Deep Learning-Based Gain Estimation for Multi-User Software-Defined Radios in Aircraft Communications
<p>Typical communication links of an aircraft [<a href="#B3-signals-06-00003" class="html-bibr">3</a>].</p> "> Figure 2
<p>SDR-based implementation of an aircraft’s communication links [<a href="#B3-signals-06-00003" class="html-bibr">3</a>]. An SDR generates and sums multiple baseband waveforms, and the resulting composite signal is then amplified and up-converted for transmission.</p> "> Figure 3
<p>Time domain representation of a composite signal. Its peak amplitude, <span class="html-italic">u</span>, is key to selecting the DAC’s input gain, <span class="html-italic">G</span>, so that the waveform uses the DAC’s full range.</p> "> Figure 4
<p>Frequency domain representation of a composite signal [<a href="#B3-signals-06-00003" class="html-bibr">3</a>].</p> "> Figure 5
<p>Four common distributions that closely fit composite signals [<a href="#B3-signals-06-00003" class="html-bibr">3</a>].</p> "> Figure 6
<p>DNN used to estimate GGD’s parameters.</p> "> Figure 7
<p>Average MAE training and validation loss trends across 10-fold cross-validation.</p> "> Figure 8
<p><math display="inline"><semantics> <msup> <mi>R</mi> <mn>2</mn> </msup> </semantics></math> plot for each of the individual parameters of the GGD, estimated using the DNN.</p> "> Figure 9
<p>Trend in MAE on the hold-out test set with increasing amounts of training data, expressed as a percentage of the total dataset used for training.</p> "> Figure 10
<p>Trends in MAE as more component signals are added to the composite signal.</p> "> Figure 11
<p>Trends in <math display="inline"><semantics> <msup> <mi>R</mi> <mn>2</mn> </msup> </semantics></math> score as more component signals are added to the composite signal.</p> "> Figure 12
<p><math display="inline"><semantics> <msup> <mi>R</mi> <mn>2</mn> </msup> </semantics></math> score comparison for S-DNN and DNN.</p> "> Figure 13
<p>CDF of the combined signal estimated using the DNN.</p> ">
Abstract
:1. Introduction
2. Composite Signal’s Distribution and the Dataset
2.1. Composite Signal
2.2. Distribution Fitting
2.3. Dataset
3. DNN Regression
4. Experiments, Results, and Analysis
4.1. K-Fold Cross Validation
4.2. Performance of the DNN
4.3. Model Interpretability
4.4. Performance as Number of SDR Applications Increase
4.5. Small DNN
4.6. Implementation Details, Computational Resources, and Model Complexity
4.7. Comparison with Other Techniques
4.8. Typical Example
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
SDR | Software-Defined Radio |
DAC | Digital-to-Analog Converter |
RF | Radio Frequency |
GGD | Generalized Gamma Distribution |
DL | Deep Learning |
DNN | Deep neural network |
MQAM | M-ary Quadrature Amplitude Modulated |
RSS | Residual Sum of Squares |
KL | Kullback–Leibler |
Probability Density Function | |
CDF | Cumulative Distribution Function |
S-DNN | Small-Deep Neural Network |
MAE | Mean Absolute Error |
MSE | Mean Squared Error |
SHAP | SHapley Additive exPLanations |
FLOP | Floating Point OPeration |
LR | Linear Regression |
K-NR | K-Neighbors Regression |
DTR | Decision Tree Regression |
RFR | Random Forest Regression |
GBRT | Gradient Boosted Regression Trees |
SVR | Support Vector Regression |
References
- Baltaci, A.; Dinc, E.; Ozger, M.; Alabbasi, A.; Cavdar, C.; Schupke, D. A survey of wireless networks for Future Aerial Communications (FACOM). IEEE Commun. Surv. Tutor. 2021, 23, 2833–2884. [Google Scholar] [CrossRef]
- Furse, C.; Haupt, R. Down to the wire [aircraft wiring]. IEEE Spectr. 2001, 38, 34–39. [Google Scholar] [CrossRef]
- Gajjar, V.K. Machine Learning Applications in Plant Identification, Wireless Channel Estimation, and Gain Estimation for Multi-User Software-Defined Radio. Doctoral Dissertation, Missouri University of Science and Technology, Rolla, MO, USA, 2022. [Google Scholar]
- Sámano-Robles, R.; Tovar, E.; Cintra, J.; Rocha, A. Wireless avionics intra-communications: Current trends and design issues. In Proceedings of the Eleventh ICDIM, Porto, Portugal, 19–21 September 2016; pp. 266–273. [Google Scholar]
- Amrhar, A.; Kisomi, A.A.; Zhang, E.; Zambrano, J.; Thibeault, C.; Landry, R. Multi-Mode reconfigurable Software Defined Radio architecture for avionic radios. In Proceedings of the ICNS, Herndon, VA, USA, 18–20 April 2017; pp. 2D1–1–2D1–10. [Google Scholar]
- Price, N.; Kosbar, K. Decoupling hardware and software concerns in aircraft telemetry SDR systems. In Proceedings of the ITC, Glendale, AZ, USA, 29 October–1 November 2018. [Google Scholar]
- Pouyanfar, S.; Sadiq, S.; Yan, Y.; Tian, H.; Tao, T.; Reyes, M.P.; Shyu, M.; Chen, S.; Iyenger, S.S. A survey on deep learning: Algorithms, techniques, and applications. ACM Comput. Surv. (CSUR) 2019, 51, 1–36. [Google Scholar] [CrossRef]
- Dong, S.; Wang, P.; Abbas, K. A survey on deep learning and its applications. Comput. Sci. Rev. 2021, 40, 100379. [Google Scholar] [CrossRef]
- França, R.P.; Monteiro, A.; Arthur, R.; Iano, Y. An overview of deep learning in big data, image, and signal processing in the modern digital age. In Trends in Deep Learning Methodologies; Academic Press: Cambridge, MA, USA, 2020; pp. 63–87. [Google Scholar]
- Dai, L.; Jiao, R.; Adachi, F.; Poor, H.V.; Hanzo, L. Deep learning for wireless communications: An emerging interdisciplinary paradigm. IEEE Wirel. Commun. 2020, 27, 133–139. [Google Scholar] [CrossRef]
- Peng, S.; Jiang, H.; Wang, H.; Alwageed, H.; Zhou, Y.; Sebdani, M.M.; Yao, Y. Modulation classification based on signal constellation diagrams and deep learning. IEEE Trans. Neural Netw. Learn. Syst. 2019, 30, 718–727. [Google Scholar] [CrossRef]
- Meng, F.; Chen, P.; Wu, L.; Wang, X. Automatic modulation classification: A deep learning enabled approach. IEEE Trans. Veh. Technol. 2018, 67, 10760–10772. [Google Scholar] [CrossRef]
- Nambisan, A.; Gajjar, V.; Kosbar, K. Scalogram Aided Automatic Modulation Classification. In Proceedings of the ITC, Glendale, AZ, USA, 24–27 October 2022. [Google Scholar]
- Soltani, M.; Pourahmadi, V.; Mirzaei, A.; Sheikhzadeh, H. Deep learning-based channel estimation. IEEE Commun. Lett. 2019, 23, 652–655. [Google Scholar] [CrossRef]
- Luo, C.; Ji, J.; Wang, Q.; Chen, X.; Li, P. Channel State Information Prediction for 5G Wireless Communications: A Deep Learning Approach. IEEE Trans. Netw. Sci. Eng. 2020, 7, 227–236. [Google Scholar] [CrossRef]
- Luan, D.; Thompson, J. Attention Based Neural Networks for Wireless Channel Estimation. In Proceedings of the 2022 IEEE 95th Vehicular Technology Conference: (VTC2022-Spring), Helsinki, Finland, 19–22 June 2022; pp. 1–5. [Google Scholar] [CrossRef]
- Ye, H.; Li, G.Y.; Juang, B.H. Power of Deep Learning for Channel Estimation and Signal Detection in OFDM Systems. IEEE Wirel. Commun. Lett. 2018, 7, 114–117. [Google Scholar] [CrossRef]
- O’Shea, T.J.; Clancy, T.C.; McGwier, R.W. Recurrent Neural Radio Anomaly Detection. arXiv 2016, arXiv:1611.00301. [Google Scholar]
- Ma, H.; Zheng, X.; Yu, L.; Zhou, X.; Chen, Y. A novel end-to-end deep separation network based on attention mechanism for single channel blind separation in wireless communication. IET Signal Process. 2023, 17, e12173. [Google Scholar] [CrossRef]
- Jiang, C.; Zhang, H.; Ren, Y.; Han, Z.; Chen, K.C.; Hanzo, L. Machine learning paradigms for next-generation wireless networks. IEEE Wirel. Commun. 2017, 24, 98–105. [Google Scholar] [CrossRef]
- Sun, H.; Chen, X.; Shi, Q.; Hong, M.; Fu, X.; Sidiropoulos, N.D. Learning to Optimize: Training Deep Neural Networks for Interference Management. IEEE Trans. Signal Process. 2018, 66, 5438–5453. [Google Scholar] [CrossRef]
- Donohoo, B.K.; Ohlsen, C.; Pasricha, S.; Xiang, Y.; Anderson, C. Context-aware energy enhancements for smart mobile devices. IEEE Trans. Mob. Comput. 2014, 13, 1720–1732. [Google Scholar] [CrossRef]
- Gajjar, V.; Kosbar, K. CSI estimation using artificial neural network. In Proceedings of the ITC, Las Vegas, NV, USA, 21–24 October 2019. [Google Scholar]
- Gajjar, V.; Kosbar, K. Rapid gain estimation for multi-user software defined radio applications. In Proceedings of the ITC, Las Vegas, NV, USA, 25–28 October 2021. [Google Scholar]
- Stacy, E.W. A generalization of the gamma distribution. Ann. Math. Stat. 1962, 33, 1187–1192. [Google Scholar] [CrossRef]
- Kullback, S.; Leibler, R. On information theory and sufficiency. Ann. Math. Stat. 1951, 22, 79–86. [Google Scholar] [CrossRef]
- Virtanen, P.; Gommers, R.; Oliphant, T.E.; Haberland, M.; Reddy, T.; Cournapeau, D.; Burovski, E.; Peterson, P.; Weckesser, W.; Bright, J.; et al. SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nat. Methods 2020, 17, 261–272. [Google Scholar] [CrossRef]
- Borchani, H.; Varando, G.; Bielza, C.; Larranaga, P. A survey on multi-output regression. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 2015, 5, 216–233. [Google Scholar] [CrossRef]
- Brochu, E.; Cora, V.M.; de Freitas, N. A Tutorial on Bayesian Optimization of Expensive Cost Functions, with Application to Active User Modeling and Hierarchical Reinforcement Learning. arXiv 2010, arXiv:1012.2599. [Google Scholar]
- Ojala, M.; Garriga, G.C. Permutation tests for studying classifier performance. J. Mach. Learn. Res. 2010, 11, 1833–1863. [Google Scholar]
- Lundberg, S.M.; Lee, S.I. A unified approach to interpreting model predictions. In Proceedings of the 31st International Conference on Neural Information Processing Systems, NIPS’17, Long Beach, CA, USA, 4–9 December 2017; pp. 4768–4777. [Google Scholar]
- Abadi, M.; Agarwal, A.; Barham, P.; Brevdo, E.; Chen, Z.; Citro, C.; Corrado, G.S.; Davis, A.; Dean, J.; Devin, M.; et al. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. 2015. Available online: https://arxiv.org/abs/1603.04467 (accessed on 6 January 2025).
- Chollet, F. Keras. 2015. Available online: https://keras.io (accessed on 6 January 2025).
- Montgomery, D.C.; Peck, E.A.; Geoffrey, G.G. Multiple linear regression. In Introduction to Linear Regression Analysis, 6th ed.; John Wiley and Sons, Inc.: Hoboken, NJ, USA, 2021; pp. 72–85. [Google Scholar]
- Kramer, O. K-Nearest Neighbors. In Dimensionality Reduction with Unsupervised Nearest Neighbors; Springer: Berlin/Heidelberg, Germany, 2013; pp. 13–23. [Google Scholar]
- Dea’th, G. Multivariate regression trees: A new Technique for modelling species-environment relationships. Ecology 2002, 83, 1105–1117. [Google Scholar] [CrossRef]
- Segal, M.R. Machine Learning Benchmarks and Random Forest Regression; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2004. [Google Scholar]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Brudnak, M. Vector-valued support vector regression. In Proceedings of the IEEE International Joint Conference on Neural Network Proceedings, Vancouver, BC, Canada, 16–21 July 2006; pp. 1562–1569. [Google Scholar]
Parameter | Range |
---|---|
Modulation order | |
Data rate | kbps |
Power level | dBm |
Nomalized frequency | kHz |
Number of component signals |
Distribution | RSS | KL Divergence Score |
---|---|---|
Beta | 0.2637 ± 0.3544 | 0.0020 ± 0.0018 |
Chi | 0.5200 ± 0.6494 | 0.0065 ± 0.0047 |
Generalized Gamma | 0.0922 ± 0.2189 | 0.0007 ± 0.0009 |
Rice | 0.2342 ± 0.4192 | 0.0025 ± 0.0031 |
Parameter | Explained Variance | MAE | MSE | |
---|---|---|---|---|
a | 0.9358 | 0.9358 | 0.0119 | 0.0008 |
b | 0.9664 | 0.9664 | 0.0442 | 0.0133 |
s | 0.9985 | 0.9985 | 0.0109 | 0.0003 |
Overall | 0.9669 | 0.9669 | 0.0223 | 0.0048 |
Parameter | Feature Groups (%) | ||||
---|---|---|---|---|---|
Modulation Order | Data Rate | Power Level | Normalized Frequency | Number of Component Signals | |
a | 42.55 | 1.57 | 46.67 | 1.80 | 7.40 |
b | 49.94 | 0.68 | 39.35 | 0.75 | 9.28 |
s | 38.96 | 0.12 | 48.87 | 0.11 | 11.95 |
Overall | 44.42 | 0.63 | 44.30 | 0.70 | 9.95 |
Model | Training Time (s) | FLOPs |
---|---|---|
DNN | 596 | 459,548 |
S-DNN | 407 | 17,096 |
Method | a | b | s | Overall |
---|---|---|---|---|
LR | 0.4926 | 0.4484 | 0.6994 | 0.5468 |
K-NR | 0.4795 | 0.5297 | 0.4447 | 0.4846 |
DTR | 0.5578 | 0.7218 | 0.9400 | 0.7398 |
RFR | 0.7651 | 0.8527 | 0.9745 | 0.8641 |
GBRT | 0.8381 | 0.8982 | 0.9928 | 0.9097 |
SVR | 0.5908 | 0.6814 | 0.9142 | 0.7288 |
S-DNN | 0.8311 | 0.9548 | 0.9952 | 0.9270 |
DNN | 0.9358 | 0.9664 | 0.9985 | 0.9669 |
Modulation Order | Data Rate (bps) | Power Level (dBm) | Normalized Frequency (kHz) |
---|---|---|---|
64 | 6753 | −23.65 | −9 |
32 | 5566 | −23.05 | −44 |
4 | 1460 | −26.23 | −21 |
8 | 5518 | −22.09 | 37 |
16 | 9751 | −10.05 | 28 |
256 | 7993 | −5.43 | 14 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gajjar, V.K.; Kosbar, K.L. Deep Learning-Based Gain Estimation for Multi-User Software-Defined Radios in Aircraft Communications. Signals 2025, 6, 3. https://doi.org/10.3390/signals6010003
Gajjar VK, Kosbar KL. Deep Learning-Based Gain Estimation for Multi-User Software-Defined Radios in Aircraft Communications. Signals. 2025; 6(1):3. https://doi.org/10.3390/signals6010003
Chicago/Turabian StyleGajjar, Viraj K., and Kurt L. Kosbar. 2025. "Deep Learning-Based Gain Estimation for Multi-User Software-Defined Radios in Aircraft Communications" Signals 6, no. 1: 3. https://doi.org/10.3390/signals6010003
APA StyleGajjar, V. K., & Kosbar, K. L. (2025). Deep Learning-Based Gain Estimation for Multi-User Software-Defined Radios in Aircraft Communications. Signals, 6(1), 3. https://doi.org/10.3390/signals6010003