Development of an Automatic Harvester for Wine Grapes by Using Three-Axis Linear Motion Mechanism Robot
<p>Grape training systems: (<b>a</b>) Japanese traditional table cultivation method; (<b>b</b>) VSP (vertical shoot position).</p> "> Figure 2
<p>Examples of grape harvester: (<b>a</b>) grape harvester made by NEW HOLLAND; (<b>b</b>) grape harvesting robot under development in Laboratory of Bio-Mechatronics.</p> "> Figure 3
<p>The robot harvester using the three-axis linear robot construction.</p> "> Figure 4
<p>Movement mechanism in the x-axis (left and right).</p> "> Figure 5
<p>Movement mechanism in the y-axis: (<b>a</b>) lower state; (<b>b</b>) upper state.</p> "> Figure 6
<p>Slide mechanism using bearings.</p> "> Figure 7
<p>Movement mechanism in the z-axis: (<b>a</b>) backward state; (<b>b</b>) forward state; (<b>c</b>) front of retention mechanism; and (<b>d</b>) isometric view of retention mechanism.</p> "> Figure 8
<p>Three-axis linear motion mechanism robot in the outdoor wine grapes field.</p> "> Figure 9
<p>Motor feedback control system.</p> "> Figure 10
<p>Flowchart of robot control.</p> "> Figure 11
<p>Robot travel route: (<b>a</b>) travel route when two motors have same speed, and (<b>b</b>) travel route when two motors have different speeds.</p> "> Figure 12
<p>Definition of the acceleration period, constant period, and deceleration period.</p> "> Figure 13
<p>A detailed definition of the control period of <a href="#agriengineering-06-00236-f012" class="html-fig">Figure 12</a>.</p> "> Figure 14
<p>Movement measurement jig (<b>a</b>) in the x-axis; (<b>b</b>) in the y-axis; and (<b>c</b>) in the z-axis.</p> "> Figure 14 Cont.
<p>Movement measurement jig (<b>a</b>) in the x-axis; (<b>b</b>) in the y-axis; and (<b>c</b>) in the z-axis.</p> "> Figure 15
<p>Example when the cut point is within the blade width indoors.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Robot Harvester Construction
2.2. Development of the Three-Axis Linear Motion Mechanism Robot
2.2.1. Movement Mechanism in x-Axis (Left and Right)
2.2.2. Movement Mechanism in y-Axis (Up and Down)
2.2.3. Movement Mechanism in z-Axis (Backward and Forward)
2.2.4. Motor Control of the Three-Axis Linear Motion Mechanism Robot
2.2.5. Robot Travel Route Design
2.2.6. Evaluation of Movement Accuracy
3. Experimental Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Statistics on Agricultural Labor Force: MAFF. Available online: https://www.maff.go.jp/j/tokei/sihyo/data/08.html (accessed on 12 June 2024).
- Overview of the Alcoholic Beverage Manufacturing Industry and Alcoholic Beverage Wholesale Industry 2023|National Tax Agency JAPAN. Available online: https://www.nta.go.jp/taxes/sake/shiori-gaikyo/seizo_oroshiuri/r05/index.htm (accessed on 12 June 2024).
- Tomoki, N.; Liangliang, Y.; Yohei, H. Research on Multi-Cutter Robotic Hand for Smart Vineyard. J. Soc. Instrum. Control Eng. 2022, 65, 241–245. [Google Scholar] [CrossRef]
- Braud Grape Harvester—Grape Harvest Machine|New Holland. Available online: https://agriculture.newholland.com/en-us/nar/products/grape-and-olive-harvesters/braud-grape-harvester (accessed on 13 June 2024).
- Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You Only Look Once: Unified, Real-Time Object Detection. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27 June 2016; pp. 779–788. [Google Scholar]
- Redmon, J.; Farhadi, A. YOLO9000: Better, Faster, Stronger. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21 July 2017; pp. 6517–6525. [Google Scholar]
- Redmon, J.; Farhadi, A. YOLOv3: An Incremental Improvement. arXiv 2018, arXiv:1804.02767. [Google Scholar]
- Bochkovskiy, A.; Wang, C.-Y.; Liao, H. YOLOv4: Optimal Speed and Accuracy of Object Detection. arXiv 2020, arXiv:2004.10934. [Google Scholar]
- Ge, Z.; Liu, S.; Wang, F.; Li, Z.; Sun, J. YOLOX: Exceeding YOLO Series in 2021. arXiv 2021, arXiv:2107.08430. [Google Scholar]
- Vrochidou, E.; Tziridis, K.; Nikolaou, A.; Kalampokas, T.; Papakostas, G.A.; Pachidis, T.P.; Mamalis, S.; Koundouras, S.; Kaburlasos, V.G. An Autonomous Grape-Harvester Robot: Integrated System Architecture. Electronics 2021, 10, 1056. [Google Scholar] [CrossRef]
- Santos, T.T.; de Souza, L.L.; dos Santos, A.A.; Avila, S. Grape Detection, Segmentation, and Tracking Using Deep Neural Networks and Three-Dimensional Association. Comput. Electron. Agric. 2020, 170, 105247. [Google Scholar] [CrossRef]
- Guo, C.; Zheng, S.; Cheng, G.; Zhang, Y.; Ding, J. An Improved YOLO v4 Used for Grape Detection in Unstructured Environment. Front. Plant Sci. 2023, 14, 1209910. [Google Scholar] [CrossRef]
- Luo, L.; Tang, Y.; Zou, X.; Ye, M.; Feng, W.; Li, G. Vision-Based Extraction of Spatial Information in Grape Clusters for Harvesting Robots. Biosyst. Eng. 2016, 151, 90–104. [Google Scholar] [CrossRef]
- Luo, L.; Tang, Y.; Lu, Q.; Chen, X.; Zhang, P.; Zou, X. A Vision Methodology for Harvesting Robot to Detect Cutting Points on Peduncles of Double Overlapping Grape Clusters in a Vineyard. Comput. Ind. 2018, 99, 130–139. [Google Scholar] [CrossRef]
- Zhang, K.; Lammers, K.; Chu, P.; Li, Z.; Lu, R. An Automated Apple Harvesting Robot—From System Design to Field Evaluation. J. Field Robot. 2023, 41, 2384–2400. [Google Scholar] [CrossRef]
- Zhang, F.; Chen, Z.; Wang, Y.; Bao, R.; Chen, X.; Fu, S.; Tian, M.; Zhang, Y. Research on Flexible End-Effectors with Humanoid Grasp Function for Small Spherical Fruit Picking. Agriculture 2023, 13, 123. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, Y.; Yang, C.; Zhao, H.; Chen, G.; Zhang, Z.; Fu, S.; Zhang, M.; Xu, H. End-Effector with a Bite Mode for Harvesting Citrus Fruit in Random Stalk Orientation Environment. Comput. Electron. Agric. 2019, 157, 454–470. [Google Scholar] [CrossRef]
- Jiang, Y.; Liu, J.; Wang, J.; Li, W.; Peng, Y.; Shan, H. Development of a Dual-Arm Rapid Grape-Harvesting Robot for Horizontal Trellis Cultivation. Front. Plant Sci. 2022, 13, 881904. [Google Scholar] [CrossRef] [PubMed]
- Isa, S.; Harada, M.; Wakimizu, K.; Takemura, Y. Development of Rail Move Type Automatic Tomato Harvesting Robot 1st Report: Development of a Harvesting Platform Using Uniaxial Actuator and Control System. JSME Annu. Conf. Robot. Mechatron. 2017, 2017, 2P1-J09. [Google Scholar] [CrossRef]
- Araki, H. Ryo Toshima Tomato Harvesting Robot. J. Robot. Soc. Jpn. 2021, 39, 911–916. [Google Scholar] [CrossRef]
- Kim, J.; Pyo, H.; Jang, I.; Kang, J.; Ju, B.; Ko, K. Tomato Harvesting Robotic System Based on Deep-ToMaToS: Deep Learning Network Using Transformation Loss for 6D Pose Estimation of Maturity Classified Tomatoes with Side-Stem. Comput. Electron. Agric. 2022, 201, 107300. [Google Scholar] [CrossRef]
- Hayashi, S.; Shigematsu, K.; Yamamoto, S.; Kobayashi, K.; Kohno, Y.; Kamata, J.; Kurita, M. Evaluation of a Strawberry-Harvesting Robot in a Field Test. Biosyst. Eng. 2010, 105, 160–171. [Google Scholar] [CrossRef]
- Han, K.-S.; Kim, S.-C.; Lee, Y.-B.; Kim, S.-C.; Im, D.-H.; Choi, H.-K.; Hwang, H. Strawberry Harvesting Robot for Bench-Type Cultivation. J. Biosyst. Eng. 2012, 37, 65–74. [Google Scholar] [CrossRef]
- Xiong, Y.; Peng, C.; Grimstad, L.; From, P.J.; Isler, V. Development and Field Evaluation of a Strawberry Harvesting Robot with a Cable-Driven Gripper. Comput. Electron. Agric. 2019, 157, 392–402. [Google Scholar] [CrossRef]
- Williams, H.A.M.; Jones, M.H.; Nejati, M.; Seabright, M.J.; Bell, J.; Penhall, N.D.; Barnett, J.J.; Duke, M.D.; Scarfe, A.J.; Ahn, H.S.; et al. Robotic Kiwifruit Harvesting Using Machine Vision, Convolutional Neural Networks, and Robotic Arms. Biosyst. Eng. 2019, 181, 140–156. [Google Scholar] [CrossRef]
- Barnett, J.; Duke, M.; Au, C.K.; Lim, S.H. Work Distribution of Multiple Cartesian Robot Arms for Kiwifruit Harvesting. Comput. Electron. Agric. 2020, 169, 105202. [Google Scholar] [CrossRef]
- Ma, L.; He, Z.; Zhu, Y.; Jia, L.; Wang, Y.; Ding, X.; Cui, Y. A Method of Grasping Detection for Kiwifruit Harvesting Robot Based on Deep Learning. Agronomy 2022, 12, 3096. [Google Scholar] [CrossRef]
- Pezzi, F.; Caprara, C. Mechanical Grape Harvesting: Investigation of the Transmission of Vibrations. Biosyst. Eng. 2009, 103, 281–286. [Google Scholar] [CrossRef]
- Lytridis, C.; Bazinas, C.; Kalathas, I.; Siavalas, G.; Tsakmakis, C.; Spirantis, T.; Badeka, E.; Pachidis, T.; Kaburlasos, V.G. Cooperative Grape Harvesting Using Heterogeneous Autonomous Robots. Robotics 2023, 12, 147. [Google Scholar] [CrossRef]
- Coll-Ribes, G.; Torres-Rodríguez, I.J.; Grau, A.; Guerra, E.; Sanfeliu, A. Accurate Detection and Depth Estimation of Table Grapes and Peduncles for Robot Harvesting, Combining Monocular Depth Estimation and CNN Methods. Comput. Electron. Agric. 2023, 215, 108362. [Google Scholar] [CrossRef]
- Hiramatsu, Y.; Akama, S.; Uenoyama, M.; Kaneshiro, T.; Watanabe, T. Grape Harvesting Robot. J. Robot. Soc. Jpn. 2021, 39, 896–900. [Google Scholar] [CrossRef]
- Gupta, S.; Tripathi, A.K. Fruit and Vegetable Disease Detection and Classification: Recent Trends, Challenges, and Future Opportunities. Eng. Appl. Artif. Intell. 2024, 133, 108260. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
Model number | IDX56L-24V |
Nominal voltage [VDC] | 24 |
Maximum torque [Nm] | 1.589 |
Maximum allowable rotation speed [rpm] | 6000 |
Reduction ratio | 1:16 |
Protection class | IP65 |
Operating temperature [°C] | −30…+85 |
Controller | EPOS4 |
Communication method | CANopen |
Encoder r esolution [inc/r] | 4096 |
NO. | Target Distance of x-Axis [mm] | ||||
---|---|---|---|---|---|
100.0 | 200.0 | 300.0 | 400.0 | 500.0 | |
1 | 101.0 | 202.3 | 302.6 | 403.2 | 505.5 |
2 | 101.1 | 202.3 | 302.6 | 403.1 | 505.3 |
3 | 100.5 | 201.9 | 302.4 | 402.5 | 504.7 |
4 | 101.2 | 202.5 | 302.7 | 403.3 | 505.5 |
5 | 101.3 | 202.5 | 302.8 | 403.3 | 505.6 |
Average | 101.02 | 202.30 | 302.62 | 403.08 | 505.32 |
Error | 1.02 | 2.30 | 2.62 | 3.08 | 5.32 |
NO. | Target Distance of y-Axis [mm] | |||
---|---|---|---|---|
100.0 | 200.0 | 300.0 | 400.0 | |
1 | 102.1 | 204.5 | 306.7 | 409.3 |
2 | 102.1 | 204.6 | 306.6 | 409.1 |
3 | 102.2 | 204.7 | 306.8 | 409.3 |
4 | 102.2 | 204.6 | 306.6 | 409.4 |
5 | 102.0 | 204.4 | 306.5 | 408.8 |
Average | 102.12 | 204.56 | 306.64 | 409.18 |
Error | 2.12 | 4.56 | 6.64 | 9.18 |
NO. | Target Distance of z-Axis [mm] | |||
---|---|---|---|---|
100.0 | 200.0 | 300.0 | 400.0 | |
1 | 102.5 | 204.6 | 307 | 409.4 |
2 | 102.1 | 204.5 | 306.7 | 409.1 |
3 | 102.6 | 204.9 | 307.1 | 409.5 |
4 | 102.5 | 205.0 | 307.0 | 409.5 |
5 | 102.5 | 204.8 | 307.2 | 409.6 |
Average | 102.44 | 204.76 | 307.00 | 409.42 |
Error | 2.44 | 4.76 | 7.00 | 9.42 |
NO. | Target Distance of x-Axis [mm] | ||||
---|---|---|---|---|---|
100.0 | 200.0 | 300.0 | 400.0 | 500.0 | |
1 | 99.8 | 199.7 | 298.8 | 398.3 | 499.3 |
2 | 99.2 | 199.1 | 298.4 | 397.5 | 498.7 |
3 | 98.9 | 198.8 | 298.2 | 397.3 | 498.4 |
4 | 100.0 | 199.9 | 298.8 | 398.6 | 499.6 |
5 | 99.6 | 199.5 | 298.4 | 397.9 | 498.9 |
Average | 99.50 | 199.40 | 298.52 | 397.92 | 498.98 |
Error | −0.50 | −0.60 | −1.48 | −2.08 | −1.02 |
NO. | Target Distance of y-Axis [mm] | |||
---|---|---|---|---|
100.0 | 200.0 | 300.0 | 400.0 | |
1 | 100.0 | 200.0 | 3000 | 400.0 |
2 | 100.0 | 200.0 | 300.0. | 400.0 |
3 | 100.0 | 200.0 | 300.0 | 400.0 |
4 | 99.8 | 200.0 | 299.9 | 400.0 |
5 | 100.0 | 200.0 | 299.8 | 400.0 |
Average | 99.96 | 200.00 | 299.94 | 400.00 |
Error | −0.04 | 0.00 | −0.06 | 0.00 |
NO. | Target Distance of z-Axis [mm] | |||
---|---|---|---|---|
100.0 | 200.0 | 300.0 | 400.0 | |
1 | 100.2 | 200.2 | 300.0. | 399.9 |
2 | 100.1 | 200.2 | 3000. | 400.1 |
3 | 100.1 | 200.0 | 3000 | 4000. |
4 | 100.0 | 200.1 | 299.9 | 4000. |
5 | 100.0 | 200.2 | 300.0 | 400.0. |
Average | 100.08 | 200.14 | 299.98 | 400.00 |
Error | 0.08 | 0.14 | −0.02 | 0.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sasaya, S.; Yang, L.; Hoshino, Y.; Noguchi, T. Development of an Automatic Harvester for Wine Grapes by Using Three-Axis Linear Motion Mechanism Robot. AgriEngineering 2024, 6, 4203-4219. https://doi.org/10.3390/agriengineering6040236
Sasaya S, Yang L, Hoshino Y, Noguchi T. Development of an Automatic Harvester for Wine Grapes by Using Three-Axis Linear Motion Mechanism Robot. AgriEngineering. 2024; 6(4):4203-4219. https://doi.org/10.3390/agriengineering6040236
Chicago/Turabian StyleSasaya, Shota, Liangliang Yang, Yohei Hoshino, and Tomoki Noguchi. 2024. "Development of an Automatic Harvester for Wine Grapes by Using Three-Axis Linear Motion Mechanism Robot" AgriEngineering 6, no. 4: 4203-4219. https://doi.org/10.3390/agriengineering6040236
APA StyleSasaya, S., Yang, L., Hoshino, Y., & Noguchi, T. (2024). Development of an Automatic Harvester for Wine Grapes by Using Three-Axis Linear Motion Mechanism Robot. AgriEngineering, 6(4), 4203-4219. https://doi.org/10.3390/agriengineering6040236