Problems: The Critic Method. Comput. Oper. Res. 1995, 22, 763–770. [Google Scholar] [CrossRef]
- Senthilnathan, S. Usefulness of Correlation Analysis. SSRN Electron. J. 2019. [Google Scholar] [CrossRef]
- Chen, T.; Guestrin, C. XGBoost. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; ACM: New York, NY, USA, 2016; pp. 785–794. [Google Scholar]
- Kuhn, M.; Frick, H. Dials: Tools for Creating Tuning Parameter Values; Posit Software, PBC: Boston, MA, USA, 2024. [Google Scholar]
- Li, H.; Yan, X.; Su, P.; Su, Y.; Li, J.; Xu, Z.; Gao, C.; Zhao, Y.; Feng, M.; Shafiq, F.; et al. Estimation of Winter Wheat LAI Based on Color Indices and Texture Features of RGB Images Taken by UAV. J. Sci. Food Agric. 2024, 105, 189–200. [Google Scholar] [CrossRef]
- Liu, X.; Wang, L. Feasibility of Using Consumer-Grade Unmanned Aerial Vehicles to Estimate Leaf Area Index in Mangrove Forest. Remote Sens. Lett. 2018, 9, 1040–1049. [Google Scholar] [CrossRef]
- Panigrahi, N.; Das, B.S. Evaluation of Regression Algorithms for Estimating Leaf Area Index and Canopy Water Content from Water Stressed Rice Canopy Reflectance. Inf. Process. Agric. 2021, 8, 284–298. [Google Scholar] [CrossRef]
- Bisht, I.S.; Mahajan, R.K.; Loknathan, T.R.; Agrawal, R.C. Diversidade Na Coleta de Gergelim Indiano e Estratificação de Acessos de Germoplasma Em Diferentes Grupos de Diversidade. Genet. Resour. Crop Evol. 1998, 45, 325–335. [Google Scholar] [CrossRef]
- Monpara, B.A.; Gohil, V.N.; Akabari, V.R. Designing Model Plant Architecture through Assessment of Qualitative and Quantitative Traits in Sesame (Sesamum indicum L.). Electron. J. Plant Breed. 2019, 10, 1298. [Google Scholar] [CrossRef]
- Hasan, U.; Sawut, M.; Chen, S. Estimating the Leaf Area Index of Winter Wheat Based on Unmanned Aerial Vehicle Rgb-Image Parameters. Sustainability 2019, 11, 6829. [Google Scholar] [CrossRef]
- Yamaguchi, T.; Tanaka, Y.; Imachi, Y.; Yamashita, M.; Katsura, K. Feasibility of Combining Deep Learning and RGB Images Obtained by Unmanned Aerial Vehicle for Leaf Area Index Estimation in Rice. Remote Sens. 2020, 13, 84. [Google Scholar] [CrossRef]
- Zhang, J.; Cheng, T.; Guo, W.; Xu, X.; Qiao, H.; Xie, Y.; Ma, X. Leaf Area Index Estimation Model for UAV Image Hyperspectral Data Based on Wavelength Variable Selection and Machine Learning Methods. Plant Methods 2021, 17, 49. [Google Scholar] [CrossRef]
- El-Hendawy, S.; Tahir, M.U.; Al-Suhaibani, N.; Elsayed, S.; Elsherbiny, O.; Elsharawy, H. Potential of Thermal and RGB Imaging Combined with Artificial Neural Networks for Assessing Salt Tolerance of Wheat Genotypes Grown in Real-Field Conditions. Agronomy 2024, 14, 1390. [Google Scholar] [CrossRef]
- Zhang, Y.; Huang, J.; Wang, F.; Blackburn, G.A.; Zhang, H.K.; Wang, X.; Wei, C.; Zhang, K.; Wei, C. An Extended PROSPECT: Advance in the Leaf Optical Properties Model Separating Total Chlorophylls into Chlorophyll a and b. Sci. Rep. 2017, 7, 6429. [Google Scholar]
- Lopatin, J. Estimation of Foliar Carotenoid Content Using Spectroscopy Wavelet-Based Vegetation Indices. IEEE Geosci. Remote Sens. Lett. 2023, 20, 2500405. [Google Scholar] [CrossRef]
- Sun, S.; Zhang, Q.; Yu, Y.; Feng, J.; Liu, C.; Yang, J. Leaf Coloration in Acer Palmatum Is Associated with a Positive Regulator ApMYB1 with Potential for Breeding Color-Leafed Plants. Plants 2022, 11, 759. [Google Scholar] [CrossRef]
- Teklu, D.H.; Shimelis, H.; Abady, S. Genetic Improvement in Sesame (Sesamum indicum L.): Progress and Outlook: A Review. Agronomy 2022, 12, 2144. [Google Scholar] [CrossRef]
- Qiao, L.; Gao, D.; Zhao, R.; Tang, W.; An, L.; Li, M.; Sun, H. Improving Estimation of LAI Dynamic by Fusion of Morphological and Vegetation Indices Based on UAV Imagery. Comput. Electron. Agric. 2022, 192, 106603. [Google Scholar] [CrossRef]
- Zhang, C.; Chen, Z.; Yang, G.; Xu, B.; Feng, H.; Chen, R.; Qi, N.; Zhang, W.; Zhao, D.; Cheng, J.; et al. Removal of Canopy Shadows Improved Retrieval Accuracy of Individual Apple Tree Crowns LAI and Chlorophyll Content Using UAV Multispectral Imagery and PROSAIL Model. Comput. Electron. Agric. 2024, 221, 108959. [Google Scholar] [CrossRef]
- Baresel, J.P.; Rischbeck, P.; Hu, Y.; Kipp, S.; Hu, Y.; Barmeier, G.; Mistele, B.; Schmidhalter, U. Use of a Digital Camera as Alternative Method for Non-Destructive Detection of the Leaf Chlorophyll Content and the Nitrogen Nutrition Status in Wheat. Comput. Electron. Agric. 2017, 140, 25–33. [Google Scholar] [CrossRef]
- Yaseen, G.; Ahmad, M.; Zafar, M.; Akram, A.; Sultana, S.; Ahmed, S.N.; Kilic, O. Sesame (Sesamum indicum L.). In Green Sustainable Process for Chemical and Environmental Engineering and Science; Elsevier: Amsterdam, The Netherlands, 2021; pp. 253–269. [Google Scholar]
- Wei, P.; Zhao, F.; Wang, Z.; Wang, Q.; Chai, X.; Hou, G.; Meng, Q. Sesame (Sesamum indicum L.): A Comprehensive Review of Nutritional Value, Phytochemical Composition, Health Benefits, Development of Food, and Industrial Applications. Nutrients 2022, 14, 4079. [Google Scholar] [CrossRef]
- Dossa, K.F.; Enete, A.A.; Miassi, Y.E.; Omotayo, A.O. Economic Analysis of Sesame (Sesamum indicum L.) Production in Northern Benin. Front. Sustain. Food Syst. 2023, 6, 1015122. [Google Scholar] [CrossRef]
Name | Abbreviation | Equation | Author |
---|---|---|---|
Green Leaf Index | GLI | [43] | |
Visible Atmospherically | VARI | [44] | |
Normalized Green Red Difference | NGRDI | [45] | |
Modified Green Red Vegetation Index | MGRVI | [46] | |
Red, Green, Blue Vegetation Index | RGBVI | [46] | |
Excess Red Vegetation Index | ExR | [47] | |
Excess Blue Vegetation Index | ExB | [48] | |
Excess Green Vegetation Index | ExG | [48] | |
Excess Green Red Vegetation Index | ExGR | [48] | |
Vegetative | VEG | [49] | |
Woebbecke Index | WI | [50] |
Parameter | Definition | Range |
---|---|---|
max_depth | Maximum depth of a tree | 4–10 |
min_child_weight | Minimum sum of instance weight required in a child | 2–40 |
gamma | Minimum loss reduction required to make an additional partition at a tree leaf node | 10–40 |
subsample | Proportion of training instances in subsample | 0.1–1 |
mtry | Proportion of column subsample for each node | 1–Number of columns |
eta | Learning rate | 0.0001–0.5 |
Var | Eta | Max_Depth | Gamma | Colsample_Bytree | Colsample_Bynode | Min_Child_Weight | Subsample |
---|---|---|---|---|---|---|---|
caro_corr | 0.5 | 4 | 10 | 1 | 0.111111 | 2 | 1 |
caro_critic | 0.272557 | 5 | 11.829131 | 1 | 1 | 4 | 0.735277 |
chla_corr | 0.5 | 4 | 10 | 1 | 0.111111 | 2 | 1 |
chla_critic | 0.05334 | 8 | 13.348697 | 1 | 0.428571 | 2 | 0.598327 |
chlb_corr | 0.021392 | 5 | 10.420759 | 1 | 0.4 | 3 | 0.617916 |
chlb_critic | 0.33959 | 5 | 12.76788 | 1 | 0.285714 | 7 | 0.910488 |
chlt_corr | 0.201963 | 4 | 11.346621 | 1 | 0.444444 | 2 | 0.740776 |
chlt_critic | 0.5 | 10 | 10 | 1 | 0.142857 | 2 | 1 |
lai_corr | 0.5 | 4 | 10 | 1 | 0.083333 | 2 | 1 |
lai_critic | 0.5 | 4 | 10 | 1 | 1 | 2 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferraz, E.X.L.; Bezerra, A.C.; Lira, R.M.d.; Cruz Filho, E.M.d.; Santos, W.M.d.; Oliveira, H.F.E.d.; Silva, J.A.O.S.; Silva, M.V.d.; Silva, J.R.I.d.; Silva, J.L.B.d.; et al. What Is the Predictive Capacity of Sesamum indicum L. Bioparameters Using Machine Learning with Red–Green–Blue (RGB) Images? AgriEngineering 2025, 7, 64. https://doi.org/10.3390/agriengineering7030064
Ferraz EXL, Bezerra AC, Lira RMd, Cruz Filho EMd, Santos WMd, Oliveira HFEd, Silva JAOS, Silva MVd, Silva JRId, Silva JLBd, et al. What Is the Predictive Capacity of Sesamum indicum L. Bioparameters Using Machine Learning with Red–Green–Blue (RGB) Images? AgriEngineering. 2025; 7(3):64. https://doi.org/10.3390/agriengineering7030064
Chicago/Turabian StyleFerraz, Edimir Xavier Leal, Alan Cezar Bezerra, Raquele Mendes de Lira, Elizeu Matos da Cruz Filho, Wagner Martins dos Santos, Henrique Fonseca Elias de Oliveira, Josef Augusto Oberdan Souza Silva, Marcos Vinícius da Silva, José Raliuson Inácio da Silva, Jhon Lennon Bezerra da Silva, and et al. 2025. "What Is the Predictive Capacity of Sesamum indicum L. Bioparameters Using Machine Learning with Red–Green–Blue (RGB) Images?" AgriEngineering 7, no. 3: 64. https://doi.org/10.3390/agriengineering7030064
APA StyleFerraz, E. X. L., Bezerra, A. C., Lira, R. M. d., Cruz Filho, E. M. d., Santos, W. M. d., Oliveira, H. F. E. d., Silva, J. A. O. S., Silva, M. V. d., Silva, J. R. I. d., Silva, J. L. B. d., Nascimento, A. H. C. d., Silva, T. G. F. d., & Silva, Ê. F. d. F. e. (2025). What Is the Predictive Capacity of Sesamum indicum L. Bioparameters Using Machine Learning with Red–Green–Blue (RGB) Images? AgriEngineering, 7(3), 64. https://doi.org/10.3390/agriengineering7030064