Sensory Feedback of Grasp Security by Direct Neural Stimulation Improves Amputee Prediction of Object Slip
<p>The Ottobock SensorHand Speed system (left) includes sensors measuring normal (light red) and shear loads (dark red) at the tip of the thumb, and joint torque (blue) at the thumb joint. These sensors were used to train a slip predictor model, which was incorporated into the Digital Limb Controller (right) as part of this study to provide grasp security sensory feedback.</p> "> Figure 2
<p>(<b>a</b>) Training block, (<b>b</b>) trial totem detail [mm], and (<b>c</b>) view of trial totem grasped by prosthetic before a pull attempt.</p> "> Figure 3
<p>Visual example of relation between normal (<span class="html-italic">y</span>) and shear (<span class="html-italic">z</span>) sensor measurements from prosthetic fingertips and regressor output across grasp and pull movements. (<b>a</b>) Grasping object, (<b>b</b>) neutral grasp, (<b>c</b>) pulling object to right until slip, (<b>d</b>) returning to neutral grasp, (<b>e</b>) pulling object to left until slip, (<b>f</b>) returning to neutral grasp.</p> "> Figure 4
<p>The experimental setup (above) involved one experimenter connecting the trial totem to different elastic bands to ensure that the participant used their sense of pull force, and not pull distance, during trials. A second experimenter recorded the maximum pull force for each trial. The opaque divider (below) blinded the participant to which elastic was in use and the force results from each trial.</p> "> Figure 5
<p>Median number of objects that slipped from lower-force grasp (15 N) when participants received <span class="html-italic">spike</span> or <span class="html-italic">amplitude stimulation</span> was reduced by 7.5 and 4.5, respectively, compared to <span class="html-italic">no stimulation</span>. Number of slips generally did not change discernably with higher-force grasp (25N).</p> "> Figure 6
<p>When pulling objects with a higher-force grasp (25 N), participants were able to impart greater pulling forces with <span class="html-italic">spike</span> and <span class="html-italic">amplitude stimulation</span> compared to <span class="html-italic">no feedback</span>. Only <span class="html-italic">spike stimulation</span> resulted in greater pull forces with a lower-force grasp (15 N). Points represent raw data, boxes represent median and quartiles, and whiskers extend to points within 1.5x the interquartile range.</p> "> Figure 7
<p>Pull forces were generally higher for high-force grasps (25 N) compared to low-force grasps (15 N), as expected. However, differences in median pull forces were larger when participants received <span class="html-italic">spike</span> or <span class="html-italic">amplitude stimulation</span>, indicating greater understanding of grasp security. Points represent raw data, boxes represent median and quartiles, and whiskers extend to points within 1.5x the interquartile range.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Materials
2.3. Grasp Security Model
- Grab object;
- Pull object lightly to apply a small amount of shear;
- Increase pull force to increase shear;
- Increase pull force to record two slip events;
- Maintain tension to maintain second slip;
- Decrease pull force to slightly reduce shear;
- Decrease pull force to a very low level.
2.4. Experimental Protocol
2.5. Statistical Analysis
3. Results
3.1. Impact of Grasp Security Feedback on Slip Events
3.2. Impact of Grasp Security Feedback on Pull Force
3.3. Impact of Grasp Security Feedback on Grasp Comprehension and Amputee Movement
3.4. Participant Perspectives
4. Discussions
Future Developments
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Atkins, D.J.; Heard, D.C.Y.; Donovan, W.H. Epidemiologic Overview of Individuals with Upper-Limb Loss and Their Reported Research Priorities. JPO J. Prosthet. Orthot. 1996, 8, 2–11. [Google Scholar] [CrossRef]
- Gallagher, P.; O’Donovan, M.-A.; Doyle, A.; Desmond, D. Environmental barriers, activity limitations and participation restrictions experienced by people with major limb amputation. Prosthet. Orthot. Int. 2011, 35, 278–284. [Google Scholar] [CrossRef]
- Cordella, F.; Ciancio, A.L.; Sacchetti, R.; Davalli, A.; Cutti, A.G.; Guglielmelli, E.; Zollo, L. Literature review on needs of upper limb prosthesis users. Front. Neurosci. 2016, 10, 209. [Google Scholar] [CrossRef] [PubMed]
- Hebert, J.S.; Burger, H. Return to Work Following Major Limb Loss. In Handbook of Return to Work, 1st ed.; Schulz, I.Z., Gatchel, R.J., Eds.; Springer: Boston, MA, USA, 2016; pp. 505–517. [Google Scholar]
- Earley, E.J.; Piazza, C.; Turner, K. A Taxonomy for Commercially Available Myoelectric Terminal Devices. In Proceedings of the Myoelectric Controls Symposium (MEC), Frederickton, NB, Canada, 12–15 August 2024. [Google Scholar] [CrossRef]
- Ninu, A.; Dosen, S.; Muceli, S.; Rattay, F.; Dietl, H.; Farina, D. Closed-loop control of grasping with a myoelectric hand prosthesis: Which are the relevant feedback variables for force control? IEEE Trans. Neural Syst. Rehabil. Eng. 2014, 22, 1041–1052. [Google Scholar] [CrossRef]
- Brown, J.D.; Paek, A.; Syed, M.; O’Malley, M.K.; Shewokis, P.A.; Contreras-Vidal, J.L.; Davis, A.J.; Gillespie, R.B. An exploration of grip force regulation with a low-impedance myoelectric prosthesis featuring referred haptic feedback. J. NeuroEng. Rehabil. 2015, 12, 104. [Google Scholar] [CrossRef]
- Witteveen, H.J.B.; Rietman, H.S.; Veltink, P.H. Vibrotactile grasping force and hand aperture feedback for myoelectric forearm prosthesis users. Prosthet. Orthot. Int. 2015, 39, 204–212. [Google Scholar] [CrossRef] [PubMed]
- De Nunzio, A.M.; Dosen, S.; Lemling, S.; Markovic, M.; Schweisfurth, M.A.; Ge, N.; Graimann, B.; Falla, D.; Farina, D. Tactile feedback is an effective instrument for the training of grasping with a prosthesis at low- and medium-force levels. Exp. Brain Res. 2017, 235, 2547–2559. [Google Scholar] [CrossRef]
- Reza Motamedi, M.; Otis, M.; Duchaine, V. The Impact of Simultaneously Applying Normal Stress and Vibrotactile Stimulation for Feedback of Exteroceptive Information. J. Biomech. Eng. 2017, 139, 061004. [Google Scholar] [CrossRef]
- Mayer, R.M.; Garcia-Rosas, R.; Mohammadi, A.; Tan, Y.; Alici, G.; Choong, P.; Oetomo, D. Tactile Feedback in Closed-Loop Control of Myoelectric Hand Grasping: Conveying Information of Multiple Sensors Simultaneously via a Single Feedback Channel. Front. Neurosci. 2020, 14, 348. [Google Scholar] [CrossRef] [PubMed]
- Mastinu, E.; Engels, L.F.; Clemente, F.; Dione, M.; Sassu, P.; Aszmann, O.; Brånemark, R.; Håkansson, B.; Controzzi, M.; Wessberg, J.; et al. Neural feedback strategies to improve grasping coordination in neuromusculoskeletal prostheses. Sci. Rep. 2020, 10, 11793. [Google Scholar] [CrossRef] [PubMed]
- Schiefer, M.; Tan, D.; Sidek, S.M.; Tyler, D.J. Sensory feedback by peripheral nerve stimulation improves task performance in individuals with upper limb loss using a myoelectric prosthesis. J. Neural Eng. 2016, 13, 016001. [Google Scholar] [CrossRef]
- Schiefer, M.A.; Graczyk, E.L.; Sidik, S.M.; Tan, D.W.; Tyler, D.J. Artificial tactile and proprioceptive feedback improves performance and confidence on object identification tasks. PLoS ONE 2018, 13, e0207659. [Google Scholar] [CrossRef]
- Johansson, R.S.; Flanagan, J.R. Coding and use of tactile signals from the fingertips in object manipulation tasks. Nat. Rev. Neurosci. 2009, 10, 345–359. [Google Scholar] [CrossRef]
- Markovic, M.; Schweisfurth, M.A.; Engels, L.F.; Farina, D.; Dosen, S. Myocontrol is closed-loop control: Incidental feedback is sufficient for scaling the prosthesis force in routine grasping. J. NeuroEng. Rehabil. 2018, 15, 81. [Google Scholar] [CrossRef] [PubMed]
- Mingrino, A.; Bucci, A.; Magni, R.; Dario, P. Slippage control in hand prostheses by sensing grasping forces and sliding motion. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS’94), Munich, Germany, 12–16 September 1994; Volume 1803, pp. 1803–1809. [Google Scholar]
- Su, Z.; Hausman, K.; Chebotar, Y.; Molchanov, A.; Loeb, G.E.; Sukhatme, G.S.; Schaal, S. Force estimation and slip detection/classification for grip control using a biomimetic tactile sensor. In Proceedings of the 2015 IEEE-RAS 15th International Conference on Humanoid Robots (Humanoids), Seoul, Republic of Korea, 3–5 November 2015; pp. 297–303. [Google Scholar]
- Roberts, L.; Singhal, G.; Kaliki, R. Slip detection and grip adjustment using optical tracking in prosthetic hands. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS 2011, Boston, MA, USA, 30 August–3 September 2011; pp. 2929–2932. [Google Scholar] [CrossRef]
- Barone, R.; Ciancio, A.L.; Romeo, R.A.; Davalli, A.; Sacchetti, R.; Guglielmelli, E.; Zollo, L. Multilevel control of an anthropomorphic prosthetic hand for grasp and slip prevention. Adv. Mech. Eng. 2016, 8, 1–13. [Google Scholar] [CrossRef]
- Mendez, V.; Iberite, F.; Shokur, S.; Micera, S. Current Solutions and Future Trends for Robotic Prosthetic Hands. Annu. Rev. Control Robot. Auton. Syst. 2021, 4, 595–627. [Google Scholar] [CrossRef]
- Zbinden, J.; Lendaro, E.; Ortiz-Catalan, M. Prosthetic embodiment: Systematic review on definitions, measures, and experimental paradigms. J. NeuroEng. Rehabil. 2022, 19, 37. [Google Scholar] [CrossRef]
- Segil, J.L.; Roldan, L.M.; Graczyk, E.L. Measuring embodiment: A review of methods for prosthetic devices. Front. Neurorobot. 2022, 16, 902162. [Google Scholar] [CrossRef] [PubMed]
- Cotton, D.P.J.; Chappell, P.H.; Cranny, A.; White, N.M.; Beeby, S.P. A novel thick-film piezoelectric slip sensor for a prosthetic hand. IEEE Sens. J. 2007, 7, 752–761. [Google Scholar] [CrossRef]
- Fang, P.; Tian, L.; Zheng, Y.; Huang, J.; Li, G. Using thin-film piezoelectret to detect tactile and slip signals for restoring sensation of prosthetic hands. In Proceedings of the 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2014, Chicago, IL, USA, 26–30 August 2014; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2014; pp. 2565–2568. [Google Scholar] [CrossRef]
- Fernandez, R.; Payo, I.; Vazquez, A.S.; Becedas, J. Micro-vibration-based slip detection in tactile force sensors. Sensors 2014, 14, 709–730. [Google Scholar] [CrossRef] [PubMed]
- Yang, B.; Duan, X.; Deng, H. A simple method for slip detection of prosthetic hand. In Proceedings of the 2015 IEEE International Conference on Information and Automation, ICIA 2015—In Conjunction with 2015 IEEE International Conference on Automation and Logistics, Lijiang, China, 8–10 August 2015; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2015; pp. 2159–2164. [Google Scholar] [CrossRef]
- Cordella, F.; Gentile, C.; Zollo, L.; Barone, R.; Sacchetti, R.; Davalli, A.; Siciliano, B.; Guglielmelli, E. A force-and-slippage control strategy for a poliarticulated prosthetic hand. In Proceedings of the IEEE International Conference on Robotics and Automation, Stockholm, Sweden, 16–21 May 2016; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2016; pp. 3524–3529. [Google Scholar] [CrossRef]
- Romeo, R.A.; Rongala, U.B.; Mazzoni, A.; Camboni, D.; Carrozza, M.C.; Guglielmelli, E.; Zollo, L.; Oddo, C.M. Identification of slippage on naturalistic surfaces via wavelet transform of tactile signals. IEEE Sens. J. 2019, 19, 1260–1268. [Google Scholar] [CrossRef]
- Gentile, C.; Cordella, F.; Rodrigues, C.R.; Zollo, L. Touch-and-slippage detection algorithm for prosthetic hands. Mechatronics 2020, 70, 102402. [Google Scholar] [CrossRef]
- Romeo, R.A.; Zollo, L. Methods and Sensors for Slip Detection in Robotics: A Survey. IEEE Access 2020, 8, 73027–73050. [Google Scholar] [CrossRef]
- Aboseria, M.; Clemente, F.; Engels, L.F.; Cipriani, C. Discrete Vibro-Tactile Feedback Prevents Object Slippage in Hand Prostheses More Intuitively Than Other Modalities. IEEE Trans. Neural Syst. Rehabil. Eng. 2018, 26, 1577–1584. [Google Scholar] [CrossRef] [PubMed]
- Tremblay, M.R.; Cutkosky, M.R. Estimating friction using incipient slip sensing during a manipulation task. In Proceedings of the IEEE International Conference on Robotics and Automation, Atlanta, GA, USA, 2–6 May 1993; IEEE: Piscataway, NJ, USA, 1993; pp. 429–434. [Google Scholar]
- Bayrleithner, R.; Komoriya, K. Static friction coefficient determination by force sensing and its application. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS’94), Munich, Germany, 12–16 September 1994; IEEE: Piscataway, NJ, USA, 1994; pp. 1639–1646. [Google Scholar]
- Osborn, L.; Thakor, N.V.; Kaliki, R. Utilizing tactile feedback for biomimetic grasping control in upper limb prostheses. In Proceedings of the 2013 IEEE SENSORS, Baltimore, MD, USA, 3–6 November 2013; IEEE: Piscataway, NJ, USA, 2013. [Google Scholar]
- Xi, K.; Wang, Y.; Mei, D.; Liang, G.; Chen, Z. A flexible tactile sensor array based on pressure conductive rubber for three-axis force and slip detection. In Proceedings of the 2015 IEEE International Conference on Advanced Intelligent Mechatronics (AIM), Busan, Republic of Korea, 7–11 July 2015; IEEE: Piscataway, NJ, USA, 2015. [Google Scholar]
- Nakagawa-Silva, A.; Thakor, N.V.; Cabibihan, J.-J.; Soares, A.B. A Bio-Inspired Slip Detection and Reflex-Like Suppression Method for Robotic Manipulators. IEEE Sens. J. 2019, 19, 12443–12453. [Google Scholar] [CrossRef]
- Zollo, L.; Pino, G.D.; Ciancio, A.L.; Ranieri, F.; Cordella, F.; Gentile, C.; Noce, E.; Romeo, R.A.; Bellingegni, A.D.; Vadalà, G.; et al. Restoring tactile sensations via neural interfaces for real-time force-and-slippage closed-loop control of bionic hands. Sci. Robot. 2019, 4, eaau9924. [Google Scholar] [CrossRef]
- Abd, M.A.; Al-Saidi, M.; Lin, M.; Liddle, G.; Mondal, K.; Engeberg, E.D. Surface Feature Recognition and Grasped Object Slip Prevention with a Liquid Metal Tactile Sensor for a Prosthetic Hand. In Proceedings of the 2020 8th IEEE RAS/EMBS International Conference for Biomedical Robotics and Biomechatronics (BioRob), New York, NY, USA, 29 November–1 December 2020; IEEE: Piscataway, NJ, USA, 2020. [Google Scholar]
- Ortiz-Catalan, M.; Mastinu, E.; Sassu, P.; Aszmann, O.; Brånemark, R. Self-Contained Neuromusculoskeletal Arm Prostheses. N. Engl. J. Med. 2020, 382, 1732–1738. [Google Scholar] [CrossRef]
- Zbinden, J.; Sassu, P.; Mastinu, E.; Earley, E.J.; Munoz-Novoa, M.; Brånemark, R.; Ortiz-Catalan, M. Improved control of a prosthetic limb by surgically creating electro-neuromuscular constructs with implanted electrodes. Sci. Transl. Med. 2023, 15, eabq3665. [Google Scholar] [CrossRef]
- Smiles, A. Slip Prediction for Upper-Limb Prosthetics. Master’s Thesis, University of Waterloo, Waterloo, ON, Canada, 2021. [Google Scholar]
- Dwivedi, A.K.; Mallawaarachchi, I.; Alvarado, L.A. Analysis of small sample size studies using nonparametric bootstrap test with pooled resampling method. Stat. Med. 2017, 36, 2187–2205. [Google Scholar] [CrossRef]
- Collu, R.; Earley, E.J.; Barbaro, M.; Ortiz-Catalan, M. Non-rectangular neurostimulation waveforms elicit varied sensation quality and perceptive fields on the hand. Sci. Rep. 2023, 13, 1588. [Google Scholar] [CrossRef] [PubMed]
- Scarpelli, A.; Demofonti, A.; Cordella, F.; Coffa, U.; Mereu, F.; Gruppioni, E.; Zollo, L. Eliciting Force and Slippage in Upper Limb Amputees Through Transcutaneous Electrical Nerve Stimulation (TENS). IEEE Trans. Neural Syst. Rehabil. Eng. 2024, 32, 3006–3017. [Google Scholar] [CrossRef]
Stimulation Setting | P1 | P2 | P3 | P4 |
---|---|---|---|---|
Single-Pulse Amplitude (μA) | 130 | 450 | 620 | 700 |
Min. Amplitude (μA) | 120 | 300 | 450 | 800 |
Max. Amplitude (μA) | 140 | 450 | 650 | 500 |
Frequency (Hz) | 30 | 30 | 30 | 30 |
Pulse Width (μs) | 100 | 200 | 350 | 250 |
Sense | P1 | P2 | P3 | P4 |
---|---|---|---|---|
Stimulation Sensation | 7 | 5 | 1 | 2 |
Vision | 4 | 9–10 | 8 | 9 |
Muscle/Bone Load | 3 | 8 | 4 | 5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Smiles, A.B.; Earley, E.J.; Jiang, N.; Ortiz-Catalan, M. Sensory Feedback of Grasp Security by Direct Neural Stimulation Improves Amputee Prediction of Object Slip. Prosthesis 2025, 7, 3. https://doi.org/10.3390/prosthesis7010003
Smiles AB, Earley EJ, Jiang N, Ortiz-Catalan M. Sensory Feedback of Grasp Security by Direct Neural Stimulation Improves Amputee Prediction of Object Slip. Prosthesis. 2025; 7(1):3. https://doi.org/10.3390/prosthesis7010003
Chicago/Turabian StyleSmiles, Andrew B., Eric J. Earley, Ning Jiang, and Max Ortiz-Catalan. 2025. "Sensory Feedback of Grasp Security by Direct Neural Stimulation Improves Amputee Prediction of Object Slip" Prosthesis 7, no. 1: 3. https://doi.org/10.3390/prosthesis7010003
APA StyleSmiles, A. B., Earley, E. J., Jiang, N., & Ortiz-Catalan, M. (2025). Sensory Feedback of Grasp Security by Direct Neural Stimulation Improves Amputee Prediction of Object Slip. Prosthesis, 7(1), 3. https://doi.org/10.3390/prosthesis7010003