Operational Mapping of Submarine Groundwater Discharge into Coral Reefs: Application to West Hawai‘i Island
<p>Map of the west Hawai‘i Island study area. The eight flight coverage regions along the mapped coastline are shown in different colors. Inset shows the location of Hawai‘i Island west of the continental United States. Red box in upper right corner indicates locations of Hawai‘i Island globally. White arrow indicates true north.</p> "> Figure 2
<p>Example image mosaics of sea surface temperature (<b>a</b>) before and (<b>b</b>) after flight line temperature offset computations for improved blending of flight line temperatures. Background imagery provided by Google Earth™. White arrow indicates true north.</p> "> Figure 3
<p>Demonstration of the standardizing effect of conversion from raw surface temperature maps (<b>a</b>) to relative temperature maps (<b>b</b>). The latter were used to visually outline SGD plumes across the state. Background imagery provided by Google Earth™. White arrow indicates true north.</p> "> Figure 4
<p>Distribution of field validation sites (<span class="html-italic">n</span> = 52) at (<b>a</b>) region, (<b>b</b>) cluster, and (<b>c</b>) SGD plume scales. Panel (<b>c</b>) also shows seven of the mapped SGD plumes in red, with boat-based transects shown as sequential dots. Values in panel (<b>a</b>) indicate number of SGD plumes in each sub-region.</p> "> Figure 5
<p>Spatial density of submarine groundwater discharge (SGD) sites along the west Hawai‘i Island coastline. Refer to <a href="#oceans-05-00031-f001" class="html-fig">Figure 1</a> for geographic context. Due to the rare occurrence of very large SGD plumes, the density maps were calculated by the number and size of discharge sites in specific size classes of ≤1 ha and >1 ha per linear coastline distance of one km.</p> "> Figure 6
<p>Frequency distribution of submarine groundwater discharge (SGD) plumes along the west Hawai‘i coastline.</p> "> Figure 7
<p>Frequency distribution of remotely sensed delta-SST in each submarine groundwater discharge (SGD) plume. Delta-SST was calculated as the difference in sea surface temperature inside relative to outside of each mapped SGD plume (see Methods).</p> "> Figure 8
<p>(<b>a</b>) Example boat transect into submarine groundwater discharge (SGD) plume (in red) at Honokōhau Harbor. (<b>b</b>) Transect results corresponding to panel (<b>a</b>). Dots in both panels indicate each sea surface temperature (SST) measurement.</p> "> Figure 9
<p>Relationship between boat-based estimates of delta-SST inside and outside of each SGD plume and those derived from airborne thermal imaging (n = 47). Open circles indicate each SGD site and dashed line indicates quadratic fit line.</p> "> Figure 10
<p>Relationship between remotely sensed submarine groundwater discharge (SGD) plume area and delta-SST values. Open circles indicate each SGD site.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Airborne Data Collection
2.2. Field Validation Surveys
3. Results
3.1. Mapped SGD Plumes
3.2. Airborne and Boat-Based SGD Temperatures
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Connell, J.H. Diversity in tropical rainforests and coral reefs. Science 1978, 199, 1302–1310. [Google Scholar] [CrossRef] [PubMed]
- Bellwood, D.R.; Pratchett, M.S.; Morrison, T.H.; Gurney, G.G.; Hughes, T.P.; Álvarez-Romero, J.G.; Day, J.C.; Grantham, R.; Grech, A.; Hoey, A.S.; et al. Coral reef conservation in the Anthropocene: Confronting spatial mismatches and prioritizing functions. Biol. Conserv. 2019, 236, 604–615. [Google Scholar] [CrossRef]
- Grigg, R.W. Community structure, succession and development of coral reefs in Hawaii. Mar. Ecol. Prog. Ser. 1983, 11, 1–14. [Google Scholar] [CrossRef]
- Murray, J. 1. On the Structure and Origin of Coral Reefs and Islands. Proc. R. Soc. Edinb. 1880, 10, 505–518. [Google Scholar] [CrossRef]
- Cabioch, G.; Davies, P.; Done, T.; Gischler, E.; Macintyre, I.; Wood, R.; Woodroffe, C. Encyclopedia of Modern Coral Reefs: Structure, Form and Process; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Lowe, R.J.; Falter, J.L. Oceanic forcing of coral reefs. Annu. Rev. Mar. Sci. 2015, 7, 43–66. [Google Scholar] [CrossRef] [PubMed]
- Munday, P.; Leis, J.; Lough, J.; Paris, C.; Kingsford, M.; Berumen, M.L.; Lambrechts, J. Climate change and coral reef connectivity. Coral Reefs 2009, 28, 379–395. [Google Scholar] [CrossRef]
- McLaughlin, C.; Smith, C.; Buddemeier, R.; Bartley, J.; Maxwell, B. Rivers, runoff, and reefs. Glob. Planet. Chang. 2003, 39, 191–199. [Google Scholar] [CrossRef]
- Paytan, A.; Shellenbarger, G.G.; Street, J.H.; Gonneea, M.E.; Davis, K.; Young, M.B.; Moore, W.S. Submarine groundwater discharge: An important source of new inorganic nitrogen to coral reef ecosystems. Limnol. Oceanogr. 2006, 51, 343–348. [Google Scholar] [CrossRef]
- Street, J.H.; Knee, K.L.; Grossman, E.E.; Paytan, A. Submarine groundwater discharge and nutrient addition to the coastal zone and coral reefs of leeward Hawaiʻi. Mar. Chem. 2008, 109, 355–376. [Google Scholar] [CrossRef]
- Silbiger, N.J.; Donahue, M.J.; Lubarsky, K. Submarine groundwater discharge alters coral reef ecosystem metabolism. Proc. R. Soc. B 2020, 287, 20202743. [Google Scholar] [CrossRef]
- Moosdorf, N.; Stieglitz, T.; Waska, H.; Dürr, H.H.; Hartmann, J. Submarine groundwater discharge from tropical islands: A review. Grundwasser 2015, 20, 53–67. [Google Scholar] [CrossRef]
- Gove, J.M.; Williams, G.J.; Lecky, J.; Brown, E.; Conklin, E.; Counsell, C.; Davis, G.; Donovan, M.K.; Falinski, K.; Kramer, L. Coral reefs benefit from reduced land–sea impacts under ocean warming. Nature 2023, 621, 536–542. [Google Scholar] [CrossRef] [PubMed]
- Oehler, T.; Bakti, H.; Lubis, R.F.; Purwoarminta, A.; Delinom, R.; Moosdorf, N. Nutrient dynamics in submarine groundwater discharge through a coral reef (western Lombok, Indonesia). Limnol. Oceanogr. 2019, 64, 2646–2661. [Google Scholar] [CrossRef]
- Tait, D.R.; Santos, I.R.; Lamontagne, S.; Sippo, J.Z.; McMahon, A.; Jeffrey, L.C.; Maher, D.T. Submarine groundwater discharge exceeds river inputs as a source of nutrients to the Great Barrier Reef. Environ. Sci. Technol. 2023, 57, 15627–15634. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, S. Review of the role of remote sensing for submarine groundwater discharge. New Water Policy Pract. 2015, 2, 30–50. [Google Scholar] [CrossRef]
- Moore, W.S. The effect of submarine groundwater discharge on the ocean. Annu. Rev. Mar. Sci. 2010, 2, 59–88. [Google Scholar] [CrossRef] [PubMed]
- McGowan, M.P. Submarine Groundwater Discharge: Freshwater and Nutrient Input into Hawaii’s Coastal Zone. Master’s Thesis, University of Hawaii at Mānoa, Honolulu, HI, USA, 2004. [Google Scholar]
- Caineta, J.; Thomas, B.F.; Bain, D.J. Submarine groundwater discharge detection through remote sensing: An application of Landsat 7 and 8 in Hawaiʻi and Ireland. Remote Sens. Environ. 2022, 279, 113109. [Google Scholar] [CrossRef]
- MacDonald, G.A.; Abbot, A.T.; Peterson, F.L. Volcanoes in the Sea: The Geology of Hawaii; University of Hawaii Press: Honolulu, HI, USA, 1983; p. 517. [Google Scholar]
- Oberle, F.K.; Prouty, N.G.; Swarzenski, P.W.; Storlazzi, C.D. High-resolution observations of submarine groundwater discharge reveal the fine spatial and temporal scales of nutrient exposure on a coral reef: Faga’alu, AS. Coral Reefs 2022, 41, 849–854. [Google Scholar] [CrossRef]
- Gove, J.M.; Whitney, J.L.; McManus, M.A.; Lecky, J.; Carvalho, F.C.; Lynch, J.M.; Li, J.; Neubauer, P.; Smith, K.A.; Phipps, J.E. Prey-size plastics are invading larval fish nurseries. Proc. Natl. Acad. Sci. USA 2019, 116, 24143–24149. [Google Scholar] [CrossRef]
- Johnson, A.G. Groundwater discharge from the leeward half of the Big Island, Hawaii. Master’s Thesis, University of Hawaii, Honolulu, HI, USA, 2008. [Google Scholar]
- Carlson, R.R.; Crowder, L.B.; Martin, R.E.; Asner, G.P. The effect of reef morphology on coral recruitment at multiple spatial scales. Proc. Natl. Acad. Sci. USA 2024, 121, e2311661121. [Google Scholar] [CrossRef]
- Asner, G.P.; Vaughn, N.R.; Martin, R.E.; Foo, S.A.; Heckler, J.; Neilson, B.J.; Gove, J.M. Mapped coral mortality and refugia in an archipelago-scale marine heat wave. Proc. Natl. Acad. Sci. USA 2022, 119, e2123331119. [Google Scholar] [CrossRef]
- Asner, G.P.; Vaughn, N.R.; Heckler, J.; Knapp, D.E.; Balzotti, C.; Shafron, E.; Martin, R.E.; Neilson, B.J.; Gove, J.M. Large-scale mapping of live corals to guide reef conservation. Proc. Natl. Acad. Sci. USA 2020, 117, 33711–33718. [Google Scholar] [CrossRef]
- Asner, G.P.; Knapp, D.E.; Boardman, J.; Green, R.O.; Kennedy-Bowdoin, T.; Eastwood, M.; Martin, R.E.; Anderson, C.; Field, C.B. Carnegie Airborne Observatory-2: Increasing science data dimensionality via high-fidelity multi-sensor fusion. Remote Sens. Environ. 2012, 124, 454–465. [Google Scholar] [CrossRef]
- Tamborski, J.J.; Rogers, A.D.; Bokuniewicz, H.J.; Cochran, J.K.; Young, C.R. Identification and quantification of diffuse fresh submarine groundwater discharge via airborne thermal infrared remote sensing. Remote Sens. Environ. 2015, 171, 202–217. [Google Scholar] [CrossRef]
- Williams, E.L. Multi-Scale Thermal Mapping of Submarine Groundwater Discharge in Coastal Ecosystems of Volcanic Islands. Master’s Thesis, The University of Texas at Austin, Austin, TX, USA, 2023. [Google Scholar]
- Knee, K.L.; Street, J.H.; Grossman>, E.E.; Boehm, A.B.; Paytan, A. Nutrient inputs to the coastal ocean from submarine groundwater discharge in a groundwater-dominated system: Relation to land use (Kona coast, Hawaii, USA). Limnol. Oceanogr. 2010, 55, 1105–1122. [Google Scholar] [CrossRef]
- Bishop, J.M.; Glenn, C.R.; Amato, D.W.; Dulai, H. Effect of land use and groundwater flow path on submarine groundwater discharge nutrient flux. J. Hydrol. Reg. Stud. 2017, 11, 194–218. [Google Scholar] [CrossRef]
- Mezzacapo, M.; Donohue, M.J.; Smith, C.; El-Kadi, A.; Falinski, K.; Lerner, D.T. Hawaiʻi’s Cesspool Problem: Review and Recommendations for Water Resources and Human Health. J. Contemp. Water Res. Educ. 2020, 170, 35–75. [Google Scholar] [CrossRef]
- Abaya, L.M.; Wiegner, T.N.; Beets, J.P.; Colbert, S.L.; Kaile’a, M.C.; Kramer, K.L. Spatial distribution of sewage pollution on a Hawaiian coral reef. Mar. Pollut. Bull. 2018, 130, 335–347. [Google Scholar] [CrossRef] [PubMed]
- Foo, S.A.; Walsh, W.J.; Lecky, J.; Marcoux, S.; Asner, G.P. Impacts of pollution, fishing pressure, and reef rugosity on resource fish biomass in West Hawaii. Ecol. Appl. 2021, 31, e2213. [Google Scholar] [CrossRef]
- Schluessel, P.; Emery, W.J.; Grassl, H.; Mammen, T. On the bulk-skin temperature difference and its impact on satellite remote sensing of sea surface temperature. J. Geophys. Res. Ocean. 1990, 95, 13341–13356. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Asner, G.P.; Vaughn, N.R.; Heckler, J. Operational Mapping of Submarine Groundwater Discharge into Coral Reefs: Application to West Hawai‘i Island. Oceans 2024, 5, 547-559. https://doi.org/10.3390/oceans5030031
Asner GP, Vaughn NR, Heckler J. Operational Mapping of Submarine Groundwater Discharge into Coral Reefs: Application to West Hawai‘i Island. Oceans. 2024; 5(3):547-559. https://doi.org/10.3390/oceans5030031
Chicago/Turabian StyleAsner, Gregory P., Nicholas R. Vaughn, and Joseph Heckler. 2024. "Operational Mapping of Submarine Groundwater Discharge into Coral Reefs: Application to West Hawai‘i Island" Oceans 5, no. 3: 547-559. https://doi.org/10.3390/oceans5030031