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Abstract: TRIP13 is a member of the large AAA+ ATPase protein superfamily that plays a
crucial role in the precise segregation of chromosomes during mitosis. The abnormal func-
tion of TRIP13 has diverse functions, including mitotic processes, DNA repair pathways,
and spindle assembly checkpoints, which may contribute to chromosomal instability (CIN).
Emerging evidence suggests that the overexpression of TRIP13, observed in many cancers,
plays a significant role in drug resistance, autophagy, and immune invasion. Recently,
significant advances have been made in identifying TRIP13-associated signaling pathways
that have been implicated in cancer progression. Several small molecules that specifically
inhibit TRIP13 function and reduce cancer cell growth have been developed. Combination
treatments, including TRIP13 inhibitors and other anticancer drugs, have shown promising
results. While these findings are promising, TRIP13 inhibitors are awaiting clinical trials.
This review discusses recent progress in understanding the oncogenic function of TRIP13
and its possible therapeutic targets, which could be exploited as an attractive option for
cancer management.
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1. Introduction
Millions of new cases of cancer are diagnosed each year, making it one of the greatest

global health challenges [1]. The identification of genes, such as tumor suppressor genes
and oncogenes that affect the development of tumors, has been a subject of research for
many years [2]. In recent years, chromosomal instability (CIN) has garnered considerable
attention owing to its critical role in the diagnosis and development of cancer [3]. An esti-
mated 60–80% of human cancers show chromosomal abnormalities that could be indicative
of CIN [4]. Errors in chromosome segregation during anaphase are the most common
cause of CIN, although radiation, mitotic toxins, and impairments in DNA repair can also
cause CIN [5]. According to previous research, the spindle assembly checkpoint (SAC) is a
widely used defense mechanism that guarantees the accuracy of chromosomal separation
during cell division [6,7]. Many SAC proteins have been reported to be the source of CIN
in tumors and are extensively expressed in various malignancies [8,9]. The literature has
documented that various thyroid hormone receptor-interacting proteins (TRIPs, including
TRIP4, TRIP11, TRIP12, and TRIP13) perform diverse cellular functions in an organism.
TRIP4 is a component of the ribonucleoprotein complex called the transcriptional coregu-
lator ASC-1, which plays a role in RNA processing and transcriptional coactivation [10].
There is limited information on the tumor-promoting role of TRIP4. Only a few studies

DNA 2025, 5, 3 https://doi.org/10.3390/dna5010003

https://doi.org/10.3390/dna5010003
https://doi.org/10.3390/dna5010003
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/dna
https://www.mdpi.com
https://orcid.org/0000-0002-1848-2779
https://orcid.org/0000-0002-5715-7979
https://orcid.org/0000-0002-8896-4095
https://doi.org/10.3390/dna5010003
https://www.mdpi.com/article/10.3390/dna5010003?type=check_update&version=1


DNA 2025, 5, 3 2 of 15

have demonstrated that TRIP4 promotes tumor growth in cervical [11] and melanoma [12]
cancers. The TRIP11 gene encodes a protein known as GMAP-210, which is crucial for
the function of the Golgi apparatus [13]. TRIP12 belongs to the E3 ubiquitin ligase family
homologous to the E6-AP carboxyl terminus (HECT). It regulates various essential biologi-
cal processes, including chromatin remodeling, cell proliferation, cell division, and DNA
damage repair [14–16]. Recent evidence indicates that TRIP12 expression is associated with
the development of breast cancer [17] and pancreatic cancer [18]. Among all, TRIP13 is the
most extensively studied gene in relation to cancer. TRIP13 (also known as PCH2) was first
discovered in Saccharomyces cerevisiae using a yeast two-hybrid screening method. This
study also showed that a lack of TRIP13 induces cell cycle arrest [19]. Recently, several
studies have documented that TRIP13 is one of the most frequently overexpressed genes
related to CIN in human tumors and is associated with poor prognosis in various tumor
types [20–23]. TRIP13 is a member of the large AAA+ protein superfamily of ring-shaped
P-loop NTPases. This superfamily is involved in a number of cellular processes, such as
chromosome synapsis, checkpoint signaling, and DNA break repair and recombination [24].
According to recent data, TRIP13 is involved with more than meiosis and mitosis, including
the regulation of tumorigenesis [25]. Numerous studies have shown that elevated levels
of TRIP13 are linked to various types of cancer, such as bladder [26,27], colon [28,29],
pancreatic [30], breast [31], prostate [32], head and neck [25], chronic lymphocytic leukemia
(CLL) [33], liver [34], ovarian [35], brain [36], renal cell carcinoma [37], Wilms tumor [38]
and thyroid tumor [39].

Based on these accumulating findings, it is evident that TRIP13 plays a role in the
development of cancer and drug resistance. In this review article, we provide an overview
of some recently identified underlying mechanisms that explain how TRIP13 increases
resistance to anticancer drugs. A novel role for the overexpression of TRIP13 in inducing
autophagy and promoting immune suppression is also discussed in this review article.
Recently, several molecules and drugs have been developed to target TRIP13 for cancer
treatment; however, none have entered clinical trials yet. Therefore, more studies are
needed to elucidate the underlying molecular mechanism of TRIP13’s involvement in
cancer progression and to develop strategies to utilize TRIP13-targeting drugs for cancer
management. The aim of this review is to summarize the role of TRIP13 in cancer progres-
sion and its therapeutic potential, focusing on studies on its inhibitors in human cancers.
The information presented in this review article is based on a literature search of articles
published during the past ten years. This search utilized various electronic databases,
including Scopus, Google Scholar, and PubMed. The keywords used in the search were
TRIP13, chromosomal instability, cancer, DNA repair, autophagy, TRIP13 inhibitor, spindle
assembly checkpoint, drug resistance, and immunity.

2. Biological Function of TRIP13
The human TRIP13 gene is located on chromosome 5 and encodes a protein of 432

amino acids. Pch2 is a mouse ortholog of TRIP13, which is located on chromosome 13 of
mouse [40]. This protein contains an ATP-binding site within the AAA+ ATPase region and
a small N-terminal domain that may participate in substrate recognition. In addition to its
complex structure, TRIP13 performs a wide range of cellular functions, such as activating
the SAC, regulating cell cycle progression, and repairing DNA within cells. In addition,
recent findings have revealed that the overexpression of TRIP13 is involved in regulating
immunity, autophagy, and cancer development (Figure 1).
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Figure 1. The schematic diagram shows the overexpression of TRIP13 involved in regulating vari-
ous functions. 

2.1. TRIP13 and Spindle Assembly Checkpoint 

During mitosis, a spindle checkpoint ensures proper chromosome segregation 
through a cell cycle surveillance system. TRIP13 is known to play a crucial role in main-
taining genomic stability by delaying chromosomal separation (anaphase) until every 
chromosome is securely attached to the spindle [41]. The anaphase-promoting complex or 
cyclosome connected to its mitotic activator Cdc20 (APC/CCdc20) is inhibited by check-
point proteins that are activated by unattached kinetochores [42]. The mitotic checkpoint 
complex (MCC), which is composed of various proteins, including Mad2, Cdc20, and 
BubR1–Bub3, is a significant effector of the spindle checkpoint [43]. This complex prevents 
the recognition and ubiquitination of securin and cyclin B1 by APC/CCdc20 binding to its 
substrate binding site. As a consequence of the stabilization of securin and cyclin B1, sis-
ter-chromatid separation and mitotic exit are delayed [43]. Once the checkpoint has been 
reached, TRIP13 could use the energy from ATP hydrolysis to change the conformation 
of a stable closed-MAD2 to a less stable open-MAD2, allowing the APC/C to initiate ana-
phase. Recently, a novel mechanism involving ATP hydrolysis was discovered. This 
mechanism involves the disassembly of MCC through the combined action of TRIP13 and 
p31comet (Figure 2) [44,45]. 

 

Figure 2. Model for the role of TRIP13 in SAC inactivation. Unattached kinetochores catalyze the 
formation of mitotic checkpoint complex (MCC) through the conversion of O-MAD2 to C-MAD2 
with CDC20. The disassembly of free MCC and the removal/disassembly of MCC bound to 
APC/CCdc20 are catalyzed by TRIP13 and p31comet during checkpoint silencing. In MCC, Cdc20 
can be ubiquitinated by APC15-mediated conformational changes in the APC/C, which can reacti-
vate APC/CCdc20. Created with Microsoft PowerPoint. 

Figure 1. The schematic diagram shows the overexpression of TRIP13 involved in regulating vari-
ous functions.

2.1. TRIP13 and Spindle Assembly Checkpoint

During mitosis, a spindle checkpoint ensures proper chromosome segregation through
a cell cycle surveillance system. TRIP13 is known to play a crucial role in maintaining
genomic stability by delaying chromosomal separation (anaphase) until every chromosome
is securely attached to the spindle [41]. The anaphase-promoting complex or cyclosome
connected to its mitotic activator Cdc20 (APC/CCdc20) is inhibited by checkpoint proteins
that are activated by unattached kinetochores [42]. The mitotic checkpoint complex (MCC),
which is composed of various proteins, including Mad2, Cdc20, and BubR1–Bub3, is a
significant effector of the spindle checkpoint [43]. This complex prevents the recognition
and ubiquitination of securin and cyclin B1 by APC/CCdc20 binding to its substrate
binding site. As a consequence of the stabilization of securin and cyclin B1, sister-chromatid
separation and mitotic exit are delayed [43]. Once the checkpoint has been reached, TRIP13
could use the energy from ATP hydrolysis to change the conformation of a stable closed-
MAD2 to a less stable open-MAD2, allowing the APC/C to initiate anaphase. Recently, a
novel mechanism involving ATP hydrolysis was discovered. This mechanism involves the
disassembly of MCC through the combined action of TRIP13 and p31comet (Figure 2) [44,45].
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Figure 2. Model for the role of TRIP13 in SAC inactivation. Unattached kinetochores catalyze
the formation of mitotic checkpoint complex (MCC) through the conversion of O-MAD2 to C-
MAD2 with CDC20. The disassembly of free MCC and the removal/disassembly of MCC bound to
APC/CCdc20 are catalyzed by TRIP13 and p31comet during checkpoint silencing. In MCC, Cdc20
can be ubiquitinated by APC15-mediated conformational changes in the APC/C, which can reactivate
APC/CCdc20. Created with Microsoft PowerPoint.

The two mechanisms work differently: TRIP13 and p31comet dominate the disas-
sembly free of MCC, while APC15 facilitates the ubiquitination of Cdc20 in MCC and the
subsequent reactivation of APC/CCdc20 [41,46]. A study also demonstrated that cells
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lacking TRIP13 cannot trigger the SAC despite having C-MAD2, thus suggesting that
TRIP13 is essential for the silencing of the SAC [47]. TRIP13 regulates meiosis by removing
HORMAD proteins from synapsed chromosomes and facilitating the conversion of MAD2
protein [48].

2.2. TRIP13 and DNA Repair

Our genomes have numerous risks, including DNA damage and abnormalities during
cell division. These genomic alterations can eventually lead to oncogenic transformations
if the genome is unprotected [49]. Double-strand breaks (DSBs) are a highly hazardous
form of DNA damage, which can be repaired through two pathways: non-homologous
end-joining (NHEJ) and homology-directed repair (HDR) [49]. Recent studies have shown
that the upregulation of TRIP13 promotes both these repair pathways. This may lead to
chromosomal instability, increased survival, metastasis, and increased drug resistance in
cancer cells [50]. MAD2L2 (Rev7), which contains a HORMA domain, is a component of
shieldin that protects DSBs while promoting DSB end-joining. It is also involved in DNA
translation synthesis as a member of the Pol-ζ complex. A high-throughput yeast two-
hybrid screen revealed an interaction between TRIP13 and MAD2L2 (Rev7) [51]. Recent
studies have documented that the interaction between Rev7 and Rev3 proteins, essential for
the activation of Pol-ζ, is actively regulated in cells [52]. TRIP13 alters Rev7 conformation,
blocking its ability to interact with Rev3 to generate active Pol ζ, which is necessary for
translesion synthesis, as well as with the shieldin complex, which triggers NHEJ [51].
Thus, TRIP13 overexpression promotes error-free HDR over mutagenic NHEJ through
pathway choice. This is essential for the development of interhomolog-biased HR and
DSB repair via the DNA-PKcs and Lupus-Ku autoantigen proteins p70 and p80 (KU70,
KU80). Therefore, DNA damage is caused by the absence of TRIP13 [52]. This accumulating
evidence suggests that TRIP13 may be involved in the NHEJ pathway, thereby contributing
to CIN and tumor development.

2.3. TRIP13 and Autophagy

Autophagy is a catabolic process that has been conserved throughout evolution. It
involves the lysosomal degradation pathway to regulate the turnover and removal of
proteins and cellular organelles, including the endoplasmic reticulum, mitochondria, and
peroxisomes [53]. This process involves cytosolic vesicles containing double membranes,
called autophagosomes, which are essential for the lysosomal targeting of organelles
during autophagy. In general, autophagy is considered a survival mechanism; however, its
dysregulation has been associated with non-apoptotic deaths.

Some recent studies have shown that autophagy plays an essential role in maintaining
genomic stability [54]. As a result of starvation or stress, abnormal mitochondria can
produce high levels of reactive oxygen species (ROS), causing DNA damage. Autophagy
aids in the elimination of all biomolecules that are irreversibly oxidized within cells and
plays a major role in preserving redox equilibrium, which in turn preserves genomic
stability [54]. A previous study showed that higher ROS production in CIN cells damages
DNA and causes cell death. The autophagic activity was also more sensitive in CIN cells.
In CIN cells, the knockdown of the autophagy-related proteins Atg1 and Atg18 led to a
marked increase in oxidative stress and DNA damage levels [55]. Recent research has
demonstrated that TRIP13 has the potential to influence autophagy in specific scenarios.
However, the specific relationship between TRIP13 and autophagy remains unclear. A
study reported that TRIP13 overexpression in HCC827 cells increased the number of
autophagosome-like structures, indicating stimulated autophagy (Figure 3). Gefitinib
enhanced TRIP13’s autophagy-promoting ability, while 3-MA, an autophagy inhibitor,
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decreased this ability [56]. A study indicated that TRIP13 functions as a conserved generic
HORMA remodeler; however, its association with autophagy remains unestablished [57].
In addition, it is unclear whether ATP-dependent remodeling of the HORMA domains
would be required to silence autophagosome biogenesis during disassembly of the ATG9-
13-101 complex [58]. Further studies are required to understand the relationship between
TRIP13 and autophagy to use TRIP13 as a biomarker and therapeutic target for autophagy.
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2.4. TRIP13 and Immunity

There is strong evidence supporting the connection between CIN, poor prognosis,
and reduced immune cell activity against tumors [59]. In CIN, there is a high frequency of
chromosome missegregation, leading to micronuclei and aneuploidy—an abnormal chro-
mosome ratio [60]. Several clinical studies have demonstrated a correlation between tumor
aneuploidy and immune evasion, local immunity suppression, and reduced immunothera-
peutic responses [59,60]. As a result, the activation or suppression of the immune system
caused by tumor aneuploidy function is found to be dependent on the carcinogenic stage
and the complex microenvironment [61]. Furthermore, TRIP13-expressing tumors had
increased aneuploidy and tended to have a lower CD8+/Treg ratio, resulting in a worse
survival outcome [62]. This study also found that TRIP13-expressing tumors negatively
influence immune cells, such as T cells, B cells, dendritic cells, granulocytes, NK cells, and
monocytes. A recent study indicated that elevated TRIP13 expression was associated with
enhanced infiltration of Th2 cells and decreased infiltration of neutrophils, Th17 cells, and
dendritic cells [63]. In addition, inhibiting TRIP13 increases cytotoxic mediator production,
which stimulates the immune system to fight cancer [63]. The results suggest that an
overexpression of TRIP13 suppresses immunity, and targeting TRIP13 has the potential to
activate immunity in tumors.

3. TRIP13 Role in Cancer
Several types of cancers have been reported to overexpress TRIP13, including head

and neck cancer [25], bladder cancer [26,27], pancreatic [30], breast cancer [31], prostate
cancer [32], chronic lymphocytic leukemia [33], ovarian cancer [35], brain tumors [36],
renal cell carcinoma [37], Wilms tumor [38], and thyroid cancer [39]. Several studies and
online tools, such as the analysis of TNMplot (https://www.tnmplot.com, accessed on
6 November 2024), have demonstrated that TRIP13 expression is increased in various
human tumors compared to normal tissues. It was observed that TRIP13 was highly
expressed in lung cancer, uterus cancer, bladder cancer, ovary cancer, and esophageal
cancer (Figure 4A) [64]. In the last five years, researchers have made significant progress in
identifying the molecular mechanism/signaling involved in tumor development associated
with TRIP13 (Figure 4B).

http://smart.servier.com
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Based on the immunohistochemical assay, TRIP13 was found to be abnormally ex-
pressed in gastric cancer, which correlated with the tumor grade [65]. This study provided
mechanistic evidence that TRIP13 interacts with the HDAC1-TRIP13/DDX21 axis, stabiliz-
ing its expression by inhibiting ubiquitination degradation and accelerating the spread of
gastric cancer [65]. Another study revealed that TRIP13 functions as an oncogene, facili-
tating the growth and spread of pancreatic ductal adenocarcinoma (PDAC). In addition,
TRIP13 overexpression in PDAC samples activates FGFR4, a receptor tyrosine kinase.
Furthermore, PDAC samples with high TRIP13 expression showed elevated STAT3 phos-
phorylation at Tyr705 and high levels of active β-catenin [21]. In CRC, a high level of
TRIP13 expression is associated with a lower survival rate in patients at all stages [66]. A
critical signaling pathway involved in the growth and metastasis of CRC involves EGFR
and AKT tyrosine kinases and WNT/b-catenin signaling [66]. TRIP13 stimulates the signal-

www.tnmplot.com
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ing pathways involved in CRC growth and metastasis by interacting with FGFR4 tyrosine
kinase [28,29]. Furthermore, p53 is the most frequently mutated protein across many can-
cers, with a strong link to carcinogenesis. The activity of p53 can also be abrogated by
other proteins, such as MDM, which is also frequently overexpressed in several cancers
and functions as an oncogene. MDM2 can bind to the transcriptional activation domain of
p53 or degrade it, leading to its loss of function. Unfortunately, targeting the p53 pathway
directly has been very challenging. Some studies have explored the possible connection
between TRIP13 and p53. Using gene set expression analysis, TRIP13 was identified as
an upstream regulator of the p53 gene [67]. In thyroid cancer cells, the sh-RNA-mediated
knockdown of TRIP13 resulted in a significantly elevated ratio of p-p53 to p53 [39]. Simi-
larly, in B cell lymphoma, TRIP13 knockdown led to increased apoptosis with an increase in
MDM4 protein levels [68]. Thus, targeting TRIP13 has an indirect effect on p53 activation;
the effect on MDM2 is not well understood yet. These data indicate that TRIP13 targeting
may be beneficial in p53 wild-type tumors; in another study, TRIP13 inhibition was shown
to inhibit tumor metastasis to be independent of p53 mutation [29]. Thus, TRIP13 can serve
as a promising target for both p53 wild-type as well as mutant tumors.

Additionally, TRIP13 overexpression activated the AKT/mTORC1/cMyc pathway
to trigger lung adenocarcinoma [69]. A study analyzing 124 esophageal cancer patients
found that TRIP13 overexpression was only associated with a poor prognosis in early-
stage disease [70]. Gene expression profiling and RNA-sequencing data from the Cancer
Genome Atlas (TCGA) revealed that TRIP13 expression was elevated in bladder cancer
(BC) tissues and that TRIP13 overexpression was substantially linked to poor prognosis in
BC patients. In addition, TRIP13 overexpression triggers the cell cycle phase, resulting in
increased cell viability, proliferation, and colony formation in BC cell lines [26,71]. High
TRIP13 expression is associated with clinical progression and is an independent prognostic
indicator for prostate cancer. It modulates YWHAZ and EMT-associated genes to promote
prostate cancer cell proliferation, migration, and invasion [32]. According to a study,
TRIP13 was found to be significantly elevated in multiple myeloma (MM) cells and is
recognized as a CIN gene in the etiology of MM [72]. Overexpression of TRIP13 has
been observed to interfere with the DNA SAC and facilitate the proteasome-mediated
degradation of MAD2 through the AKT-signaling pathway [72]. In breast cancer, TRIP13
activated PI3K-AKT-mTOR signaling, enabling the cells to proliferate and migrate more
effectively [22]. Another study showed similar findings in hepatocellular carcinoma (HCC)
and found that TRIP13 promotes the PI3K/AKT/mTOR signaling pathways and accelerates
the growth of HCC cells [73]. The link between TRIP13 and Wnt signaling has been studied
in multiple cancers [74–76]. TRIP13 was found to enhance the activation of the Wnt/β-
catenin signaling pathway via regulation of ACTN4, thus promoting cervical cancer [74].
In breast cancer cells, it was shown that KIF18B promotes proliferation, migration, and
invasion by targeting TRIP13 and activating the Wnt/β-catenin signaling pathway, also
linking these two pathways [76]. In lung cancer cells, overexpression of TRIP13 resulted in
the upregulation of active β-catenin and other proteins of the Wnt pathways, such as LRP6
and transcription factors TCF4 and LEF1. Furthermore, TRIP13 overexpression also caused
the upregulation of N-cadherin, Snail, and vimentin, and the downregulation of E-cadherin.
As expected, these effects were reversed after knocking down the expression of TRIP13.
Most importantly, co-immunoprecipitation and immunofluorescence imaging experiments
revealed that TRIP13 directly interacts with LRP6, which is the receptor and upstream
activator of the Wnt signaling pathway [75]. These studies collectively demonstrate the
role of TRIP13 in regulating the Wnt pathway, thus making it an important target in Wnt
pathway-dependent cancers.
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4. TRIP13 Contributes to Drug Resistance
Drug resistance is a major cause of cancer treatment failures. There is evidence that

tumors overexpressing TRIP13 exhibit lower sensitivity to anticancer drugs (bortezomib
and cisplatin) [25]. It has also been demonstrated that TRIP13 plays a role in nedaplatin
resistance in esophageal squamous cell carcinoma [77]. Squamous cell carcinoma of the
head and neck (SCCHN) with high TRIP13 levels is aggressive, resistant to treatment, and
retains DNA damage even after treatment [25]. A more thorough investigation was recently
conducted, revealing a unique function of TRIP13-PKCδ/PRS3 in persistently triggering
NF-κB in patients with MM who develop resistance to proteasome inhibitor therapy [78].
Furthermore, EGFR interacts with TRIP13, implicating EGFR-mediated phosphorylation of
TRIP13 at Tyr56 as a mechanism of radiation resistance in HNSCC. It is also shown that
tumors expressing TRIP13 respond to radiation only when cetuximab is present [79]. The
overexpression of TRIP13 in NSCLC promotes gefitinib resistance by regulating autophagy
and triggering EGFR signaling [56]. A research study also demonstrated that TRIP13
functions as an oncogene in gastric cancer and that the knockdown of TRIP13 inhibits
stemness and cisplatin resistance by regulating the FBXW7/ENO1 signaling pathway [80].
A previous study described TRIP13 as an error-prone, non-homologous end-joining protein
that induces chemoresistance in head and neck cancers [25]. Research shows that the
TRIP13/Mad2 axis damages the checkpoint surveillance system and causes anticancer
drug resistance by activating the PI3K Akt-signaling pathway [72]. In drug-treated BC
cells, TRIP13 overexpression mitigated cisplatin- and doxorubicin-induced DNA damage
and enhanced DNA repair, as suggested by the reduced H2AX and increased RAD50
expression [26]. TRIP13 upregulation correlates with poor survival and accelerates tumor
growth in B-cell lymphoma. As a result of binding to USP7, TRIP13 induces intracellular
deubiquitination, which leads to the accumulation of diverse proteins. Through USP7,
TRIP13 regulates NEK2, p53, MDM2, and PTEN, which are implicated in oncogenesis and
resistance to bortezomib [81]. Collectively, these studies indicate an association between
TRIP13 overexpression and anticancer drug resistance, further supporting the idea of
targeting TRIP13 or using it as adjuvant therapy to enhance anticancer treatments.

5. Recent Advancements in Targeting TRIP13 for Cancer Therapies
As discussed above, overexpression of TRIP13 is linked to cancer development and

drug resistance, thus making it a potential target for cancer therapy. Few small-molecule
inhibitors of TRIP13, such as DCZ0415, TI17, DCZ5417, and DCZ5418, have been developed
to block the function of the TRIP13 protein and are currently being studied in various cancer
types (Figure 5).

Among all, DCZ0415 is one of the most widely studied small-molecule inhibitors in
different types of cancer. Biological assays and molecular docking studies demonstrated
that DCZ0415 can interact directly with the ATP-binding pocket of TRIP13. DCZ0415 treat-
ment also induced DNA damage and apoptosis in myeloma cells. Additionally, this study
reported that DCZ0415 increased the CD3+, CD4+, and CD8+ immune cells in immunocom-
petent myeloma models and inhibited nuclear factor kappa B (NF-kB) activity, suggesting
that inhibition of TRIP13 could have immunotherapeutic potential [82]. Another study
reported that DCZ0415 inhibited EMT and reduced NF-KB and Wnt/β-catenin signaling
pathway activation in colorectal cancer [28]. This study also showed that DCZ0415 induced
G2/M phase arrest and promoted apoptosis by inhibiting the FGFR4/STAT3/NF-KB axis
in a colorectal cancer cell line. In addition, DCZ0415 administration increased the levels
of cytotoxic mediators, which enhanced the antitumor immune response in xenografted
NSG mice [28]. DCZ0415 showed an inhibitor effect on cell proliferation, migration, inva-
sion, tumor growth, and metastasis in PDAC by targeting the TRIP13/FGFR4/STAT3 axis
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and downregulating the Wnt/β-catenin and EMT signaling pathways [30]. Furthermore,
DCZ0415 (25 mg/kg) was injected into immunocompetent syngeneic KPC mice, which
showed enhanced granzyme B/perforin levels, suppressed PD/PD-L1, and promoted T
cell infiltration, leading to tumor eradication [30]. DCZ0415 inhibits the progression of
hepatocellular carcinoma by targeting TRIP13 and impairing non-homologous end-joining
repair [83]. Recently, our results also showed that DCZ0415 significantly suppressed
bladder cancer cell proliferation and induced apoptosis [71]. Overall, these findings sug-
gested that targeting TRIP13 with DCZ0415 could be a potential therapeutic option against
many cancers.
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Another TRIP13 inhibitor, TI17, inhibits the proliferation of MM cells and induces cell
cycle arrest and apoptosis in multiple myeloma. A study using mouse xenografts showed
that TI17 inhibits tumor growth without causing apparent side effects in mice. Additionally,
TI17 reduces TRIP13 activity during DNA double-strand break repair and enhances DNA
damage responses in multiple myeloma [84].

DCZ5417 is a Norcantharidin derivative that has been found to be less toxic, safer,
and more effective than NCTD against primary MM and MM cell lines. Multiple tests,
including surface plasmon resonance, cellular thermal shift assays, and pull-down assays,
demonstrated that DCZ5417 binds to TRIP13 and inhibits its ATPase function. This study
also revealed that DCZ5417 inhibited cell proliferation by targeting TRIP13, disrupting
the TRIP13/YWHAE complex, and blocking the ERK/MAPK signaling axis [85]. Recently,
another cantharidin derivative, DCZ5418, was developed, which showed significant an-
ticancer activity against multiple myeloma both in vitro and in vivo. Further xenograft
model studies showed that DCZ5418 has a more substantial effect on multiple myeloma
than DCZ0415 [86].

In addition to small-molecule inhibitors, a study also reported that cruciferous vegeta-
bles containing the isothiocyanate compound sulforaphane decreased TRIP13 expression
and induced apoptosis in leukemia cells using the U93 cell line [87]. The curcumin metabo-
lite, tetrahydrocurcumin, selectively targets TRIP13, disrupting the TRIP13/USP7/c-FLIP
interaction. This leads to the ubiquitination of c-FLIP, which consequently triggers extrinsic
apoptosis in triple-negative breast cancer [88]. A recently published article showed that
an FDA-approved drug (Selinexor, KPT-330) also suppresses TRIP 13 expression in Wilms
tumor (WT) [89]. Aside from the small-molecule inhibitors and drugs, several studies have
reported that slicing the TRIP13 gene suppresses cancer growth. A study demonstrated
that silencing TRIP13 with a plasmid decreased cell proliferation, migration, and invasion
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and induced apoptosis in the hepatocellular carcinoma cell lines HepG2 and MHCC97H
cells [90]. Additionally, this study indicated that TRIP13 knockdown reduced tumor forma-
tion in vivo. Knockdown of TRIP13 using lentiviruses expressing TRIP13 shRNA reduced
the invasion and metastasis of colorectal cancer (CRC) cells by decreasing the expression
of MMP2 and MMP9 [29]. TRIP13 knockdown decreased cell migration and invasion and
induced apoptosis in the osteosarcoma cell line U2OS [91]. Lentivirus-induced TRIP13
knockdown in NSCLC cell lines A549 and H1299 causes G2/M phase cell cycle arrest and
inhibits the proliferation and invasion of cells [92]. Another study indicated that knocking
down TRIP13 reduced the colony formation of MIA PaCa-2 and S2VP10 pancreatic ductal
adenocarcinoma cells. Furthermore, this knockdown also decreased FGFR4 expression and
STAT3 phosphorylation at Tyr705 in PDAC cells [30]. These findings suggest that silencing
the TRIP13 gene offers a promising strategy for cancer management.

6. Combination Therapies
Despite the progress made by small-molecule inhibitors in targeted drugs, their effec-

tiveness against tumors is limited, mainly because of the high levels of clonal heterogeneity
in cancer, intratumor genetic heterogeneity in tumors, and the complexity of cell signals
and resistance to drugs [93]. Preserving genomic integrity requires the efficient repair of
DSBs after a DNA damage response. However, in cancer patients, treatment resistance
and recurrence increase when anticancer agent-induced DSBs are repaired by either ho-
mologous recombination (HR) or NHEJ repair pathways [94]. To address this significant
problem, researchers have combined TRIP13 inhibitors with inhibitors of DNA repair
proteins and reported positive results. Synergistic effects of the TRIP13 inhibitor DCZ0415
and PARP1 inhibitor olaparib showed encouraging results in suppressing HCC cell prolif-
eration when compared to single treatment groups [81]. In HPV-positive cervical cancer
cells, the combination of Aurora kinase inhibition and TRIP13 depletion caused extensive
apoptosis, as a loss of Rb protein expression leads to high levels of Mad2 [95]. As a result
of overexpressing TRIP13, SCCHN became more susceptible to DNA-PKcs inhibitors, and
impairment of TRIP13 ATPase activity diminished DSB repair efficiency [25]. Moreover,
DCZ0415 was synergistically active against multiple myeloma when combined with the
HDAC inhibitor panobinostat or the multiple myeloma chemotherapy melphalan [82]. A
study demonstrated that the combination of DCZ0415 with gemcitabine significantly re-
duced tumor size and weight in an immunocompetent syngeneic PDAC mouse model [30].
Recent studies found that KPT-330 can act synergistically with doxorubicin, identifying this
combination as a potential therapeutic option for treating patients with favorable histology
Wilms Tumor (FHWT) [89]. These findings suggest that combining TRIP13 inhibitors with
anticancer drugs could be an effective strategy for cancer management.

7. Conclusions and Perspectives
TRIP13 is crucial for numerous biological processes, such as DNA repair and cell

division, and it ensures the alignment of chromosomes during mitosis. The overexpression
of TRIP13 causes genomic instability due to SAC weakening. This allows cancer cells
to multiply faster and become aneuploid, immune envision, and promotes resistance to
chemotherapy and other drugs. Recently, there has been a significant increase in the
possibility of employing TRIP13 as a therapeutic target owing to several important findings;
the most important finding was reported by multiple groups that inhibition of TRIP13
with a small-molecule inhibitor resulted in decreased tumor growth. It is essential to find
more small-molecule inhibitors that target TRIP13 specifically, as only a few small-molecule
inhibitors are available. A few combination studies have shown a considerable effect on
drug-resistant cancer cells. Additionally, some new areas are anticipated to gain significant
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development over the next decade, such as a combination of small-molecule targeted
TRIP13 with tumor immunotherapy. Although most in vitro tests have shown positive
results, further preclinical and clinical studies are necessary to develop a TRIP13 inhibitor
for clinical use.
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