Mangrove Area Trends in Mexico Due to Anthropogenic Activities: A Synthesis of Five Decades (1970–2020)
<p>Map of the five regions in Mexico with mangrove forests, adapted from CONABIO’s 2020 map.</p> "> Figure 2
<p>(<b>A</b>) Net change in mangrove area in Mexico from 1996 to 2020, based on Global Mangrove Watch data, and (<b>B</b>) Trend of marginal mean mangrove area from 1970 to 2020, derived from a generalized linear mixed model based on historical records compiled by CONABIO [<a href="#B10-coasts-04-00038" class="html-bibr">10</a>].</p> "> Figure 3
<p>Marginal means calculated from a linear mixed-effects model of disturbed mangrove surface area from 1970 to 2020, using years as a fixed effect and states as a random effect.</p> "> Figure 4
<p>Boxplots showing anthropogenic activities driving mangrove area loss in Mexico (2005–2015). (<b>A</b>) Activities contributing to mangrove loss from 2005 to 2015. (<b>B</b>) Comparison of the most impactful activities in 2005, 2010 and 2015. Act. 1 is airports and runways; Act. 2 is aquaculture farms and artificial ponds; Act. 3 is hydraulic infrastructure; Act. 4 is Settlements; Act. 5 is transport; Act. 6 is Building zones; Act. 7 is industrial zones; Act. 8 is port zones; Act. 9 is touristic zones; and Act. 10 is Reclassification zones.</p> "> Figure 5
<p>Comparison of mangrove area between the initial year and the years 2005, 2010, 2012, 2015 and 2020.</p> ">
Abstract
:1. Introduction
2. Overview of Mangroves in Mexico
3. Analysis of Mangrove Cover Change
3.1. Average Trend of Mangrove Area from 1970 to 2005
3.2. Average Trend of Mangrove Area from 2005 to 2020
4. Restoration Efforts and Regulatory Measures Amid Ongoing Mangrove Loss
5. Anthropogenic Activity: The Biggest Challenge to Mangrove
6. Conclusions and Suggestions
- 1
- Comprehensive restoration strategies: Develop and implement ecological restoration strategies based on a comprehensive understanding of mangrove ecosystems. These strategies should include actions such as channel desilting and attention to phytosanitary aspects, especially the detection of pests or damage that are often ignored during reforestation. In addition, it is essential to encourage social participation through projects that generate economic, ecological, and social benefits.
- 2
- Expand research and data sources: It is essential to collect and systematize information using various research methods and data sources. This will allow the proper identification of the values and utilities that different social actors assign to mangrove products and services. It is also important to increase studies with different approaches in order to make more informed decisions in the context of climate change. For example, research is needed on the impacts of oil exploitation and siltation on mangroves [46], as well as studies on the quantification of carbon pools in these ecosystems [42].
- 3
- Update current regulations: Include mangrove species omitted from NOM-059-SEMARNAT-2010 to ensure more complete protection. CONABIO identified the lack of inclusion of Rhizophora harrisonii (Leechm) and Avicennia bicolor (Standl) in this standard. In addition, it is crucial to strengthen the regulatory framework on land-use changes in mangroves and to enforce Article 60 of the General Wildlife Law, which protects the integrity of hydrological flow in these ecosystems [53].
- 4
- Regulate anthropogenic activities: In Mexico, many activities related to land use (on the coasts) lack regulation and planning. For example, the accelerated increase of aquaculture on the Pacific coasts [52] and the expansion of tourist areas, such as the construction of hotels and housing areas in Cancun (Peninsula Region), have generated significant negative impacts on mangroves [54]. This urbanization also introduces additional disturbances, such as the construction of roads and streets, which perpetuate the elimination of mangrove forests. Consequently, it is imperative to regulate anthropogenic activities to stop deforestation and the conversion of these areas into port, tourism, and aquaculture facilities. To achieve this, planning and responsible land use in coastal areas are necessary.
- 5
- Inter-institutional coordination: Institutions should act in a coordinated manner, creating synergies between the government, academia, and non-governmental organizations to guide actions and thus make appropriate decisions for the management of coastal areas.
- 6
- Education and awareness-raising: Increase public education and awareness efforts on the importance of mangroves and the consequences of their degradation. One alternative could be awareness tourism in these ecosystems.
- 7
- Monitoring and evaluation: It is recommended to implement a continuous monitoring and evaluation system with regular intervals to track the progress of mangrove ecosystems and identify potential risks. This approach enables the adjustment of actions in response to emerging issues, ensuring the effectiveness of conservation measures.
Supplementary Materials
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Valderrama-Landeros, L.H.; Rodríguez-Zúñiga, M.T.; Troche-Souza, C.; Velázquez-Salazar, S.; Villeda-Chávez, E.; Alcántara-Maya, J.A.; Vázquez-Balderas, B.; Cruz-López, M.I.; Ressl, R. Manglares de México: Actualización y Exploración de los Datos del Sistema de Monitoreo 1970/1980–2015; CONABIO: Ciudad de México, México, 2017; 128p. [Google Scholar]
- Bunting, P.; Rosenqvist, A.; Hilarides, L.; Lucas, R.M.; Thomas, N.; Tadono, T.; Rebelo, L.M. Global Mangrove Extent Change 1996–2020: Global Mangrove Watch Version 3.0. Remote Sens. 2022, 14, 3657. [Google Scholar] [CrossRef]
- Agraz-Hernández, C.M. Reforestación Experimental de Manglares en Ecosistemas Lagunares Estuarinos de la Costa Noroccidental de México. Available online: http://cdigital.dgb.uanl.mx/te/1080124453/1080124453.html (accessed on 1 July 2024).
- Ong, J.E.; Gong, W.K. Structure, Function and Management of Mangrove Ecosystems; ISME Mangrove Educational Book Series; ISME: Okinawa, Japan, 2013; Available online: https://www.itto.int/files/itto_project_db_input/2960/Technical/BOOK%202.pdf?v=1391146908 (accessed on 21 November 2024).
- Portillo, J.L.; Ezcurra, E. Los manglares de México: Una revisión. Madera Y Bosques 2002, 8, 27–51. [Google Scholar] [CrossRef]
- Adame, M.F.; Cormier, N.; Taillardat, P.; Iram, N.; Rovai, A.S.; Sloey, T.M.; Ribeiro, R.A. Deconstructing the Mangrove Carbon Cycle: Gains, Transformation, and Losses. Ecosphere 2024, 15, e4806. [Google Scholar] [CrossRef]
- Lovelock, C.; Feller, I.C.; Reef, R.; Ruess, R. Variable Effects of Nutrient Enrichment on Soil Respiration in Mangrove Forests. Plant Soil 2014, 379, 135–148. [Google Scholar] [CrossRef]
- Sidik, F.; Lawrence, A.; Wagey, T.; Zamzani, F.; Lovelock, C.E. Blue Carbon: A New Paradigm of Mangrove Conservation and Management in Indonesia. Mar. Policy 2023, 147, 105388. [Google Scholar] [CrossRef]
- Goldberg, L.; Lagomasino, D.; Thomas, N.; Fatoyinbo, T. Global Declines in Human-Driven Mangrove Loss. Glob. Change Biol. 2020, 26, 5844–5855. [Google Scholar] [CrossRef]
- CONABIO. Sistema de Monitoreo de Manglares de México. 2022. Available online: https://biodiversidad.gob.mx/monitoreo/smmm (accessed on 4 October 2024).
- Simard, M.; Fatoyinbo, L.; Smetanka, C.; Rivera-Monroy, V.H.; Castañeda-Moya, E.; Thomas, N.; Van der Stocken, T. Mangrove Canopy Height Globally Related to Precipitation, Temperature and Cyclone Frequency. Nat. Geosci. 2019, 12, 40–45. [Google Scholar] [CrossRef]
- GMW. Global Mangrove Watch. 2024. Available online: https://www.globalmangrovewatch.org/ (accessed on 4 October 2024).
- Hirales-Cota, M.; Espinoza-Avalos, J.; Schmook, B.; Ruiz-Luna, A.; Ramos-Reyes, R. Drivers of mangrove deforestation in Mahahual-Xcalak, Quintana Roo, southeast Mexico. Cienc. Mar. 2010, 36, 147–159. [Google Scholar] [CrossRef]
- Romero-Berny, E.I.; Acosta-Velázquez, J.; Tovilla-Hernández, C.; Schmook, B.; Gómez-Ortega, R. Cambios de cobertura y fragmentación de manglares en la región del Soconusco, Chiapas, México, 1994–2011. Rev. Geográfica De América Cent. 2015, 1, 153–169. [Google Scholar] [CrossRef]
- Tovilla, H.C. Mangles. In Lagunas Costeras y el Litoral Mexicano; Espino y, D.l.L., Caceres-Martinez, C., Eds.; Universidad Autonoma de Baja California Sur: La Paz, Mexico, 1994; pp. 371–425. [Google Scholar]
- Leal, M.; Spalding, M. El Estado de los Manglares del Mundo 2022. Available online: https://bvearmb.do/handle/123456789/3686 (accessed on 10 July 2024).
- Bryan-Brown, D.N.; Connolly, R.M.; Richards, D.R.; Adame, F.; Friess, D.A.; Brown, C.J. Global trends in mangrove forest fragmentation. Sci. Rep. 2020, 10, 7117. [Google Scholar] [CrossRef]
- Hagger, V.; Worthington, T.A.; Lovelock, A.M.; Amano, T.; Brown, B.M.; Friess, D.A. Drivers of global mangrove loss and gain in social-ecological systems. Nat. Commun. 2022, 13, 6373. [Google Scholar] [CrossRef]
- Cissell, J.R.; Delgado, A.M.; Sweetman, B.M.; Steinberg, M.K. Monitoring Mangrove Forest Dynamics in Campeche, Mexico, Using Landsat Satellite Data. Remote Sens. Appl. Soc. Environ. 2018, 9, 60–68. [Google Scholar] [CrossRef]
- Valderrama, L.; Troche, C.; Rodríguez, M.T.; Márquez, D.; Vázquez, B.; Velázquez, S.; Ressl, R. Evaluation of Mangrove Cover Changes in Mexico During the 1970–2005 Period. Wetlands 2014, 34, 747–758. [Google Scholar] [CrossRef]
- Velázquez-Salazar, S.; Rodríguez-Zúñiga, M.T.; Alcántara-Maya, J.A.; Villeda-Chávez, E.; Valderrama-Landeros, L.; Troche-Souza, C.; Vázquez-Balderas, B.; Pérez-Espinosa, I.; Cruz-López, M.I.; Ressl, R.; et al. Actualización y Análisis de los Datos 2021; Comisión Nacional para el Conocimiento y Uso de la Biodiversidad: Mexico City, México, 2021; 168p. [Google Scholar]
- Velázquez-Salazar, S.; Valderrama-Landeros, L.H.; Rodríguez-Zúñiga, M.T.; Cruz-López, M.I. Anthropization in the Coastal Zone Associated with Mexican Mangroves (2005–2015). Environ. Monit. Assess. 2019, 191, 521. [Google Scholar] [CrossRef]
- Granados-Sánchez, D.; Paniagua-Cano, E.I.; Granados-Victorino, R.L.; Ortega-Sánchez, A. Ecología de los Manglares de México; Universidad Autónoma Chapingo: Chapingo, México, 2017; 245p. [Google Scholar]
- Rico-Gray, V. Rhizophora harrisonii. (Rhizophoraceae), a new founding from the Mexican coast. Bot. Sci. 1981, 41, 163–165. [Google Scholar] [CrossRef]
- WFO [World Flora Online Data] (2024): Rhizophora Samoensis (Hochr.) Salvoza. Available online: https://www.worldfloraonline.org/taxon/wfo-0000460358 (accessed on 15 October 2024).
- Duke, N. Avicennia Bicolor. The IUCN Red List of Threatened Species 2010: E.T178847A7625682. 2010. Available online: https://doi.org/10.2305/IUCN.UK.2010-2.RLTS.T178847A7625682.en (accessed on 15 October 2024).
- Rodríguez-Zúñiga, M.T.; Troche-Souza, C.; Vázquez-Lule, A.D.; Márquez-Mendoza, J.D.; Vázquez-Balderas, B.; Valderrama-Landeros, L.; Galindo-Leal, C. Manglares de México/Extensión, Distribución y Monitoreo; Comisión Nacional para el Conocimiento y Uso de la Biodiversidad: Liga Periférico Sur, México, 2013; 128p. [Google Scholar]
- Brodu, N. Super-Resolving Multiresolution Images with Band-Independent Geometry of Multispectral Pixels. IEEE Trans. Geosci. Remote Sens. 2017, 55, 4610–4617. [Google Scholar] [CrossRef]
- Lanaras, C.; Bioucas-Dias, J.; Baltsavias, E.; Schindler, K. Super-Resolution of Multispectral Multiresolution Images from a Single Sensor. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Honolulu, HI, USA, 21–26 July 2017; pp. 20–28. [Google Scholar]
- Brown, V.A. An introduction to linear mixed-effects modeling in R. Adv. Methods Pract. Psychol. Sci. 2021, 4, 2515245920960351. [Google Scholar] [CrossRef]
- Pinheiro, J.C.; Bates, D.M. Linear Mixed-Effects Models: Basic Concepts and Examples. In Mixed-Effects Models in S and S-PLUS. Statistics and Computing; Springer: New York, NY, USA, 2020. [Google Scholar] [CrossRef]
- Bolker, B.M. Linear and Generalized Linear Mixed Models. In Ecological Statistics: Contemporary Theory and Application; Oxford University Press: Oxford, UK, 2015; pp. 309–334. [Google Scholar]
- Nakagawa, S. Missing Data: Mechanisms, Methods and Messages. In Ecological Statistics: Contemporary Theory and Application; Oxford University Press: Oxford, UK, 2015; pp. 81–105. [Google Scholar]
- Gabrio, A.; Plumpton, C.; Banerjee, S.; Leurent, B. Linear Mixed Models to Handle Missing at Random Data in Trial-Based Economic Evaluations. Health Econ. 2022, 31, 1276–1287. [Google Scholar] [CrossRef]
- Bates, D.M. lme4: Mixed-Effects Modeling with R. 2018. Available online: https://people.math.ethz.ch/~maechler/MEMo-pages/lMMwR_2018-03-05.pdf (accessed on 1 September 2024).
- Hayashi, S.N.; Souza-Filho, P.W.M.; Nascimento, W.R., Jr.; Fernandes, M.E. The effect of anthropogenic drivers on spatial patterns of mangrove land use on the Amazon coast. PLoS ONE 2019, 14, e0217754. [Google Scholar] [CrossRef]
- Naidoo, G. The Mangroves of Africa: A Review. Mar. Pollut. Bull. 2023, 190, 114859. [Google Scholar] [CrossRef]
- Herrera-Silveira, J.; Teutli, C.; Gómez Ruiz, P.; Comín, F.A. Restauración Ecológica de Manglares de México. In Gobernanza y Manejo de las Costas y Mares Ante la Incertidumbre: Una Guía para Tomadores de Decisiones; Universidad Autónoma de Campeche: Campeche, Mexico, 2020; pp. 649–674. [Google Scholar]
- SEMARNAT. Los Manglares Mexicanos. 2016. Available online: https://www.gob.mx/semarnat/articulos/manglares-mexicanos (accessed on 27 September 2024).
- SEMARNAT. Manual Comunitario de Restauración de Manglares. 2007. Available online: http://www.conafor.gob.mx:8080/biblioteca/ver.aspx?articulo=379 (accessed on 1 October 2024).
- Benítez-Pardo, D. Forestación Artificial en Manglares en Isletas de Dragados en una Región Semiárida de México. Doctoral Dissertation, Instituto Politécnico Nacional, Mexico City, Mexico, 2007. Available online: https://tesis.ipn.mx/bitstream/handle/123456789/216/benitesp2.pdf?sequence=1&isAllowed=y (accessed on 1 October 2024).
- CONANP. Restauración de Manglares: Una Medida de Adaptación al Cambio Climático. 2020. Available online: https://www.gob.mx/conanp/es/articulos/restauracion-de-manglares-una-medida-de-adaptacion-al-cambio-climatico?idiom=es (accessed on 21 September 2024).
- DOF. Norma Oficial Mexicana NOM-059-SEMARNAT-2010. Publicada en el Diario Oficial de la Federación el 30 de diciembre de 2010. Available online: https://www.dof.gob.mx/normasOficiales/4254/semarnat/semarnat.htm (accessed on 10 September 2022).
- CONABIO. Índices de Antropización y Amenazas al Ecosistema. 2021. Available online: https://www.biodiversidad.gob.mx/monitoreo/smmm/indices-antropizacion (accessed on 1 October 2024).
- De Alba, E.; Reyes, M.E. Valoración Económica de los Recursos Biológicos del País. 1988. Available online: https://www.biodiversidad.gob.mx/publicaciones/librosDig/pdf/divBiolMexEPais8.pdf (accessed on 16 October 2024).
- Teutli-Hernández, C. Estimación del Éxito de la Restauración Hidrológica de Zonas de Manglar en el Norte de Yucatán, México. Bachelor’s Thesis, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico, 2003; 51p. [Google Scholar]
- Flores-Mejía, M.A.; Aguirre Vallejo, A.; Flores-Hernández, M.; Guardado Govea, X. El Impacto que Produce el Sector Turismo en los Manglares de las Costas Mexicanas. Contactos 2010, 77, 33–38. Available online: https://www.academia.edu/download/36167145/manglares.pdf (accessed on 1 October 2024).
- Casasola, P.M.; Galaviz, J.L.R.; Lomelí, D.Z.; Pérez, M.A.O.; Domínguez, A.L.L.; Vázquez, T.S. Diagnóstico de los Manglares de Veracruz: Distribución, Vínculo con los Recursos Pesqueros y su Problemática. Madera Y Bosques 2002, 8, 61–88. [Google Scholar] [CrossRef]
- Buot, I.E., Jr.; Origenes, M.G.; Obeña, R. Conservation Status of Native Mangrove Species in the Philippines. J. Wetl. Biodivers. 2022, 12, 51–65. Available online: https://www.muzeulbrailei.ro/uploads/img/stiintele-naturii/Volume%2012/03JWB2022125165.pdf (accessed on 16 October 2024).
- Akram, H.; Hussain, S.; Mazumdar, P.; Chua, K.O.; Butt, T.E.; Harikrishna, J.A. Mangrove health: A review of functions, threats, and challenges associated with mangrove management practices. Forests 2023, 14, 1698. [Google Scholar] [CrossRef]
- Kaplowitz, M.D. Assessing Mangrove Products and Services at the Local Level: The Use of Focus Groups and Individual Interviews. Landsc. Urban Plan. 2001, 56, 53–60. [Google Scholar] [CrossRef]
- Ruiz-Luna, A.; Acosta-Velázquez, J.; Berlanga-Robles, C.A. On the Reliability of the Data of the Extent of Mangroves: A Case Study in Mexico. Ocean. Coast. Manag. 2008, 51, 342–351. [Google Scholar] [CrossRef]
- DOF (Ley General de la Vida Silvestre: General Law on Wildlife). Nueva Ley publicada en el Diario Oficial de la Federación el 3 de julio de 2000. Available online: https://www.diputados.gob.mx/LeyesBiblio/pdf/146_200521.pdf (accessed on 12 October 2024).
- Basurto Cisneros, C. The Importance of Integrated Coastal Zone Management in Coastal Cities: The Case Study of Cancun, Mexico; University of Twente: Enschede, The Netherlands, 2016. [Google Scholar]
Regions | States | Year of Initial Record | Year of Last Record | Average | Maximum | Minimum | Standard Deviation | Skewness Coefficient |
---|---|---|---|---|---|---|---|---|
Pacífico Norte | Baja California | 1982 | 2020 | 36.1 | 42.0 | 28.0 | 4.3 | −1.0 |
Baja California Sur | 1978 | 2020 | 26,367.7 | 26,724.0 | 25,511.0 | 484.7 | −1.3 | |
Sonora | 1973 | 2020 | 11,405.9 | 12,334.0 | 10,682.0 | 606.0 | 0.7 | |
Sinaloa | 1985 | 2020 | 79,155.0 | 82,171.0 | 76,300.0 | 2343.8 | 0.1 | |
Nayarit | 1970 | 2020 | 70,049.6 | 78,024.0 | 66,849.0 | 4549.0 | 1.2 | |
Pacífico Centro | Jalisco | 1971 | 2020 | 2904.9 | 8098.0 | 2010.0 | 2233.5 | 2.6 |
Colima | 1971 | 2020 | 3524.4 | 6589.0 | 3074.0 | 1259.4 | 2.6 | |
Michoacán | 1974 | 2020 | 1567.3 | 1788.0 | 1419.0 | 131.4 | 2.0 | |
Pacífico Sur | Guerrero | 1979 | 2020 | 8123.1 | 16,348.0 | 6693.0 | 3288.8 | 2.5 |
Oaxaca | 1979 | 2020 | 17,735.0 | 28,501.0 | 17,297.0 | 3817.7 | 2.5 | |
Chiapas | 1972 | 2020 | 41,381.4 | 53,901.0 | 41,540.0 | 3895.6 | 0.7 | |
Golfo de México | Tamaulipas | 1976 | 2020 | 3033.5 | 3664.0 | 2831.0 | 269.5 | 0.7 |
Veracruz | 1976 | 2020 | 34,866.8 | 44,820.0 | 36,237.0 | 3058.7 | 1.0 | |
Tabasco | 1972 | 2020 | 39,747.4 | 49,225.0 | 41,999.0 | 2131.5 | 0.9 | |
Península de Yucatán | Campeche | 1981 | 2020 | 200,742.3 | 216,969.0 | 194,190.0 | 7423.7 | 2.2 |
Yucatán | 1981 | 2020 | 94,692.1 | 99,640.0 | 91,348.0 | 3636.1 | 0.5 | |
Quintana Roo | 1979 | 2020 | 147,293.9 | 247,017.0 | 128,048.0 | 44,101.6 | 2.6 |
Linear Mixed Model Output | |||||
---|---|---|---|---|---|
Component | Estimate | Std. Error | DF | T-Value | p-Value |
Intercept | 374 × 103 | 700 × 102 | 34.86 | 5.35 | 0.00000567 |
Years | −163.32 | 33.00 | 30.99 | −4.96 | 0.0000244 |
Random effects | |||||
Group | Variance | Std. Dev. | |||
States | 116 × 107 | 340 × 102 | |||
Region | 269 × 107 | 519 × 102 | |||
Residual | 873 × 107 | 296 × 102 | |||
Model fit statistics | |||||
Model | logLik | AIC | LRT | DF | Pr (>Chisq) |
Full model | −500.57 | 1011.1 | |||
Reduced model | −562.72 | 1133.4 | 124.289 | 1 | <0.0001 |
Single term deletion | −504.02 | 1016.8 | 7.627 | 1 | 0.00575 |
Percentage rate of change | 0.67% |
Linear Mixed Model Output | |||||
---|---|---|---|---|---|
Component | Estimate | Std. Error | DF | T-Value | p-Value |
Intercept | −138 × 104 | 695 × 103 | 67.20 | −1.99 | 0.0507 |
Years | 710.00 | 345.00 | 67.00 | 2.06 | 0.0432 |
Random effects | |||||
Group | Variance | Std. Dev. | |||
States | 970 × 106 | 312 × 102 | |||
Region | 294 × 107 | 542 × 102 | |||
Residual | 159 × 106 | 126 × 102 | |||
Model fit statistics | |||||
Model | logLik | AIC | LRT | DF | Pr(>Chisq) |
Full model | −939.69 | 1889.4 | |||
Reduced model | −987.18 | 1982.4 | 94.987 | 1 | <0.0001 |
Single term deletion | −944.33 | 1896.7 | 9.277 | 1 | 0.002321 |
Percentage rate of change | 1.03% |
Linear Mixed Model Output | ||||
---|---|---|---|---|
Estimate | DF | T-Value | p-Value | |
Intercept | 70.10 | 30.90 | 0.246 | <0.0001 |
yearsyear_2005 | 454.00 | 64.00 | 1.854 | <0.0001 |
yearsyear_2010 | 802.00 | 64.00 | 3.276 | <0.0001 |
yearsyear_2015 | 1010.00 | 64.00 | 4.12 | <0.0001 |
yearsyear_2020 | 499.29 | 64 | 2.04 | 0.045458 |
Random effects | ||||
Group | Variance | Std. Dev. | ||
States | 869 × 103 | 932.00 | ||
Region | 0.0151 | 0.123 | ||
Residual | 509 × 103 | 713.00 | ||
Model fit statistics | ||||
Model | logLik | AIC | LRT | Pr(>Chisq) |
Full model | −664.25 | 1344.5 | ||
Reduced model | −664.25 | 1342.5 | 0 | 1 |
Single term deletion | −683.79 | 1381.6 | 39.077 | <0.0001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Antúnez, P. Mangrove Area Trends in Mexico Due to Anthropogenic Activities: A Synthesis of Five Decades (1970–2020). Coasts 2024, 4, 726-739. https://doi.org/10.3390/coasts4040038
Antúnez P. Mangrove Area Trends in Mexico Due to Anthropogenic Activities: A Synthesis of Five Decades (1970–2020). Coasts. 2024; 4(4):726-739. https://doi.org/10.3390/coasts4040038
Chicago/Turabian StyleAntúnez, Pablo. 2024. "Mangrove Area Trends in Mexico Due to Anthropogenic Activities: A Synthesis of Five Decades (1970–2020)" Coasts 4, no. 4: 726-739. https://doi.org/10.3390/coasts4040038
APA StyleAntúnez, P. (2024). Mangrove Area Trends in Mexico Due to Anthropogenic Activities: A Synthesis of Five Decades (1970–2020). Coasts, 4(4), 726-739. https://doi.org/10.3390/coasts4040038