In Vitro Coating Hydroxyapatite with 2-Heptylcyclopropane-1-Carboxylic Acid Prevents P. gingivalis Biofilm
<p>Schematic shows experimental workflow. Created in BioRender.com.</p> "> Figure 2
<p>Total 2CP loaded onto hydroxyapatite coupons (<span class="html-italic">n</span> = 3) determined by sum of three ethanol washes.</p> "> Figure 3
<p>Images depict contact angles for unloaded and 2CP-loaded HAp coupons (<span class="html-italic">n</span> = 5).</p> "> Figure 4
<p>(<b>A</b>) Individual and (<b>B</b>) cumulative amount of 2CP released as percentage of loaded amount from 2CP-loaded and 2CP+oral rinse-loaded hydroxyapatite samples (<span class="html-italic">n</span> = 6).</p> "> Figure 5
<p>Planktonic viability of <span class="html-italic">P. gingivalis</span> for HAp coupon groups (<span class="html-italic">n</span> = 3). “Before” and “after” refer to before and after 3-day elution. No significant differences were determined.</p> "> Figure 6
<p>Biofilm viability of <span class="html-italic">P. gingivalis</span> on HAp coupon surfaces (<span class="html-italic">n</span> = 3). “Before” and “after” refer to before and after 3-day elution. **** indicates significant difference (<span class="html-italic">p</span> < 0.0001), and *** indicates significant difference (<span class="html-italic">p</span> < 0.001).</p> "> Figure 7
<p>Photographs feature LIVE/DEAD images of biofilm growth on HAp coupon groups (<span class="html-italic">n</span> =1). “Before” and “after” refer to before and after 3-day elution.</p> "> Figure 8
<p>Viability of Saos-2 cells on HAp coupon surfaces (<span class="html-italic">n</span> = 3). ** indicates significant difference (<span class="html-italic">p</span> < 0.01). Significant differences only shown for comparisons to control. Red line represents 70% threshold for viability outlined in ISO 10993-5 [<a href="#B34-hygiene-04-00037" class="html-bibr">34</a>].</p> "> Figure 9
<p>Images display LIVE/DEAD images of Saos-2 cell growth on HAp coupon groups (<span class="html-italic">n</span> = 1).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Loading and Characterization
2.2. Elution
2.3. Biofilm Prevention Direct Contact Assay
2.4. Cytocompatibility Direct Contact Assay
2.5. Statistical Analysis
3. Results
3.1. 2CP Is Retained on the Surface of HA
3.2. 2CP Is Released in a Burst Profile over 12 Hours
3.3. 2CP Inhibits Biofilm Formation
3.4. 2CP Supports Osteoblast Viability
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Albino, J.; Dye, B.; Ricks, T. Surgeon General’s Report: Oral Health in America: Advances and Challenges; National Institutes of Health: Bethesda, MD, USA, 2020.
- Böheim, R.; Horvath, T.; Leoni, T.; Spielauer, M. The impact of health and education on labor force participation in aging societies: Projections for the United States and Germany from dynamic microsimulations. Popul. Res. Policy Rev. 2023, 42, 39. [Google Scholar] [CrossRef] [PubMed]
- Kasman, Ş.; Uçar, I.C.; Ozan, S. The effects of laser surface texturing parameters on the surface characteristics of biomedical-grade stainless steel. J. Mater. Eng. Perform. 2023, 33, 5793–5806. [Google Scholar] [CrossRef]
- Armellini, D.; Reynolds, M.A.; Harro, J.M.; Molly, L. Biofilm Formation on Natural Teeth and Dental Implants: What is the Difference? In The Role of Biofilms in Device-Related Infections; Springer: Berlin/Heidelberg, Germany, 2009; pp. 109–122. [Google Scholar]
- Padovani, G.C.; Fucio, S.B.; Ambrosano, G.M.; Correr-Sobrinho, L.; Puppin-Rontani, R.M. In situ bacterial accumulation on dental restorative materials. CLSM/COMSTAT analysis. Am. J. Dent. 2015, 28, 3–8. [Google Scholar] [PubMed]
- Busscher, H.; Rinastiti, M.; Siswomihardjo, W.; Van der Mei, H. Biofilm formation on dental restorative and implant materials. J. Dent. Res. 2010, 89, 657–665. [Google Scholar] [CrossRef] [PubMed]
- Fiorillo, L.; Cervino, G.; Laino, L.; D’Amico, C.; Mauceri, R.; Tozum, T.F.; Gaeta, M.; Cicciù, M. Porphyromonas gingivalis, periodontal and systemic implications: A systematic review. Dent. J. 2019, 7, 114. [Google Scholar] [CrossRef]
- Sahrmann, P.; Gilli, F.; Wiedemeier, D.B.; Attin, T.; Schmidlin, P.R.; Karygianni, L. The microbiome of peri-implantitis: A systematic review and meta-analysis. Microorganisms 2020, 8, 661. [Google Scholar] [CrossRef]
- Kurtzman, G.M.; Horowitz, R.A.; Johnson, R.; Prestiano, R.A.; Klein, B.I. The systemic oral health connection: Biofilms. Medicine 2022, 101, e30517. [Google Scholar] [CrossRef]
- Schaudinn, C.; Gorur, A.; Keller, D.; Sedghizadeh, P.P.; Costerton, J.W. Periodontitis: An archetypical biofilm disease. J. Am. Dent. Assoc. 2009, 140, 978–986. [Google Scholar] [CrossRef]
- Bandyopadhyay, A.; Mitra, I.; Goodman, S.B.; Kumar, M.; Bose, S. Improving biocompatibility for next generation of metallic implants. Prog. Mater. Sci. 2023, 133, 101053. [Google Scholar] [CrossRef]
- Klinge, B.; Hultin, M.; Berglundh, T. Peri-implantitis. Dent. Clin. 2005, 49, 661–676. [Google Scholar] [CrossRef]
- Bose, S.; Tarafder, S.; Bandyopadhyay, A. Hydroxyapatite coatings for metallic implants. In Hydroxyapatite (Hap) for Biomedical Applications; Elsevier: Amsterdam, The Netherlands, 2015; pp. 143–157. [Google Scholar]
- Berglundh, T.; Persson, L.; Klinge, B. A systematic review of the incidence of biological and technical complications in implant dentistry reported in prospective longitudinal studies of at least 5 years. J. Clin. Periodontol. 2002, 29, 197–212. [Google Scholar] [CrossRef] [PubMed]
- Snauwaert, K.; Duyck, J.; Van Steenberghe, D.; Quirynen, M.; Naert, I. Time dependent failure rate and marginal bone loss of implant supported prostheses: A 15-year follow-up study. Clin. Oral Investig. 2000, 4, 13–20. [Google Scholar] [CrossRef] [PubMed]
- Tonetti, M.S. Determination of the success and failure of root-form osseointegrated dental implants. Adv. Dent. Res. 1999, 13, 173–180. [Google Scholar] [CrossRef]
- Solderer, A.; Al-Jazrawi, A.; Sahrmann, P.; Jung, R.; Attin, T.; Schmidlin, P.R. Removal of failed dental implants revisited: Questions and answers. Clin. Exp. Dent. Res. 2019, 5, 712–724. [Google Scholar] [CrossRef]
- Paradowska-Stolarz, A.; Mikulewicz, M.; Laskowska, J.; Karolewicz, B.; Owczarek, A. The importance of chitosan coatings in dentistry. Marine Drugs 2023, 21, 613. [Google Scholar] [CrossRef]
- Gamagedara, T.; Rathnayake, U.; Rajapakse, R. Facile synthesis of hydroxyapatite nanoparticles by a polymer-assisted method: Morphology, mechanical properties and formation mechanism. J. Clin. Investig. 2018, 1, 1–5. [Google Scholar]
- Adamopoulos, O.; Papadopoulos, T. Nanostructured bioceramics for maxillofacial applications. J. Mater. Sci. Mater. Med. 2007, 18, 1587–1597. [Google Scholar] [CrossRef]
- Ben-Nissan, B.; Choi, A.; Roest, R.; Latella, B.; Bendavid, A. Adhesion of hydroxyapatite on titanium medical implants. In Hydroxyapatite (HAp) for Biomedical Applications; Elsevier: Amsterdam, The Netherlands, 2015; pp. 21–51. [Google Scholar]
- Zablotsky, M.H. Hydroxyapatite coatings in implant dentistry. Implant. Dent. 1992, 1, 253–257. [Google Scholar] [CrossRef]
- Westas, E.; Gillstedt, M.; Lönn-Stensrud, J.; Bruzell, E.; Andersson, M. Biofilm formation on nanostructured hydroxyapatite-coated titanium. J. Biomed. Mater. Res. Part A 2014, 102, 1063–1070. [Google Scholar] [CrossRef]
- Chevalier, M.; Ranque, S.; Prêcheur, I. Oral fungal-bacterial biofilm models in vitro: A review. Med. Mycol. 2018, 56, 653–667. [Google Scholar] [CrossRef]
- Junka, A.F.; Szymczyk, P.; Smutnicka, D.; Kos, M.; Smolina, I.; Bartoszewicz, M.; Chlebus, E.; Turniak, M.; Sedghizadeh, P.P. Microbial biofilms are able to destroy hydroxyapatite in the absence of host immunity in vitro. J. Oral Maxillofac. Surg. 2015, 73, 451–464. [Google Scholar] [CrossRef] [PubMed]
- Saeed, F.; Muhammad, N.; Khan, A.S.; Sharif, F.; Rahim, A.; Ahmad, P.; Irfan, M. Prosthodontics dental materials: From conventional to unconventional. Mater. Sci. Eng. C 2020, 106, 110167. [Google Scholar] [CrossRef] [PubMed]
- Davies, D.G.; Marques, C.N. A fatty acid messenger is responsible for inducing dispersion in microbial biofilms. J. Bacteriol. 2009, 191, 1393–1403. [Google Scholar] [CrossRef] [PubMed]
- Jennings, J.A.; Courtney, H.S.; Haggard, W.O. Cis-2-decenoic acid inhibits S. aureus growth and biofilm in vitro: A pilot study. Clin. Orthop. Relat. Res. 2012, 470, 2663–2670. [Google Scholar] [CrossRef]
- Roizman, D.; Vidaillac, C.; Givskov, M.; Yang, L. In vitro evaluation of biofilm dispersal as a therapeutic strategy to restore antimicrobial efficacy. Antimicrob. Agents Chemother. 2017, 61, 110–128. [Google Scholar] [CrossRef]
- Harrison, Z.L.; Awais, R.; Harris, M.; Raji, B.; Hoffman, B.C.; Baker, D.L.; Jennings, J.A. 2-Heptylcyclopropane-1-Carboxylic Acid Disperses and Inhibits Bacterial Biofilms. Front. Microbiol. 2021, 12, 645180. [Google Scholar] [CrossRef]
- Harrison, Z.L.; Montgomery, E.C.; Hoffman, B.; Perez, F.; Bush, J.R.; Bumgardner, J.D.; Fujiwara, T.; Baker, D.L.; Jennings, J.A. Titanium coated with 2-decenoic analogs reduces bacterial and fungal biofilms. J. Appl. Microbiol. 2023, 134, lxad155. [Google Scholar] [CrossRef]
- Bock, R.; Lange, F. Effects of CnTAB chain length and concentration on the rheological properties of aqueous suspensions of alkylated alumina powders. J. Am. Ceram. Soc. 2006, 89, 817–822. [Google Scholar] [CrossRef]
- Brookes, Z.L.; Bescos, R.; Belfield, L.A.; Ali, K.; Roberts, A. Current uses of chlorhexidine for management of oral disease: A narrative review. J. Dent. 2020, 103, 103497. [Google Scholar] [CrossRef]
- ISO 10993-5; Biological Evaluation of Medical Devices. Part 5: Tests for In Vitro Cytotoxicity. International Organization for Standardization: Geneva, Switzerland, 2009.
- Cheung, M.C.; Hopcraft, M.S.; Darby, I.B. Patient-reported oral hygiene and implant outcomes in general dental practice. Aust. Dent. J. 2021, 66, 49–60. [Google Scholar] [CrossRef]
- Remizova, A.A.; Sakaeva, Z.U.; Dzgoeva, Z.G.; Rayushkin, I.I.; Tingaeva, Y.I.; Povetkin, S.N.; Mishvelov, A.E. The role of oral hygiene in the effectiveness of prosthetics on dental implants. Ann. Dent. Spec. 2021, 9, 39–46. [Google Scholar] [CrossRef]
- Choi, L.R.; Harrison, Z.; Montgomery, E.C.; Bush, J.R.; Abuhussein, E.; Bumgardner, J.D.; Fujiwara, T.; Jennings, J.A. Chitosan Membranes Stabilized with Varying Acyl Lengths Release Cis-2-Decenoic Acid and Bupivacaine at Controlled Rates and Inhibit Pathogenic Biofilm. Front. Biosci. -Landmark 2024, 29, 108. [Google Scholar] [CrossRef] [PubMed]
- Masuda, M.; Era, M.; Kawahara, T.; Kanyama, T.; Morita, H. Antibacterial effect of fatty acid salts on oral bacteria. Biocontrol Sci. 2015, 20, 209–213. [Google Scholar] [CrossRef]
- Tüzüner, T.; Dimkov, A.; Nicholson, J.W. The effect of antimicrobial additives on the properties of dental glass-ionomer cements: A review. Acta Biomater. Odontol. Scand. 2019, 5, 9–21. [Google Scholar] [CrossRef]
- Tivanani, M.V.D.; Mulakala, V.; Keerthi, V.S. Antibacterial Properties and Shear Bond Strength of Titanium Dioxide Nanoparticles Incorporated into an Orthodontic Adhesive: A Systematic Review. Int. J. Clin. Pediatr. Dent. 2024, 17, 102. [Google Scholar]
- Rahmani-Badi, A.; Sepehr, S.; Babaie-Naiej, H. A combination of cis-2-decenoic acid and chlorhexidine removes dental plaque. Arch. Oral Biol. 2015, 60, 1655–1661. [Google Scholar] [CrossRef]
- Souza, B.M.; Comar, L.P.; Vertuan, M.; Fernandes Neto, C.; Buzalaf, M.A.R.; Magalhães, A.C. Effect of an experimental paste with hydroxyapatite nanoparticles and fluoride on dental demineralisation and remineralisation in situ. Caries Res. 2015, 49, 499–507. [Google Scholar] [CrossRef]
- Chen, L.; Al-Bayatee, S.; Khurshid, Z.; Shavandi, A.; Brunton, P.; Ratnayake, J. Hydroxyapatite in oral care products—A review. Materials 2021, 14, 4865. [Google Scholar] [CrossRef]
- Hannig, M.; Hannig, C. Nanomaterials in preventive dentistry. Nat. Nanotechnol. 2010, 5, 565–569. [Google Scholar] [CrossRef]
- Harks, I.; Jockel-Schneider, Y.; Schlagenhauf, U.; May, T.W.; Gravemeier, M.; Prior, K.; Petersilka, G.; Ehmke, B. Impact of the daily use of a microcrystal hydroxyapatite dentifrice on de novo plaque formation and clinical/microbiological parameters of periodontal health. A randomized trial. PLoS ONE 2016, 11, e0160142. [Google Scholar] [CrossRef]
- Díaz, M.; Barba, F.; Miranda, M.; Guitián, F.; Torrecillas, R.; Moya, J.S. Synthesis and antimicrobial activity of a silver-hydroxyapatite nanocomposite. J. Nanomater. 2009, 2009, 498505. [Google Scholar] [CrossRef]
- Hamba, H.; Nakamura, K.; Nikaido, T.; Tagami, J.; Muramatsu, T. Remineralization of enamel subsurface lesions using toothpaste containing tricalcium phosphate and fluoride: An in vitro µCT analysis. BMC Oral Health 2020, 20, 292. [Google Scholar] [CrossRef] [PubMed]
- Ionescu, A.C.; Cazzaniga, G.; Ottobelli, M.; Garcia-Godoy, F.; Brambilla, E. Substituted nano-hydroxyapatite toothpastes reduce biofilm formation on enamel and resin-based composite surfaces. J. Funct. Biomater. 2020, 11, 36. [Google Scholar] [CrossRef] [PubMed]
- Jo, S.-Y.; Chong, H.-J.; Lee, E.-H.; Chang, N.-Y.; Chae, J.-M.; Cho, J.-H.; Kim, S.-C.; Kang, K.-H. Effects of various toothpastes on remineralization of white spot lesions. Korean J. Orthod. 2014, 44, 113–118. [Google Scholar] [CrossRef]
- Hontsu, S.; Yoshikawa, K. Ultra-thin hydroxyapatite sheets for dental applications. In Hydroxyapatite (hap) for Biomedical Applications; Elsevier: Amsterdam, The Netherlands, 2015; pp. 129–142. [Google Scholar]
- Mijiritsky, E.; Assaf, H.D.; Kolerman, R.; Mangani, L.; Ivanova, V.; Zlatev, S. Autologous platelet concentrates (APCs) for hard tissue regeneration in oral implantology, sinus floor elevation, peri-implantitis, socket preservation, and medication-related osteonecrosis of the jaw (MRONJ): A literature review. Biology 2022, 11, 1254. [Google Scholar] [CrossRef]
- Albanese, A.; Licata, M.E.; Polizzi, B.; Campisi, G. Platelet-rich plasma (PRP) in dental and oral surgery: From the wound healing to bone regeneration. Immun. Ageing 2013, 10, 23. [Google Scholar] [CrossRef]
- Cheruvu, R.N.S.; Katuri, K.K.; Dhulipalla, R.; Kolaparthy, L.; Adurty, C.; Thota, K.M. Evaluation of soft tissue and crestal bone changes around non-submerged implants with and without a platelet-rich fibrin membrane: A randomized controlled clinical trial. Dent. Med. Probl. 2023, 60, 437–443. [Google Scholar] [CrossRef]
- Harrison, Z.; Montgomery, E.C.; Bush, J.R.; Gupta, N.; Bumgardner, J.D.; Fujiwara, T.; Baker, D.L.; Jennings, J.A. Cis-2-Decenoic Acid and Bupivacaine Delivered from Electrospun Chitosan Membranes Increase Cytokine Production in Dermal and Inflammatory Cell Lines. Pharmaceutics 2023, 15, 2476. [Google Scholar] [CrossRef]
- Harrison, Z.L.; Bumgardner, J.D.; Fujiwara, T.; Baker, D.L.; Jennings, J.A. In vitro evaluation of loaded chitosan membranes for pain relief and infection prevention. J. Biomed. Mater. Res. B Appl. Biomater. 2021, 109, 1735–1743. [Google Scholar] [CrossRef]
- Scarano, A.; Khater, A.G.; Gehrke, S.A.; Serra, P.; Francesco, I.; Di Carmine, M.; Tari, S.R.; Leo, L.; Lorusso, F. Current status of peri-implant diseases: A clinical review for evidence-based decision making. J. Funct. Biomater. 2023, 14, 210. [Google Scholar] [CrossRef]
- Danser, M.M.; van Winkelhoff, A.J.; van der Velden, U. Periodontal bacteria colonizing oral mucous membranes in edentulous patients wearing dental implants. J. Periodontol. 1997, 68, 209–216. [Google Scholar] [CrossRef] [PubMed]
- Subbarao, K.C.; Nattuthurai, G.S.; Sundararajan, S.K.; Sujith, I.; Joseph, J.; Syedshah, Y.P. Gingival Crevicular Fluid: An Overview. J. Pharm. Bioallied Sci. 2019, 11, S135–S139. [Google Scholar] [CrossRef] [PubMed]
- Bickel, M.; Munoz, J.; Giovannini, P. Acid-base properties of human gingival crevicular fluid. J. Dent. Res. 1985, 64, 1218–1220. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Montgomery, E.C.; Wicker, M.C.; Yusuf, T.; Matlock-Buchanan, E.; Fujiwara, T.; Bumgardner, J.D.; Jennings, J.A. In Vitro Coating Hydroxyapatite with 2-Heptylcyclopropane-1-Carboxylic Acid Prevents P. gingivalis Biofilm. Hygiene 2024, 4, 500-512. https://doi.org/10.3390/hygiene4040037
Montgomery EC, Wicker MC, Yusuf T, Matlock-Buchanan E, Fujiwara T, Bumgardner JD, Jennings JA. In Vitro Coating Hydroxyapatite with 2-Heptylcyclopropane-1-Carboxylic Acid Prevents P. gingivalis Biofilm. Hygiene. 2024; 4(4):500-512. https://doi.org/10.3390/hygiene4040037
Chicago/Turabian StyleMontgomery, Emily C., Madelyn C. Wicker, Tibirni Yusuf, Elizabeth Matlock-Buchanan, Tomoko Fujiwara, Joel D. Bumgardner, and J. Amber Jennings. 2024. "In Vitro Coating Hydroxyapatite with 2-Heptylcyclopropane-1-Carboxylic Acid Prevents P. gingivalis Biofilm" Hygiene 4, no. 4: 500-512. https://doi.org/10.3390/hygiene4040037
APA StyleMontgomery, E. C., Wicker, M. C., Yusuf, T., Matlock-Buchanan, E., Fujiwara, T., Bumgardner, J. D., & Jennings, J. A. (2024). In Vitro Coating Hydroxyapatite with 2-Heptylcyclopropane-1-Carboxylic Acid Prevents P. gingivalis Biofilm. Hygiene, 4(4), 500-512. https://doi.org/10.3390/hygiene4040037