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Abstract: Cisplatin-induced acute kidney injury (AKI) is the main factor restraining the clinical
application of cisplatin. The AKI is associated with high mortality and morbidity, but no effective
pharmacological treatment is available at present. As increased levels of reactive oxygen species (ROS)
may promote the progression of the injury, the elimination of ROS has been considered as an effective
method to prevent the cisplatin-induced AKI. In addition, it has been revealed that an inducer of
autophagy could protect kidney cells in the autophagy dependent manner. Induction of autophagy
could also modulate the production of ROS in cases of renal injury. Therefore, kidney-targeted
antioxidants and/or autophagy are urgently required for the better treatment of AKI. Accumulating
evidence has indicated the important roles of gut microbiota in the pathogenesis of AKI. In addition,
there is a scientific basis for considering future clinical applications of probiotics and/or prebiotics to
treat cisplatin-induced AKI. Thus, gut microbiota might be a promising therapeutic target via the
alteration of autophagy for the cancer therapy-induced nephrotoxicity.
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1. Introduction

Cisplatin is one of the most widely used broad-spectrum anticancer agents, and is
used for the treatment of various solid tumors such as ovarian cancer, prostate cancer,
bladder cancer, head or neck cancer, and lung cancer [1,2]. The antitumor mechanisms
of cisplatin are mainly DNA damage via the enhanced generation of reactive oxygen
species (ROS) [3]. The excess ROS such as superoxide anion, hydrogen peroxide, and
hydroxyl radical would cause oxidative damage to various important molecules including
proteins, lipids, and/or DNAs, leading to the critical damage of cancer cells [4]. It had
been suggested that hydrogen peroxide is involved in the cisplatin-induced necrosis,
whereas hydroxyl radical is responsible for the cisplatin-induced apoptosis [5]. Accordingly,
the protective effects of hydroxyl radical scavengers are associated with an inhibition of
cytochrome c release and caspase activation [5]. In general, cancer cells have higher levels
of ROS than normal cells as a result of hyper-metabolism [6]. In addition to their extreme
cytotoxicity, cisplatin could also have a variety of non-specific adverse reactions in cancer
patients [7]. Studies have suggested that the accumulation of intracellular ROS is a hallmark
of cisplatin-induced acute kidney injury (AKI) [8]. Cisplatin may show high activity in
the fast proliferating cells, thereby causing cellular damage. In particular, about 30% of
cisplatin-administered patients suffer from renal dysfunction and/or injury [9]. Increased
formation of ROS in renal proximal convoluted tubule cells may be associated with the
cisplatin-induced AKI [10], which is a substantial complication of cisplatin chemotherapy
related to the ROS-dependent death of renal cells [11]. The AKI may be associated with high
morbidity and mortality. To date, there are few strategies for preventing cisplatin-induced
AKI [12], and it is urgent to search for novel therapeutic procedures to protect the kidney
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against the nephrotoxicity of cisplatin. In recent years, remarkable advances have been
made in effective protective regimens for the nephrotoxicity of cisplatin [13]. Basically,
protection of kidney from cisplatin-induced AKI might be attainable with antioxidant-
based therapeutic interventions that increase antioxidant levels and thus improve the
damage from ROS. For example, it has been suggested that scavenging ROS might lessen
cisplatin-induced mitochondrial dysfunction and thereby minimize the cisplatin-induced
AKI [14,15]. The challenges of maintaining anti-cancer efficacy by regulating the ROS level
in normal tissues and tumor tissues deserves to be thoroughly addressed [15]. Cisplatin
may induce autophagy-associated apoptosis in part through the effect of ROS [16]. The
autophagy has been demonstrated to alter the efficacy of conventional chemotherapy [17].
However, autophagy may not play a role in acquired resistance to cisplatin [16]. We believe
it is important to comprehend the relationship between ROS and autophagy in cases of
cisplatin-usage for prevention of cisplatin-induced AKI, and for the safe and effective
cancer therapy [18].

2. ROS and Autophagy in Cisplatin-Induced Acute Kidney Injury

The excessive generation of ROS has been regarded as the critical role during the
pathogenetic process induced by cisplatin, by which DNA damage and/or cell death could
occur. Increased ROS production is also known to change the mitochondrial electron
transport chain, and eventually lead to apoptosis [19]. In particular, the dysfunction of
the mitochondrial respiratory chain results in the further excess production of ROS that
contributes to severe kidney injury [20]. Consequently, the mitochondrial dysfunction
induced by the treatment with cisplatin could be considered as due to increased levels
of ROS resulting in various cellular apoptosis including kidney cells [2,21]. Increased
levels of ROS can also contribute to the tubular cell apoptosis in kidney, thereby causing
more severe kidney injury during AKI [22]. Further generation of ROS in the tubular cells
mitochondria might thus possibly contribute to the exacerbation of cisplatin-induced AKI.
Therefore, the elimination of ROS has long been considered as an effective procedure to
prevent the cisplatin-induced AKI [23]. In addition to increased ROS levels, treatment with
cisplatin also impairs the activity of antioxidants such as superoxide dismutases (SODs),
catalase, and glutathione peroxidase, which could function to reduce ROS levels [24].
The SODs are ROS-eliminating super enzymes with several subcellular localizations [25].
Targeting the cisplatin-induced oxidative stress via manipulation of the cellular antioxidant
system including the expression of SODs could be beneficial for protecting against cisplatin
nephrotoxicity. In fact, some agents with antioxidant and/or anti-inflammation activities
could alleviate the cisplatin-induced cell damage by reduced production of ROS [26].
These therapeutic approaches may enhance the tolerance to cisplatin and hence might
enable greater dose intensity associated with better outcomes. It has been shown that
sirt1 expression on proximal tubules in the kidney may save cisplatin-induced AKI by
preserving the function of peroxisomes and the elimination of ROS, which could be a
potential therapeutic target for the treatment of cisplatin-induced AKI [27] (Figure 1).

ROS-induced autophagy may also lead to a different outcome of cell fate that may
result in cell survival or cell death, depending on the severity of ROS exposure [28]. ROS
impact on autophagy is mediated by specific signaling pathways, which might reduce the
oxidative damage by degrading and/or recycling intracellular oxidized macromolecules
and dysfunctional organelles [29]. It is well known that autophagy could be modulated
by oxidative stress [30], and that antioxidants may prevent the induction of ROS-induced
autophagy [31]. In fact, correlative evidence on the roles of ROS in autophagy in renal
diseases has been formerly reported [32]. Induction of autophagy could also modulate
ROS production in renal injury. For example, cisplatin treatment in autophagy-deficient
renal proximal tubular cells may increase ROS production, oxidative stress, and DNA
damage [33], suggesting that autophagy provides protection by reducing ROS production
and eliminating toxic oxidized protein aggregates and/or other macromolecules (Figure 1).
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Figure 1. Schematic illustration of pathogenesis of cisplatin induced acute kidney injury or nephrop-
athy. Reactive oxygen species (ROS), inflammation, and autophagy are all involved in the patho-
genesis of cisplatin induced acute kidney injury. ROS may damage DNA or organelles within a cell. 
The damage could be treated with autophagy to enhance the survival of kidney cells. If the damage 
is too severe to be repaired, cells might undergo cell-death leading to kidney injury or nephropathy. 
Note that several significant features have been omitted for clarity. 
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ney damage, subsequently refining kidney recovery post-AKI [35]. The beneficial effect of 
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phrotoxicity [36]. In fact, autophagy occurs in AKI, and this might be an imperative mech-
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Figure 1. Schematic illustration of pathogenesis of cisplatin induced acute kidney injury or nephropa-
thy. Reactive oxygen species (ROS), inflammation, and autophagy are all involved in the pathogenesis
of cisplatin induced acute kidney injury. ROS may damage DNA or organelles within a cell. The
damage could be treated with autophagy to enhance the survival of kidney cells. If the damage is too
severe to be repaired, cells might undergo cell-death leading to kidney injury or nephropathy. Note
that several significant features have been omitted for clarity.

3. Autophagy as a Target for the Treatment of Cisplatin-Induced Acute Kidney Injury

Autophagy, a highly conserved multistep catabolic pathway in eukaryotic cells, de-
grades and/or recycles macromolecules and/or dysfunctional organelles, which also con-
tributes to the maintenance of the homeostasis of the kidney. For example, an inducer
of autophagy could protect cells in an autophagy dependent manner [34]. In addition,
the activity of autophagy regulator beclin 1 brings kidney protection via the reduction of
kidney damage, subsequently refining kidney recovery post-AKI [35]. The beneficial effect
of autophagy has a potential clinical significance in minimizing or preventing cisplatin
nephrotoxicity [36]. In fact, autophagy occurs in AKI, and this might be an imperative
mechanism for protection of cell survival [37]. Autophagy can protect kidney proximal
tubules against AKI, possibly by alleviating DNA damage and/or ROS production [33,38].
In general, adenosine-monophosphate activated-protein kinase (AMPK) and mammalian
target of rapamycin (mTOR) are major positive and negative regulators of autophagy,
respectively. Therefore, inhibition of AMPK could lead to autophagy in cisplatin-induced
AKI, resulting in more cellular or tubular kidney damage [39]. It has been indicated that
penicilliumin-B denotes a different AMPK activator that might provide considerable pro-
tection against the apoptosis of renal tubular cells through the activated AMPK-induced
autophagy and/or mitochondrial regeneration [40]. Likewise, metformin might protect
against the cisplatin-induced apoptosis of tubular cells and/or AKI through stimulating
AMPK-activation and/or inducing autophagy [41]. In addition, it has been shown that
the pre-activation of autophagy could improve the survival and differentiation of kid-
ney cells by inhibiting the mTOR signaling pathway, which in turn could mitigate the
cisplatin-induced AKI [42].

In this regard, various compounds have an impact on the autophagy within kidney
diseases. For example, chlorogenic acids may decrease cisplatin-induced AKI through al-
terations of inflammation, oxidative stress, apoptosis and/or autophagy, with the improve-
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ment in kidney restoration [43]. Also, ginsenoside effectively protects against cisplatin-
induced AKI by activating the autophagy-mediated pathway [44]. The ginsenoside medi-
ated improvement has been found due to the regulation of AMPK and/or mTOR-mediated
autophagy and the inhibition of apoptosis [45]. Autophagy-mediated inhibition of apop-
tosis might also play a crucial role in astragaloside-mediated protection against cisplatin-
induced renotoxicity [46]. In addition, berberine could play a protecting role in cisplatin-
induced AKI by up-regulating mitophagy that is a kind of autophagy [47]. Similarly, Pink1
or Parkin dependent mitophagy has also identified potential targets for the treatment of
cisplatin-induced AKI [48]. Honokiol treatment may cause noticeable kidney protection
and attenuation of the cisplatin-induced kidney changes via preventing mitochondrial
dysfunction [49]. Morin hydrate, a natural flavonoid, could also improve autophagy
and/or inflammatory responses and decrease the cellular death in kidney, suggesting
morin hydrate as a potential therapeutic agent against cisplatin-induced nephrotoxic-
ity [50]. Trehalose treatment similarly conserves mitochondrial function via the activation
of autophagy, and then attenuates cisplatin-induced AKI [51]. Cordyceps cicadae, a tradi-
tional Chinese medicine, may have a potential kidney protective effectfor prevention of
cisplatin-induced AKI through the inhibition of various oxidative stresses by activating
AMPK [52]. It is reported that treatment with 3-dehydroxyceanothetric acid 2-methyl ester
isolated from the root of Ziziphus jujuba has decreased the autophagic vesicles via the
altered protein expressions of AMPK and/or mTOR dependent pathway against cisplatin-
induced AKI [53]. Retinoic acids could also improve cisplatin-induced AKI through the
activation of autophagy, and the retinoic acids might have some protective effects for
cisplatin-based chemotherapy [54]. AMPK activation is probably essential for the protec-
tion of kidney via the lithium-induced tubular cell autophagy in cases of cisplatin-induced
AKI [55]. In addition, IFN-γ could accelerate autophagic change in kidney and increase the
viability of kidney tubular cells, thereby attenuating cisplatin-induced AKI [56]. Deficiency
of neutral ceramidase, an enzyme responsible for converting ceramide into sphingosine,
could protect against cisplatin-induced AKI by the mechanism of increased autophagy [57].
Amniotic fluid stem cells may lead to amelioration of cisplatin-induced AKI, which is me-
diated by inhibition of apoptosis and/or activation of autophagy [58]. However, persistent
autophagy after AKI induces pro-fibrotic cytokines in renal tubular cells, promoting renal
fibrosis and chronic kidney disease (CKD) [59]. As described in this overview, autophagy is
deeply involved in the cisplatin-induced AKI, and autophagy could be a target for kidney
protection (Figure 2).
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induced acute kidney injury or nephropathy. Several examples including natural compounds or
medical agents which could affect the autophagy have also been shown. Prebiotics, probiotics, and/or
fecal microbiota transplantation (FMT) might be potential therapy for the treatment of cisplatin
induced acute kidney injury or nephropathy, which might lead to successful cancer therapy with low
damage in normal tissues. The arrowhead indicates stimulation whereas the hammerhead shows
inhibition. Note that several important activities such as cytokine-induction or anti-inflammatory
reaction have been omitted for clarity. Abbreviations: FMT, fecal microbiota transplantation; SCFAs,
short-chain fatty acids; ROS, reactive oxygen species; HDAC, histone deacetylase.

4. Favorable Roles of Gut-Kidney Axis for the Protection of Kidney

Autophagy is also critical for the homeostasis of intestinal bacteria and/or intestinal
barrier function [60]. In addition, it has been indicated that exploring the mechanism of the
interaction between autophagy and gut microbiota is beneficial for the study of autoim-
mune diseases [61]. Furthermore, gut microbiota dysbiosis has emerged as a significant
factor leading to renal failure via the progression of renal dysfunction, and alteration of
gut microbiota has been observed after treatment with cisplatin [62]. Dysbiosis of gut
microbiota is also found in diabetic nephropathy, and oral butyrate supplementation might
amend the kidney injury, possibly by boosting autophagy via modifying AMPK and/or
mTOR signaling pathway [63]. Interestingly, it has been shown that total flavones of
Abelmoschus manihot could improve renal injury and induce modifications in the gut
microbiota, showing increased Erysipelotrichales, and decreased Lactobacillales and/or
Bacteroidales [64]. The relationship between gut microbiota and kidney function is termed
the gut-kidney axis [65], which is often implicated in the pathogenesis of IgA nephropathy
and/or CKD [66]. It has been detected that several metabolites derived from the fermenta-
tion of gut microbiota may be associated with a systemic inflammatory response and/or
kidney injury, via the gut-kidney axis [67]. In particular, short-chain fatty acids (SCFAs)
are well-known fermentation products derived from dietary fiber sources, which are key
substrates for regulating immune system and/or inflammatory responses [68]. SCFAs have
anti-inflammatory and histone deacetylase (HDAC)-inhibiting properties, which could im-
prove several organ functions after an injury most likely via the epigenetic modification [69].
Interestingly, it has been shown that induction of autophagy by SCFAs is associated with
the activation of the AMPK catalytic subunit [70]. Likewise, inhibition of histone H3K27
acetylation could coordinate the protection of kidney in cases of cisplatin-induced AKI. [71].
Therefore, gut microbiota could mediate the nephron-protective effects potentially via
increasing the production of SCFAs which are well-known inhibitors of HDAC [72]. Re-
markably, it has been indicated that the HDAC-inhibitors may protect kidneys by activating
autophagy in proximal tubular cells [73].

Accumulating evidence suggests that gut microbiota is involved in the pathogenesis of
AKI [74]. In addition, recent research has demonstrated a substantial compositional and/or
functional discrepancy in the gut microorganisms after cisplatin-treatment, contributing to
further impairments of the gut structure and/or function [75]. Hence, the gut microbiota
could be targeted to benefit the efficacy and reduce the toxicity of prevailing chemotherapy
agents [76]. It is well known that the composition of gut microbiota could be changed
promptly through diet alteration [77]. For example, pretreatment with probiotics is reported
to slow the progression of AKI and CKD through increasing SCFAs production by the
gut microbiota, suggesting a potential treatment to reduce kidney injury [78]. In addition,
augmented levels of SCFAs could be reached through certain dietary changes [79]. There-
fore, probiotics have been investigated as alternative therapeutic strategies supporting the
concept that SCFAs-producing bacteria could become a tool for the prevention and/or
treatment of inflammatory processes in kidney. These studies powerfully indicate that
gut microbiota could be a latent ideal therapeutic target for cisplatin-induced AKI via the
alteration of autophagy (Figure 2).
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5. Future Perspectives

Cisplatin could cause dysbiosis in intestinal microflora, which might change the
microbiota-derived metabolites and influence the gut-kidney axis, leading to nephrotoxicity.
In clinical practice, Lactobacillus reuteri and Clostridium butyricum have been used for
the treatment of dysbiosis and/or inflammation in gut or specific organ damage [80,81].
Modulation of intestinal microbiota by administering probiotics could be considered as a
beneficial intervention to remove uremic toxins, promote SCFAs production, and amend
renal function [82]. The role of probiotics and/or prebiotics as mediators of the gut-
kidney axis for the kidney protection in cisplatin-induced AKI has been considered [81,83].
The probiotic kidney-protective effects of L. reuteri combined with C. butyricum might
be mediated by the modulation of composition in gut microbiota, thereby inhibiting the
production of uremic toxin and enhancing the production of SCFAs. These potential
mechanisms might include indirect alterations in the structure of gut commensal bacteria
such as SCFAs-producing bacteria and/or decreasing the pathogenic inflammatory bacteria.
SCFAs could enhance the efficacy of cancer therapy, while protecting the normal mucosa
cells from associated toxicity of the cancer therapy [84]. Too much toxicity in cancer therapy
due to the adverse effects on normal cells may limit the efficacy of the treatment, through
disturbing patients’ quality of life (QOL) [85]. To find an appropriate, not too much but not
too little, level of effectiveness in cancer-therapy should be important and required for the
good QOL of individuals. A focus of future studies should be the clarification of patients’
QOL with clinical applications of prebiotics and/or probiotics for the treatment against
AKI. Since antibiotic resistant strains do not create an immediate danger to human health,
detailed studies have shown that antibiotic resistant genes might be problematic [86]. In
particular, the application of microrganisms such as L. reuterii and C. butyricum could
transmit resistance characteristics to other microorganisms in the gut, which could cause
serious infections in the host. Therefore, more studies are needed to identify promising
strategies to evade antibiotic resistance-spread to pathogens through fermented food
consumption.
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AKI acute kidney injury
AMP Adenosine monophosphate
AMPK AMP-activated protein kinase
CKD chronic kidney disease
DNA deoxyribonucleic acid
HDAC histone deacetylase
mTOR mammalian target of rapamycin
QOL quality of life
ROS reactive oxygen species
SOD superoxide dismutase
SCFAs short-chain fatty acids
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