Studies on 1D Electronic Noise Filtering Using an Autoencoder
<p>Signal waveforms, clean and noisy (<b>a</b>) square, (<b>b</b>) triangular and (<b>c</b>) sine.</p> "> Figure 2
<p>Histogram of the <math display="inline"><semantics> <mrow> <mi>S</mi> <mi>N</mi> <mi>R</mi> </mrow> </semantics></math> relative to the waveforms of (<b>a</b>) square, (<b>b</b>) triangular and (<b>c</b>) sine samples.</p> "> Figure 3
<p>Block diagram of the used CNN.</p> "> Figure 4
<p>Loss evolution along the 50 epochs for the cases of square, triangular and sine signals.</p> "> Figure 5
<p>Noisy (red) and denoised (green) waveforms from the (<b>a</b>) square, (<b>b</b>) triangular and (<b>c</b>) sine samples.</p> "> Figure 6
<p><math display="inline"><semantics> <mrow> <mi>S</mi> <mi>N</mi> <mi>R</mi> </mrow> </semantics></math> histograms for the (<b>a</b>) square, (<b>b</b>) triangular and (<b>c</b>) sine samples, before and after denoising.</p> "> Figure 7
<p>Zener diode used as a noise generator.</p> "> Figure 8
<p>Time domain and power spectra of the real-world signals, original and denoised, (<b>a</b>) square, (<b>b</b>) triangular and (<b>c</b>) sine samples.</p> "> Figure 9
<p>Example of error in the denoising process.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Waveform Generation
2.2. Square Wave
2.3. Triangular Wave
2.4. Sine Wave
2.5. CNN
3. Real-World Noisy Signal
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning, 1st ed.; MIT Press: Cambridge, MA, USA, 2016; pp. 499–500. [Google Scholar]
- Leite, N.M.N.; Pereira, E.T.; Gurjão, E.C.; Veloso, L.R. Deep Convolutional Autoencoder for EEG Noise Filtering. In Proceedings of the IEEE International Conference on Bioinformatics and Biomedicine (BIBM), Madrid, Spain, 3–6 December 2018. [Google Scholar]
- Fuchs, J.; Dubey, A.; Lübke, M.; Weigel, R.; Lurz, F.E.F. The Automotive Radar Interference Mitigation using a Convolutional Autoencoder. In Proceedings of the IEEE International Radar Conference (RADAR), Washington, DC, USA, 28–30 April 2020. [Google Scholar]
- Yasenko, L.; Klyatchenko, Y.; Tarasenko-Klyatchenko, O. Image noise reduction by denoising autoencoder. In Proceedings of the 11th IEEE International Conference on Dependable Systems, Services and Technologies, DESSERT’2020, Kyiv, Ukraine, 14–18 May 2020. [Google Scholar]
- Gao, F.; Li, B.; Chen, L.; Wei, X.; Shang, Z.; He, C. Ultrasonic signal denoising based on autoencoder. Rev. Sci. Instrum. 2020, 91, 045104. [Google Scholar] [CrossRef] [PubMed]
- Saad, O.M.; Chen, Y. Deep denoising autoencoder for seismic random noise attenuation. Geophysics 2020, 85, 367–376. [Google Scholar] [CrossRef]
- Yu, J.; Zhou, X. One-Dimensional Residual Convolutional Autoencoder Based Feature Learning for Gearbox Fault Diagnosis. IEEE Trans. Ind. Inform. 2020, 16, 6347–6358. [Google Scholar] [CrossRef]
- Liu, X.; Zhou, Q.; Zhao, J.; Shen, H.; Xiong, X. Fault Diagnosis of Rotating Machinery under Noisy Environment Conditions Based on a 1-D Convolutional Autoencoder and 1-D Convolutional Neural Network. Sensors 2019, 19, 972. [Google Scholar] [CrossRef] [PubMed]
- Sheu, M.H.; Jhang, Y.S.; Chang, Y.C.; Wang, S.T.; Chang, C.Y.; Lai, S.C. Lightweight Denoising Autoencoder Design for Noise Removal in Electrocardiography. IEEE Access 2022, 10, 98104–98116. [Google Scholar] [CrossRef]
- Zhang, M.; Diao, M.; Guo, L. Convolutional Neural Networks for Automatic Cognitive Radio Waveform Recognition. IEEE Access 2017, 5, 11074–11082. [Google Scholar] [CrossRef]
- Kim, J.; Ko, J.; Choi, H.; Kim, H. Printed Circuit Board Defect Detection Using Deep Learning via a Skip-Connected Convolutional Autoencoder. Sensors 2021, 21, 4968. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Feng, J.; Zhan, L.; Li, Z.; Qian, F.; Yan, Y. Fault Diagnosis of Permanent Magnet Synchronous Motor Based on Stacked Denoising Autoencoder. Entropy 2021, 23, 339. [Google Scholar] [CrossRef] [PubMed]
- Xiao, J.; Ma, W.; Lou, J.; Jiang, J.; Huang, Y.; Shi, Z.; Shen, Q.; Yang, X. Circuit reliability prediction based on deep autoencoder network. Neurocomputing 2019, 370, 140–154. [Google Scholar] [CrossRef]
- Kong, S.H.; Kim, M.; Zhan, L.; Hoang, Z.M. Automatic LPI Radar Waveform Recognition using CNN. IEEE Access 2018, 6, 4207–4219. [Google Scholar] [CrossRef]
- Si, W.; Wan, C.; Zhang, C. Towards an accurate radar waveform recognition algorithm based on dense CNN. Multimed. Tools Appl. 2021, 80, 1179–1192. [Google Scholar] [CrossRef]
- Qu, Z.; Wang, W.; Hou, C. Radar Signal Intra-Pulse Modulation Recognition Based on Convolutional Denoising Autoencoder and Deep Convolutional Neural Network. IEEE Access 2019, 7, 112339–112347. [Google Scholar] [CrossRef]
- Taswell, C. The what, how, and why of wavelet shrinkage denoising. Comput. Sci. Eng. 2000, 2, 12–19. [Google Scholar] [CrossRef]
- Gomez, J.L.; Velis, D.R. A simple method inspired by empirical mode decomposition for denoising seismic data. Geophysics 2016, 81, 403–413. [Google Scholar] [CrossRef]
- Moore, R.; Ezekiel, S.; Blasch, E. Denoising one-dimensional signals with curvelets and contourlets. In Proceedings of the NAECON 2014—IEEE National Aerospace and Electronics Conference, Dayton, OH, USA, 24–27 June 2014. [Google Scholar]
- Green, L. Understanding the importance of signal integrity. IEEE Circuits Devices Mag. 1999, 15, 7–10. [Google Scholar] [CrossRef]
- Sewak, M.; Karim, M.R.; Pujari, P. Practical Convolutional Networks, 1st ed.; Packt: Birmingham, UK, 2018; pp. 1–211. [Google Scholar]
- Github Support Files. Available online: https://github.com/mperoconsult/CNN/ (accessed on 11 November 2024).
- Abdipour, A.; Moradi, G.; Saboktakin, S. Design and implementation of a noise generator. In Proceedings of the IEEE International RF and Microwave Conference, Kuala Lampur, Malaysia, 2–4 December 2008. [Google Scholar]
- Zhang, C.; Yu, J.; Wang, S. Fault detection and recognition of multivariate process based on feature learning of one-dimensional convolutional neural network and stacked denoised autoencoder. Int. J. Prod. Res. 2021, 59, 2426–2449. [Google Scholar] [CrossRef]
Waveform | Time [s] |
---|---|
Rectangular | 82.7 |
Triangular | 82.2 |
Sine | 81.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Perotoni, M.B.; Lucio, L.F. Studies on 1D Electronic Noise Filtering Using an Autoencoder. Knowledge 2024, 4, 571-581. https://doi.org/10.3390/knowledge4040030
Perotoni MB, Lucio LF. Studies on 1D Electronic Noise Filtering Using an Autoencoder. Knowledge. 2024; 4(4):571-581. https://doi.org/10.3390/knowledge4040030
Chicago/Turabian StylePerotoni, Marcelo Bender, and Lincoln Ferreira Lucio. 2024. "Studies on 1D Electronic Noise Filtering Using an Autoencoder" Knowledge 4, no. 4: 571-581. https://doi.org/10.3390/knowledge4040030
APA StylePerotoni, M. B., & Lucio, L. F. (2024). Studies on 1D Electronic Noise Filtering Using an Autoencoder. Knowledge, 4(4), 571-581. https://doi.org/10.3390/knowledge4040030