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Abstract: Background/Objectives: The accurate categorization of brain MRI images into tumor
and non-tumor categories is essential for a prompt and effective diagnosis. This paper presents a
novel methodology utilizing advanced Convolutional Neural Network (CNN) designs to tackle the
complexity and unpredictability present in brain MRI data. Methods: The methodology commences
with an extensive preparation phase that includes image resizing, grayscale conversion, Gaussian
blurring, and the delineation of the brain region for preparing the MRI images for analysis. The
Multi-verse Optimizer (MVO) is utilized to optimize data augmentation parameters and refine the
configuration of trainable layers in VGG16 and ResNet50. The model’s generalization capabilities
are significantly improved by the MVO’s ability to effectively balance computational cost and
performance. Results: The amalgamation of VGG16 and ResNet50, further refined by the MVO,
exhibits substantial enhancements in classification metrics. The MVO-optimized hybrid model
demonstrates enhanced performance, exhibiting a well-calibrated balance between precision and
recall, rendering it exceptionally trustworthy for medical diagnostic applications. Conclusions: The
results highlight the effectiveness of MVO-optimized CNN models for classifying brain tumors in
MRI data. Future investigations may examine the model’s applicability to multiclass issues and its
validation in practical clinical environments.

Keywords: brain tumor classification; MRI image analysis; optimization; deep learning; data
augmentation; multi-verse optimizer

1. Introduction

Brain tumors, one of the most daunting medical diagnoses, present a formidable
challenge in healthcare. These abnormal cell growths in the brain can have devastating
effects on health and well-being [1–4]. Early and accurate recognition is paramount for
effective treatment planning and improved prognosis. Traditionally, the diagnosis of
brain tumors relies heavily on the analysis of MRI images by experts or radiologists.
However, this manual process is not only labor intensive but also prone to human error. The
advancement of automated classification methods, particularly through machine learning,
offers a transformative solution, promising greater accuracy, efficiency, and consistency in
diagnosing brain tumors [4,5]. Machine learning (ML), a subgroup of artificial intelligence
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(AI), involves the development of techniques that enable computers to learn from data
and make decisions without being explicitly programmed [6–8]. It encompasses numerous
methods that allow systems to improve automatically through experience, making it a
powerful tool for interpreting and analyzing vast amounts of data [9–12].

In contemporary applications, supervised models based on ML have become integral
to a wide range of applications. They are prominently employed in natural language
processing (NLP), where they help in understanding and interpreting human languages
with applications ranging from translation services to sentiment analysis [13,14]. In the
medical field, these techniques are revolutionizing medical image processing, enabling
more precise diagnoses from imaging data and also enhancing medical signal processing
for better monitoring and treatment of health conditions [15,16]. The widespread adoption
of ML models in diverse fields underscores their versatility and transformative potential in
technology and science [4,6,17,18].

In the field of automated brain tumor classification, two main ML methodologies
have emerged as predominant methods: hand-crafted feature extraction methods and
deep learning (DL) methods. Each technique offers distinct strategies and benefits for the
analysis and classification of brain tumors from MRI images [19–22]. Hand-crafted feature
extraction relies on predefined strategies to identify specific characteristics or ‘features’
in MRI images. These features, such as intensity, shape, and texture, are then utilized to
classify the images into tumor or non-tumor categories. While these methods have been
instrumental in early efforts at automated classification, they are limited by the need for
expert knowledge in feature selection and can struggle with the high variability present in
brain tumor images [4,23].

Leveraging neural networks, particularly CNNs, DL models automatically learn
feature descriptions directly from the data, bypassing the need for manual feature extraction.
These approaches have shown remarkable success in various image recognition tasks,
including medical image analysis [24–26]. CNNs, with their ability to hierarchically extract
and learn complicated hidden patterns in data, have become the cornerstone of modern
automated image classification, including the differentiation of MRI images into tumor and
non-tumor categories [25,27,28].

2. Literature Review

Vankdothu et al. [29] developed an innovative automated system for detecting and
classifying medical images. This system encompasses several stages: the preprocessing of
MRI images, segmentation, feature extraction, and classification. In the preprocessing stage,
an adaptive filter is applied to reduce noise in the MRI images. For image segmentation, an
enhanced version of the K-means clustering technique, known as IKMC, is utilized. The
feature extraction procedure utilizes the gray-level co-occurrence matrix (GLCM) strategy
to draw out critical and hidden patterns from the images. Subsequently, these features
are input into a DL model for classification into various categories, such as non-tumors,
meningiomas, gliomas, and pituitary tumors, utilizing recurrent CNNs (RCNN). This
strategy demonstrated improved outcomes in classifying brain images from a specific
dataset. The evaluation of this method was carried out using a dataset from Kaggle,
comprising 394 test images and 2870 training images. The findings indicate that this
method outperforms previous approaches in terms of performance. Additionally, the
effectiveness of the RCNN model was benchmarked against contemporary classification
techniques like U-Net, backpropagation, and RCNN, showcasing its superior capabilities
in medical image classification.

Siddiqi et al. [30] suggested a cutting-edge feature extraction technique specifically
designed for MRI images aimed at identifying and selecting prominent features associated
with different brain diseases. This strategy stands out for its ability to discern key features
from MRI scans, facilitating the differentiation between various disease classes. The ap-
proach employs a novel method that utilizes recursive values like the partial Z-value for
class discrimination. The algorithm works by extracting a select set of features through
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backward and forward recursion models. In the forward recursion model, the most interre-
lated features are identified based on the partial Z-test values. Conversely, the backward
model aims to decrease the least interrelated features from the feature space. In both
instances, the Z-test values are computed based on the predefined labels of the diseases,
aiding in the precise identification of localized features, which is a major advantage of
this method. Once the optimal features are extracted and selected, the model employs
a Support Vector Machine (SVM) for training. This training allows the model to assign
predictive labels to the MRI images accurately.

Ullah et al. [31] proposed a theory emphasizing the critical role of image quality,
particularly when enhanced during the preprocessing phase, in improving the classification
accuracy of statistical methods. To support this theory, they introduced an advanced image
enhancement procedure comprising three distinct sub-stages. Initially, noise is mitigated
using a median filter, followed by the enhancement of image contrast through histogram
equalization. The process culminates with the conversion of images from grayscale to
RGB. Once the images are enhanced, feature extraction is conducted on the improved MR
brain images employing discrete wavelet transform. These extracted features are then
further processed by implementing color moments, which include skewness, mean, and
standard deviation, to effectively reduce the feature set. The final step involves training
an advanced deep neural network (DNN) with these processed features. The purpose
of this DNN is to correctly classify human brain MRI images, differentiating between
normal and pathological conditions. This approach underscores the significance of image
quality in preprocessing and its impact on the efficacy of DL models in medical imaging
classification tasks.

Alrashedy et al. [32] introduced BrainGAN, a framework designed for both generat-
ing and classifying brain MRI images. This framework utilizes Generative Adversarial
Network (GAN) architectures alongside DL models. A key aspect of this study was the
development of an automated technique to ensure the quality of images generated by
GANs. For this purpose, the framework used three different models: MobileNetV2, CNN,
and ResNet152V2. These deep transfer models were trained employing images generated
by two types of GANs: Deep Convolutional GAN (DCGAN) and Vanilla GAN. The effec-
tiveness of these models was then assessed using a test set comprising actual brain MRI
images. The experimental results indicated that the ResNet152V2 model exhibited superior
performance compared to the CNN and MobileNetV2 models. This outcome underscores
the potential of using advanced neural networks in conjunction with GAN-generated data
for the accurate classification of medical images, especially in scenarios where real-world
data are limited or difficult to access.

Many studies have mostly concentrated on binary classification problems, neglecting
the intricacies of multiclass settings, such as differentiating between various tumor kinds.
Our research has explicitly addressed these restrictions with a strong binary classification
methodology, while proposing possibilities for expansion to multiclass scenarios. Further-
more, earlier models frequently encounter challenges associated with class imbalances and
data scarcity, which impede performance and generalizability. In our study, we utilized
advanced data augmentation techniques optimized using the Multi-verse Optimizer (MVO)
to enhance training data diversity and reduce the risk of overfitting.

A significant drawback in previous research is the absence of effective optimization
algorithms for deep learning systems, resulting in inferior performance and heightened
computing expenses. We addressed this by incorporating the MVO to optimize data
augmentation parameters and the configuration of trainable layers in VGG16 and ResNet50,
thereby enhancing performance and generalization.

We employ a sophisticated strategy that combines the strengths of two renowned CNN
architectures, VGG16 and ResNet50. These models have been selected for their proven
efficacy in image classification tasks, providing a robust foundation for our classification
strategy. The proposed approach begins with a critical preprocessing phase, pivotal for
preparing MRI images for analysis by CNN models. This part incorporates several proce-
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dures, including image resizing, conversion to grayscale, and the application of Gaussian
blurring. These processes are instrumental in minimizing noise and standardizing the
images, ensuring the focus is on features crucial for classification. Further, advanced image
processing techniques are utilized to accurately isolate the brain region from each scan, a
key step in precise tumor detection.

An innovative optimization technique is integrated into the model development,
employing the MVO. A significant application of the MVO in this study is the optimization
of data augmentation parameters. Data augmentation is an essential step in enhancing the
robustness and generalization of DL models. By artificially enlarging the training dataset
with modified versions of the original images, the risk of overfitting is diminished. This
also prepares the models to manage diverse image variations. The MVO plays a critical role
in identifying the most effective augmentation techniques and their parameters, optimizing
the process for brain MRI images.

Furthermore, the MVO is instrumental in determining the optimal configuration of
trainable layers in the VGG16 and ResNet50 architectures, a crucial factor in adapting
the models for brain tumor classification. The selective unfreezing of layers for training
achieves a balance between employing pre-learned features and adapting to the specific
dataset. The MVO directs this process, identifying layers that when trained, significantly
boost the model’s efficacy.

The structure of this paper is accurately organized to offer a comprehensive under-
standing of the methodology and results. The introduction is followed by the materials and
methods section, which details the preprocessing steps and the MVO optimization process.
Following this, the data augmentation strategies and the process of building and training
the VGG16 and ResNet50 models are thoroughly examined. The model evaluation section
follows, discussing the metrics and techniques utilized to assess the performance of the
models. A critical analysis of the findings is presented in the results and discussion section,
where the effectiveness of this approach is compared with other methods, particularly
emphasizing its role in the automated detection of brain tumors. The paper concludes with
a summary of the key contributions and insights, and it outlines potential future research
avenues in this crucial area of medical diagnostics.

3. Materials and Methods

This section methodically outlines the proposed method. Initially, the visual summary
of the recommended model is illustrated in Figure 1.
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Figure 1. The graphical abstract of the suggested model.

3.1. Data Preprocessing

The preprocessing of MRI images is a fundamental step towards achieving accurate
classification results when discerning between scans with and without tumors. Our pro-
cedure was designed to extract just the brain region from each MRI image, utilizing a
combination of image processing techniques provided by the OpenCV library (version
4.8.1). These steps are described as follows:
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• Image Resizing: Each image was resized to a standard dimension, certifying uniformity
across the dataset. This was important for consistency when feeding the images into
the neural network models.

• Grayscale Conversion: The resized images were converted to grayscale to moderate
computational complexity. Color information was typically redundant for the task at
hand, as the focus was on texture and shape within the images.

• Gaussian Blurring: To reduce high-frequency noise, a Gaussian blur was applied to the
grayscale images. This smoothing technique aided in highlighting the more significant
structures within the brain by softening edges and details.

• Otsu’s Thresholding: We implemented Otsu’s thresholding to separate the brain tissue
from the background. This method automatically computed a threshold value for
image binarization, which was employed to detect contours.

• Contour Detection and Selection: By applying contour detection, we identified the
boundaries of all the objects in the binary image. We assumed the largest contour to
be the brain’s boundary, a reasonable assumption in a typical MRI scan.

• Extreme Points and Cropping: Once the largest contour was identified, we verified its
extreme points. These points represented the furthest pixels in the horizontal and verti-
cal directions within the contour, which we employed to define a cropping boundary.

• Image Cropping: The image was cropped using the extreme points as vertices, with
an optional padding added to ensure no part of the brain was excluded.

• Displaying the Process: We visualized the preprocessing steps, displaying the original
image, the contour of the largest detected region, the extreme points, and finally, the
cropped brain region.

It is important to note that the performance of this preprocessing step depends on the
characteristics and quality of the MRI scans provided. If the scans are not standardized
or contain artifacts, additional preprocessing techniques might be required. Figure 2
demonstrates the results of applying the proposed preprocessing method. Our analysis
indicates that although these procedures were computationally efficient, they did not
substantially augment the overall runtime, hence maintaining the model’s suitability for
real-time or near-real-time applications.
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Figure 2. An example of applying the suggested preprocessing method. The original image is indi-
cated to provide a baseline. The contour image illustrates the identified largest contour. The extreme
point image marks the extreme points on the brain contour, demonstrating the cropping boundaries.
The cropped image displays the isolated brain region, ready for input into the classification models.

3.2. Optimization Method

Optimization in ML is the manipulation of model parameters in order to minimize
errors and enhance the precision of predictions. It is a vital process in model training that di-
rectly affects the performance of the model [7,33,34]. Metaheuristics are high-level problem-
independent algorithmic frameworks that provide a set of guidelines or approaches to
developing heuristic optimization algorithms. They are often nature inspired and designed
to investigate the search space efficiently, which is crucial in avoiding local optima and
finding a near-global optimum in complex problems. Unlike exact techniques, metaheuris-
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tics do not guarantee an optimal solution, but they often discover good solutions with less
computational effort, especially in large and complex search spaces [35–39].

In our study, we utilized the MVO technique, an effective metaheuristic algorithm
inspired by the multi-verse theory in physics. The MVO algorithm models each solution as
a universe and the features of the solutions as objects within these universes. The algorithm
iterates through a process of exploration and exploitation, guided by the concepts of
wormholes, black holes, and white holes, to share information among the universes and
converge toward the best solution [40–42]. White holes act as channels for exporting matter
from a universe, which in MVO terms means exporting solution features from a higher-
ranked solution to others. Black holes serve the opposite function, absorbing matter, and
thus importing solution features from other universes into the current solution. Wormholes
provide a means for solutions to jump across the search space, encouraging exploration
and aiding in avoiding local minima [40,43,44]. We used the MVO method for two main
optimization tasks:

• Optimization of Data Augmentation Parameters: MVO was utilized to uncover the
best data augmentation techniques and their respective parameter values. This step
was crucial to enhance the dataset variability without deviating from the realistic
transformations applicable to MRI images. By doing so, we aimed to maximize the
performance of the classification models while avoiding overfitting.

• Layer-wise Trainability in CNNs: We also applied the MVO strategy to find the
optimal configuration of trainable layers within VGG16 and ResNet50 architectures.
The method helped in identifying which layers should be frozen (weights not updated
during training) and which should be trainable (weights updated during training) to
improve the models’ accuracy and efficiency. This is particularly important, as deep
neural networks can be computationally expensive to train, and freezing certain layers
can significantly diminish the number of parameters that are essential to be updated,
thus speeding up the training process and potentially improving generalization.

The MVO relies on various parameters that guide the optimization process. Adjusting
these parameters can notably influence the algorithm’s ability to find optimal solutions.
Below is a detailed description of these parameters and the role they play in the MVO
algorithm [42–44]:

• Universe Size (Population Size): This parameter defines the number of potential
solutions (universes) that the algorithm will consider simultaneously. A larger uni-
verse size allows for greater exploration of the solution space. A universe size of
30 achieves a compromise between computing efficiency and diversity within the
search space. More extensive populations enhance diversity but may impede the
optimization process, whereas smaller populations might converge rapidly yet risk
overlooking ideal solutions due to inadequate research. A universe size of 30 facilitates
a sufficiently diversified population to investigate many solutions while minimizing
computational expenses.

• Wormhole Existence Probability (WEP): This probability controls the creation of worm-
holes, which are mechanisms for sharing information between universes. A value
of 0.6 signifies a considerable probability of the formation of these wormholes. This
likelihood facilitates an effective combination of exploration (investigating new re-
gions of the solution space) and exploitation (enhancing current solutions). A high
WEP (approaching 1) may result in premature convergence due to excessive emphasis
on exploitation, whereas a low WEP (approaching 0) restricts exploitation, hence
obstructing convergence to an ideal solution. A WEP of 0.6 guarantees that the MVO
algorithm can efficiently navigate the solution space while simultaneously enhancing
viable solutions.

• Travelling Distance Rate (TDR): This rate determines how much a solution can be
altered when a wormhole event occurs. A value of 0.4 signifies that alterations to the
solutions are moderate. If the TDR is overly elevated, solutions may be excessively
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disturbed, resulting in irregular exploration that could overlook excellent solutions. If
TDR is excessively low, the algorithm may adopt an overly conservative approach and
become trapped in local optima. A TDR of 0.4 offers a balanced methodology, enabling
the algorithm to implement significant modifications to solutions while remaining
close to attractive regions.

• Maximum/Minimum WEP: These parameters set the lower and upper bounds for the
wormhole existence probability, introducing dynamic variability in the algorithm. The
interval [0.2, 1.0] guarantees that during the initial phases of optimization, the method
prioritizes exploration (with a reduced WEP at 0.2), thus avoiding premature conver-
gence. As the algorithm advances, WEP approaches 1.0, highlighting exploitation in
the latter phases to optimize the results. The incremental rise in WEP enables the early
investigation of several options while refining the search in the concluding iterations
for enhanced precision.

• Maximum/Minimum TDR: Similar to WEP, these parameters set the boundaries
for the traveling distance rate, controlling the extent of solution alterations through
the optimization process. Commencing with a minimum TDR of 0.4 guarantees
that initial exploration remains closely aligned with the existing optimal solutions.
As optimization progresses, the TDR may rise to 1.0, facilitating more substantial
alterations in subsequent phases. This adaptive modification allows the method to
maintain flexibility throughout the initial phases of optimization while intensifying
solution refinement as it nears convergence.

These parameters are not static; they can be adapted during the optimization process
to dynamically adjust the search behavior of the method. For our study, Table 1 outlines
the specific parameters of the MVO algorithm that were employed to optimize data aug-
mentation techniques and determine trainable layers in the VGG16 and ResNet50 models:

Table 1. Specific parameters of the MVO algorithm were employed for optimization purposes.

Hyperparameters Description Best Value

Universe Size Number of solutions in the
population 30

Wormhole Existence Probability
(WEP)

Probability of wormholes’
appearance 0.6

Travelling Distance Rate (TDR) How far a wormhole can alter
a solution 0.4

Max/Min WEP Bounds the occurrence of
wormholes Max: 1.0, Min: 0.2

Max/Min TDR Limits the modification extent
by the wormholes Max: 1.0, Min: 0.4

3.3. Data Augmentation

Data augmentation is an essential strategy in the field of DL, especially when dealing
with image data. It refers to the process of generating new training samples from the original
ones by applying a sequence of random changes that result in realistic variances [45–47].
This technique is crucial for several reasons [45,46,48]:

• Mitigates Overfitting: Augmentation spreads the variety of the training samples,
which helps prevent the model from memorizing specific images and overfitting.

• Improves Generalization: By simulating various scenarios, data augmentation allows
the model to generalize better to new, unseen data.

• Compensates for Imbalanced Datasets: In cases where some classes are underrep-
resented, augmentation can help to balance the samples without the need to collect
more data.

• Enhances Model Robustness: Augmented data aid the model in learning more robust
features that are invariant to certain transformations, which is significant for real-world
applications.
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In our study, the ‘ImageDataGenerator’ from ‘Keras’ is used to implement data aug-
mentation, with a range of parameters set to apply random transformations to the images.
Table 2 summarizes the data augmentation approaches employed in our study. Figure 3
demonstrates the results of applying the augmentation methods to an image.

Table 2. A description of all data augmentation methods employed in our study. * Note: The ‘Channel
Shift’ and ‘Fill Mode’ methods are not selected by the optimization approach for data augmentation.

Index Augmentation Method Description Used in Study Suggested Values by MVO
Optimizer

1 Rotation range Random rotation within a specified
range of degrees. Yes 10

2 Width Shifting range Random horizontal shift. Yes 0.1
3 Height Shifting range Random vertical shift. Yes 0.1
4 Shear range Random shearing. Yes 0.1
5 Brightness range Random brightness adjustments. Yes [0.5. . .1.5]
6 Horizontal Flip Random horizontal flipping. Yes True
7 Vertical Flip Random vertical flipping. Yes True
8 Zoom range Random zooming into the images. Yes 0.1
9 Channel Shift * Random channel shifting. No -

10 Fill Mode * Method for filling points outside the
boundaries of the input. No -
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7 Vertical Flip Random vertical flipping. Yes True 
8 Zoom range Random zooming into the images. Yes 0.1 
9 Channel Shift * Random channel shifting. No - 

10 Fill Mode * 
Method for filling points outside the 

boundaries of the input. 
No - 

 
Figure 3. The results of applying the augmentation methods to an image. Figure 3. The results of applying the augmentation methods to an image.
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3.4. Model Building with VGG16 and ResNet50

In our study, we focused on building and fine-tuning two prominent CNN architec-
tures: ResNet50 and VGG16. These models were chosen for their proven track records
in image classification tasks. VGG16 stands out for its depth and utilization of uniform
3 × 3 convolutional layers. Its architecture is a demonstration of the idea that depth is cru-
cial for attaining high levels of accuracy in complex image classification tasks. A pre-trained
VGG16 model, originally trained on the ImageNet dataset, provides a strong feature extrac-
tion base due to its exposure to a widespread variety of images. However, this model is
often criticized for its high computational cost and extensive memory requirement, mainly
due to its deep architecture and fully connected layers [49–53].

The adaptation of VGG16 for binary classification involves fine-tuning the dense layers
to suit the specific task. The main advantage here is the ability to capture fine-grained
details, which can be necessary for discovering subtle features in MRI images that are
indicative of tumors. ResNet50, with its residual blocks and skip connections, addresses the
challenge of training deep networks without falling prey to the vanishing gradient problem.
The skip connections facilitate the training of the model by letting gradients flow through
the architecture more effectively. A pre-trained ResNet50 model brings robustness and a
quicker training convergence to the table, owing to these residual blocks. The architecture is
more efficient than VGG16, both in terms of computational resources and required training
time, making it a strong candidate for DL tasks. However, one could argue that ResNet50
may sometimes lead to feature redundancy due to its very deep architecture [48,54–57].

In the binary classification of MRI images, ResNet50’s architecture is beneficial for
its ability to learn from residuals, potentially refining the model’s ability to distinguish
relevant patterns associated with tumors. Combining ResNet50 and VGG16 can be par-
ticularly advantageous for the task at hand. While VGG16 is adept at capturing texture
and detailed features, ResNet50 excels in leveraging deeper contextual information and
solving the degradation problem in deep networks. The fusion of these models could lead
to a comprehensive feature extraction mechanism, where VGG16 contributes detailed local
features and ResNet50 contributes broader contextual understanding.

This combined methodology may offer a more robust representation of the MRI images,
capturing both the minute details essential for distinguishing small or early-stage tumors
and the broader patterns necessary for identifying more significant anomalies. The ensem-
ble of these two architectures has the potential to capitalize on the strengths of both while
mitigating their individual weaknesses, leading to an improved classification performance.

3.5. Model Training

The model was created with Python, employing tools such as TensorFlow (version
2.10.0), Keras (version 2.10.0), and OpenCV (version 4.8.1) for data processing and model
training. The experiments were performed on an NVIDIA GeForce RTX 3080 GPU, facilitat-
ing effective parallel computation, complemented by a high-performance 12th Gen Intel(R)
Core(TM) i7-12700H and 32 GB of RAM. The model training phase was characterized by a
dynamic and adaptive method. Each training iteration was contingent upon the new sets
of hyperparameters recommended by the optimization process for data augmentation and
layer unfreezing. This strategy ensured that the training process was continually refined
and tailored based on the model’s performance feedback.

The iterative nature of the training was closely tied to the MVO, which provided
updated values for data augmentation parameters and discovered the layers to be unfrozen
for each training cycle. This method permitted the model to evolve in conjunction with the
optimizer’s findings, effectively creating a feedback loop between training performance and
parameter adjustment. The optimizer’s role was essential in defining the non-trainable and
trainable parameters of the model. With a total of 102,659,777 parameters, the optimizer
fine-tuned the model by selectively unfreezing layers. This strategic balance played a
substantial role in the model’s ability to adapt to the specific features of MRI images. Data
augmentation was not a static preprocessing phase but a variable aspect of training. As the
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optimizer advocated new augmentation values, the training samples were transformed
accordingly, which permitted the model to learn from a more diverse set of features. This
continual alteration of the training samples helped mitigate overfitting and improved the
model’s generalizability.

During each training iteration, the structure was assessed using a validation set to
monitor its performance against data that were not part of the training process. This regular
validation served as a checkpoint to verify the efficacy of the current set of hyperparameters
and informed subsequent adjustments from the optimizer. Throughout the training phase,
the model underwent evolution, not only in its biases and weights but also in its structure
as layers were unfrozen and data augmentation techniques were varied. This evolution
aimed to refine the model’s capability to identify and classify the presence of tumors in
MRI scans with increasing precision. The outcome of this iterative and adaptive training
process was a highly tuned model, uniquely customized to the task at hand. The model’s
training was directly influenced by the optimizer, confirming that with each training cycle,
the model was progressively equipped to handle the complexities of tumor detection in
MRI images.

3.6. Dataset

The employed dataset consisted of 3264 brain MRI scans [58]. These scans were
derived from individuals seeking medical assessment and evaluation of their brain health.
Each MRI scan held the potential to reveal critical information about the presence or absence
of brain tumors. MRI, being non-invasive, ensures minimal discomfort and risk to the
patients while delivering invaluable insights into the brain’s intricate anatomy. We utilized
10% of the samples for validation, 10% of the samples for testing, and the rest for training
purposes. Some images from the dataset are indicated in Figure 4. We utilized 80% of the
original dataset (training samples) for data augmentation. The utilization of eight distinct
augmentation techniques substantially enhanced the training dataset, hence augmenting
model resilience and generalization.

The dataset is carefully labeled, attributing two distinct classes to each MRI scan [58]:

1. No Tumor:

• This class encompasses brain MRI scans attained from individuals who do not
demonstrate any detectable brain tumors. These scans serve as a crucial baseline
for comparative analysis against scans that do depict tumors.

• Individuals within this class are typically those seeking routine brain examina-
tions or experiencing neurological symptoms unrelated to tumor presence.

2. Tumor:

• The “Tumor” class comprises brain MRI scans from individuals who have been
clinically diagnosed with brain tumors. Brain tumors are marked in various loca-
tions, sizes, and types, making their accurate finding and grouping a formidable
challenge in the field of medical imaging.

• The tumors within this class may include metastatic tumors, gliomas, menin-
giomas, and other forms of abnormal growth within the brain.

3.7. Model Evaluation

The model assessment part was tailored to analyze the performance of the trained
models, which were configured to classify MRI images. The models were compiled with
‘binary crossentropy loss’ to suit the binary classification task. The Adam optimizer with
a learning rate of 0.001 was chosen for its effectiveness in handling the noise associated
with the inherently stochastic nature of training deep neural networks. The assessment
metrics selected were precision, accuracy, and recall, providing a rounded perspective on
the models’ classification abilities, as described in Equations (1)–(3) [28,35,59,60]:
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Precision =
TP

TP + FP
(1)

Accuracy =
TP + TN

TN + FN + TP + FP
(2)

Recall =
TP

TP + FN
(3)

These metrics are especially crucial in the context of binary classification, such as
identifying the presence or absence of tumors in MRI images.
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1. Precision (Equation (1)):

• Description: Precision assesses the accuracy of the positive predictions made by
the structure. In simpler terms, it answers the following question: of all the in-
stances where the model predicted ‘positive’, how many were actually positive?

• Components:

• True Positives (TP): These are the instances where the model precisely pre-
dicts the positive class.

• False Positives (FP): These are the instances where the model wrongly pre-
dicts the positive class.
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• Usage: Precision is particularly essential in situations where the cost of a false
positive is high. For example, in medical diagnostics, falsely recognizing a
healthy patient as having a tumor can lead to unnecessary stress and treatment.

2. Accuracy (Equation (2)):

• Description: Accuracy measures the proportion of true outcomes (both true
negatives and positives) among the total number of cases examined. It essentially
quantifies how often the model is correct.

• Components:

• True Negatives (TN): These are the instances where the model properly
predicts the negative class.

• False Negatives (FN): These are the instances where the model mistakenly
predicts the negative class.

• Usage: Accuracy is a valuable measure when the classes in the dataset are
balanced. However, its usefulness is reduced when dealing with imbalanced
datasets, as it can be misleadingly high in cases where the model mostly predicts
the majority class correctly.

3. Recall (Sensitivity) (Equation (3)):

• Description: Recall measures the proportion of actual positives that were accu-
rately recognized by the model. It answers the following question: of all the
instances that were actually positive, how many did the model identify?

• Usage: Recall is critical in contexts where missing a positive instance is signifi-
cantly worse than falsely detecting a negative instance as positive. For example,
in medical diagnostics, a false negative (failing to detect a tumor) can be more
dangerous than a false positive.

A 50-epoch training process was implemented with an early stopping set to monitor
the validation loss and patience of seven epochs. This strategy aimed to avoid overfitting
by halting the training if the validation loss did not improve for seven consecutive epochs.
During training, the model learned from the training generator with a specified number of
steps per epoch, while the validation generator provided data for evaluating performance
after each epoch. Post-training, the history object was queried to extract the training and
validation metrics across epochs. These metrics included accuracy and loss for both training
and validation sets, providing insight into the learning curve and model convergence. These
plots are critical for identifying trends such as overfitting or underfitting and for confirming
the efficiency of early stopping.

The model’s predictive power was further scrutinized by making predictions on the
validation and test sets and constructing confusion matrices for each. The confusion matri-
ces provided detailed insight into the true negative, true positive, false positive, and false
negative rates, offering a granular view of the model’s classification capabilities. Cases
of misclassification were identified, and the corresponding MRI images were displayed,
offering an opportunity for qualitative error analysis. This analysis could reveal character-
istics or patterns in the images that were challenging for the model, informing potential
improvements.

Finally, the receiver operating characteristic (ROC) curve was plotted, and the area
under the curve (AUC) was determined for the test set. The ROC curve is a powerful tool
for evaluating the true positive rate against the false positive rate at various threshold
settings, while the AUC provides a single metric summarizing the overall performance
of the model in discriminating between classes. The comprehensive evaluation provided
by these models allows for a detailed understanding of the models’ performance and is
instrumental in guiding future iterations of the model training and optimization process.

4. Results and Discussion

In a comprehensive evaluation of DL models for classifying MRI images, the study
investigated four distinct configurations: ResNet50, VGG16, a combination of VGG16
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and ResNet50, and a further combination augmented with the MVO. The models were
evaluated on both validation and test datasets to gauge their recall, precision, and accuracy,
providing insights into their respective performances and suitability for tumor detection
tasks. The outcomes of applying four models to the dataset are demonstrated in Table 3
and Figures 5–12.

Based on accuracy ratings of 89% and 88%, respectively, the VGG16 model performs
rather well in both the validation and test stages. Although it has good generalization,
its precision (91% validation, 92% test) is marginally lower than that of other models,
suggesting a moderate amount of false positives. It is efficient at identifying true positives,
though, demonstrated by its high recall, which reached 96% in validation and 94% in testing.
This feature of VGG16 is useful when obtaining a high number of positive cases—even at
the expense of some false positives—is necessary.

Conversely, ResNet50 achieves 92% in both the test and validation phases, yielding
higher accuracy. With 96% in testing and 95% in validation, there has been a notable increase
in precision. ResNet50 is a good option in situations where the cost of false positives is high,
as this signals that it is more effective in minimizing false positives. Although the recall
for ResNet50 remains consistent at 96% throughout validation, it slightly decreases to 94%
during testing, indicating a little decline in its capacity to generalize. Overall, ResNet50
presents itself as a trustworthy model for tasks requiring accuracy by striking a good mix
between precision and recall.
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Table 3. Quantitative outcomes of applying four models to the dataset.

Data Model Accuracy (%) Precision (%) Recall
(%) Run Results

Validation
VGG16

89 91 96
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Figure 8. The performance of our model without applying the MVO. All layers in the ResNet50 and
VGG16 were frozen.

There are some interesting performance differences when VGG16 and ResNet50 are
combined. The test accuracy falls to 89%, indicating possible difficulties with generalization,
while validation accuracy remains at 92%, mirroring ResNet50’s performance. However,
recall is where this hybrid model succeeds, reaching 98% in the validation phase. With
medical applications like tumor identification, where missing a positive case could have
major repercussions, this increase in recall suggests that the combination model is quite
good at reducing false negatives.
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tuning, this increase is justified by the model’s improved performance and generalization. 
Table 3 illustrates that the MVO-optimized model attains enhanced accuracy (94% on the 
test set) and precision (97% for both validation and test sets) in comparison to ResNet50, 
which exhibits 92% accuracy and 96% precision. These enhancements are essential in med-
ical diagnostics, where increased accuracy and precision can profoundly influence out-
comes. Consequently, the trade-offs necessitate a balance between processing resources 
and the demand for enhanced classification performance, rendering our approach espe-
cially advantageous in contexts where accuracy is critical. 

With good accuracy, precision, and recall across validation and test sets, the VGG16 
+ ResNet50 model performs best overall when the MVO is added. Because it offers a 
strong balance between precision and recall while retaining high generalization capabili-
ties, the VGG16 + ResNet50 + MVO combination is the most efficient and dependable 
method for classifying brain MRI images. The MVO optimizes hyperparameters, includ-
ing learning rates, dropout rates, and the choice of trainable layers. The MVO improves 
model performance and efficiency by the iterative refinement of these parameters. 

 
Figure 10. The confusion matrix of the ResNet50 and VGG16 models. Figure 10. The confusion matrix of the ResNet50 and VGG16 models.

The precision of the VGG16 + ResNet50 combination drops to 93% in validation despite
this recall improvement, suggesting a minor rise in erroneous positives when compared to
ResNet50 alone. In certain situations—like in medical diagnostics—where lowering false
positives is more crucial than minimizing false negatives, this trade-off might be justified.
Despite the possibility of more false positives, the strong recall of this combination model
makes it especially helpful in situations when gathering all pertinent cases is essential.
Adding the MVO to the VGG16 and ResNet50 combination model yields the best overall
performance. Improvements are made to test accuracy to 94% and validation accuracy
to 93%. The model’s precision is further improved, attaining 97% in the validation and
test stages, indicating its excellent efficacy in reducing false positives. For applications
where minimizing misclassifications is crucial, this makes the MVO-optimized model
incredibly dependable.
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Figure 11. The confusion matrix of our model. 

As described in Figures 6–9, the ResNet50 model demonstrates considerable en-
hancement in accuracy and a decrease in loss across the 50 epochs. Initially, Epoch 1 com-
mences with an accuracy of 50% and a significant loss of 1.59. By Epoch 6, accuracy rises 
to 87.50%, and loss diminishes to 0.33, showing the model’s swift adaptation in the early 
training phase. The model has a stable accuracy trend during the intermediate epochs, 
averaging approximately 85–90%, while the loss persistently decreases, attaining a mini-
mum of 0.22 by Epoch 20. Notwithstanding this robust performance, ResNet50 exhibits 
variations in loss, especially during the later epochs. Epoch 36 exhibits an elevated loss of 
0.60, although accuracy stays somewhat consistent. The discrepancy in loss may indicate 
that although the model is learning efficiently, it encounters difficulties in consistently 
minimizing loss, suggesting the potential for further optimization or fine-tuning. 

The VGG16 model has a more stable progression for accuracy and loss. Commencing 
at Epoch 1, VGG16 attains an accuracy of 57.81%, accompanied by a substantial loss of 
6.3101, indicating initial challenges in categorization. Nonetheless, the model rapidly en-
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This indicates that although VGG16 continuously enhances accuracy, it faces greater chal-
lenges in minimizing its loss as effectively as ResNet50. 

Figure 11. The confusion matrix of our model.

The MVO-optimized model continues to show strong recall values, 95% in validation
and 96% in testing, demonstrating its persistent ability to detect true positives. For tasks
requiring low error rates and high accuracy, the VGG16 + ResNet50 + MVO model is
the most efficient option due to its precision and recall balance and high accuracy. This
model offers reliability across many datasets and has good generalization, as evidenced by
the consistency between test and validation measures. The trade-offs between precision
and recall differ throughout the models. VGG16 performs well in recall at the expense of
precision, which makes it appropriate in situations where finding every positive case—even
if there are some false positives—is crucial. ResNet50 offers a more balanced method with
excellent precision and accuracy, which makes it perfect for jobs where reducing false
positives is crucial. The best recall is provided by the combined VGG16 + ResNet50 model,
particularly in validation; however, its precision is marginally worse, suggesting that it
might generate more false positives.



BioMed 2024, 4 516BioMed 2024, 4 517 
 

 

 
Figure 12. The ROC curves of different models for evaluating the true positive rate against the false 
positive rate at various threshold settings. 

The combined model of ResNet50 and VGG16 yields superior overall accuracy rela-
tive to the standalone models. By Epoch 2, the hybrid model attains an accuracy of 90% 
and a comparatively low loss of 1.63, markedly surpassing the performance of both inde-
pendent models at the moment. Throughout the subsequent epochs, the hybrid model 
sustains consistent accuracy, achieving 95% by Epoch 10 with a diminished loss of 0.0011, 
signifying robust convergence and negligible classification error. In subsequent epochs, 
the model maintains accuracy but exhibits minor fluctuations in loss; for instance, in 
Epoch 15, accuracy remains at 85%, while loss rises to 1.76. The hybrid technique exhibits 
superior overall performance in accuracy and loss reduction compared to the individual 
use of ResNet50 or VGG16. 

The incorporation of the MVO into the hybrid architecture of ResNet50 and VGG16 
significantly improves accuracy and loss performance. Beginning with Epoch 4, the model 
attains flawless accuracy (100%) with a remarkably low loss of 0.0248, representing a sub-
stantial enhancement compared to the previous models. The MVO-optimized model sus-
tains near-perfect accuracy across the subsequent epochs, routinely achieving 95–100% 
accuracy in validation datasets. The MVO demonstrates significantly superior conver-
gence regarding loss compared to the unoptimized hybrid model. Epoch 10 attains 95% 
accuracy with a loss of merely 0.22, indicating robust stability. Despite certain swings in 
loss during later epochs, notably Epoch 20, where the loss rises to 1.13, the overarching 
trend indicates that the MVO continually reduces loss more efficiently than the preceding 
models. 

Figure 12 indicates that ResNet50 demonstrates marginally superior performance in 
several criteria, notably in the ROC curve. The MVO-optimized VGG16 + ResNet50 model 

Figure 12. The ROC curves of different models for evaluating the true positive rate against the false
positive rate at various threshold settings.

The combined model’s MVO-optimized version provides the optimal balance in terms
of precision and recall. Because it reduces false positives as well as false negatives, it is
perfect for scenarios in which both kinds of errors might have serious repercussions. Since
both overclassification and under-classification can result in unfavorable consequences,
striking this balance is especially crucial when classifying medical images. When assessing
the performance of a model, generalization is crucial. VGG16 exhibits a minor decline in
test accuracy (88% vs. 89%) compared to validation, suggesting a minor problem with
generalization. On the other hand, ResNet50 shows good generalization abilities, as it
retains the same accuracy in both stages (92%). For deployment scenarios where the model
must exhibit consistent performance across multiple datasets, ResNet50 is a dependable
choice because of this.

Test accuracy is a little off for the combined VGG16 + ResNet50 model; it dropped
from 92% in validation to 89%. This shows that although the model performs very well
in recall, it may have overfitted the validation set. On the other hand, the model that
has been optimized for maximum variance (MVO) exhibits better generalization. Its test
accuracy of 94% is almost identical to its validation accuracy of 93%. This suggests that
the MVO works very well to improve the model’s generalization skills, enabling it to
function well without overfitting on a variety of datasets. Every model has different
advantages and disadvantages. Even though VGG16 occasionally produces false positives,
it is the best option for high-recall jobs when finding every potential positive case is crucial.
ResNet50 performs more evenly and excels in both precision and accuracy, which makes
it appropriate for applications where minimizing false positives is essential. Recall is
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increased by combining VGG16 and ResNet50, but test accuracy is somewhat decreased,
suggesting possible overfitting.

Despite the fact that the MVO-optimized model introduces a slightly higher computa-
tional cost as a result of the additional optimization layer and hyper-parameter fine-tuning,
this increase is justified by the model’s improved performance and generalization. Table 3
illustrates that the MVO-optimized model attains enhanced accuracy (94% on the test set)
and precision (97% for both validation and test sets) in comparison to ResNet50, which
exhibits 92% accuracy and 96% precision. These enhancements are essential in medical
diagnostics, where increased accuracy and precision can profoundly influence outcomes.
Consequently, the trade-offs necessitate a balance between processing resources and the
demand for enhanced classification performance, rendering our approach especially ad-
vantageous in contexts where accuracy is critical.

With good accuracy, precision, and recall across validation and test sets, the
VGG16 + ResNet50 model performs best overall when the MVO is added. Because it
offers a strong balance between precision and recall while retaining high generalization ca-
pabilities, the VGG16 + ResNet50 + MVO combination is the most efficient and dependable
method for classifying brain MRI images. The MVO optimizes hyperparameters, including
learning rates, dropout rates, and the choice of trainable layers. The MVO improves model
performance and efficiency by the iterative refinement of these parameters.

As described in Figures 6–9, the ResNet50 model demonstrates considerable enhance-
ment in accuracy and a decrease in loss across the 50 epochs. Initially, Epoch 1 commences
with an accuracy of 50% and a significant loss of 1.59. By Epoch 6, accuracy rises to 87.50%,
and loss diminishes to 0.33, showing the model’s swift adaptation in the early training
phase. The model has a stable accuracy trend during the intermediate epochs, averaging
approximately 85–90%, while the loss persistently decreases, attaining a minimum of 0.22
by Epoch 20. Notwithstanding this robust performance, ResNet50 exhibits variations in
loss, especially during the later epochs. Epoch 36 exhibits an elevated loss of 0.60, although
accuracy stays somewhat consistent. The discrepancy in loss may indicate that although
the model is learning efficiently, it encounters difficulties in consistently minimizing loss,
suggesting the potential for further optimization or fine-tuning.

The VGG16 model has a more stable progression for accuracy and loss. Commencing
at Epoch 1, VGG16 attains an accuracy of 57.81%, accompanied by a substantial loss of
6.3101, indicating initial challenges in categorization. Nonetheless, the model rapidly
enhances, attaining 81.25% accuracy by Epoch 5, while its loss markedly declines to 1.4149,
indicating more effective learning. At Epoch 10, VGG16 attains an accuracy of 89.06% and a
loss of 1.3050, further illustrating the model’s consistent convergence. While VGG16’s loss
diminishes throughout training, it does not attain loss levels as low as those of ResNet50.
By Epoch 20, VGG16’s loss is 2.05, while ResNet50’s loss at the same epoch is 0.22. This
indicates that although VGG16 continuously enhances accuracy, it faces greater challenges
in minimizing its loss as effectively as ResNet50.

The combined model of ResNet50 and VGG16 yields superior overall accuracy relative
to the standalone models. By Epoch 2, the hybrid model attains an accuracy of 90% and a
comparatively low loss of 1.63, markedly surpassing the performance of both independent
models at the moment. Throughout the subsequent epochs, the hybrid model sustains
consistent accuracy, achieving 95% by Epoch 10 with a diminished loss of 0.0011, signifying
robust convergence and negligible classification error. In subsequent epochs, the model
maintains accuracy but exhibits minor fluctuations in loss; for instance, in Epoch 15,
accuracy remains at 85%, while loss rises to 1.76. The hybrid technique exhibits superior
overall performance in accuracy and loss reduction compared to the individual use of
ResNet50 or VGG16.
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The incorporation of the MVO into the hybrid architecture of ResNet50 and VGG16
significantly improves accuracy and loss performance. Beginning with Epoch 4, the model
attains flawless accuracy (100%) with a remarkably low loss of 0.0248, representing a
substantial enhancement compared to the previous models. The MVO-optimized model
sustains near-perfect accuracy across the subsequent epochs, routinely achieving 95–100%
accuracy in validation datasets. The MVO demonstrates significantly superior convergence
regarding loss compared to the unoptimized hybrid model. Epoch 10 attains 95% accuracy
with a loss of merely 0.22, indicating robust stability. Despite certain swings in loss during
later epochs, notably Epoch 20, where the loss rises to 1.13, the overarching trend indicates
that the MVO continually reduces loss more efficiently than the preceding models.

Figure 12 indicates that ResNet50 demonstrates marginally superior performance
in several criteria, notably in the ROC curve. The MVO-optimized VGG16 + ResNet50
model offers a more balanced methodology by enhancing overall precision and recall,
which is essential for applications that require the reduction of both false positives and
false negatives. This equilibrium highlights the robustness of the suggested model for
dependable tumor classification despite ResNet50’s superior performance in particular
domains. In the comparative analysis of the suggested structure integrated with several op-
timization algorithms (the Shuffled Frog Leaping Algorithm (SFLA), Multi-verse Optimizer
(MVO), Red Deer Algorithm (RDA), and Whale Optimization Algorithm (WOA)) distinct
patterns emerge regarding their influence on the model’s precision, recall, and accuracy.
The obtained results by applying different optimization approaches are described in Table 4
and Figure 13.

This approach, which begins with the SFLA, achieves a strong balance across all
metrics, with test accuracy and validation accuracy at 91% and 91%, respectively. Recall
and precision are both quite high, with recall reaching 96%. This makes it a good option
for applications where reducing false negatives is essential. Although there are some
precision trade-offs compared to some other approaches, the robustness of this approach is
demonstrated by the consistency between validation and test measurements. However, an
alternative strength is shown by the WOA optimization. The WOA is the least accurate
approach overall, with test accuracy at 88% and validation accuracy at 85%, but it excels
in precision. With a precision of 97% in validation and 98% in testing, it is the most
effective way to lower false positives. The reduced recall scores (85% validation, 87% test),
however, imply that the WOA forgoes its capacity to accurately identify positive cases in
favor of conservatism, which may result in an increased number of false negatives in the
classification task.
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Table 4. The results by applying different optimization approaches.

Data Model Accuracy
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Precision
(%)

Recall
(%)
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Our model + SFLA [61]

91 93 96

BioMed 2024, 4 518 
 

 

offers a more balanced methodology by enhancing overall precision and recall, which is 
essential for applications that require the reduction of both false positives and false nega-
tives. This equilibrium highlights the robustness of the suggested model for dependable 
tumor classification despite ResNet50’s superior performance in particular domains. In 
the comparative analysis of the suggested structure integrated with several optimization 
algorithms (the Shuffled Frog Leaping Algorithm (SFLA), Multi-verse Optimizer (MVO), 
Red Deer Algorithm (RDA), and Whale Optimization Algorithm (WOA)) distinct patterns 
emerge regarding their influence on the model’s precision, recall, and accuracy. The ob-
tained results by applying different optimization approaches are described in Table 4 and 
Figure 13. 

This approach, which begins with the SFLA, achieves a strong balance across all met-
rics, with test accuracy and validation accuracy at 91% and 91%, respectively. Recall and 
precision are both quite high, with recall reaching 96%. This makes it a good option for 
applications where reducing false negatives is essential. Although there are some preci-
sion trade-offs compared to some other approaches, the robustness of this approach is 
demonstrated by the consistency between validation and test measurements. However, 
an alternative strength is shown by the WOA optimization. The WOA is the least accurate 
approach overall, with test accuracy at 88% and validation accuracy at 85%, but it excels 
in precision. With a precision of 97% in validation and 98% in testing, it is the most effec-
tive way to lower false positives. The reduced recall scores (85% validation, 87% test), 
however, imply that the WOA forgoes its capacity to accurately identify positive cases in 
favor of conservatism, which may result in an increased number of false negatives in the 
classification task. 

In terms of overall metrics, the RDA performs better than the WOA but still falls short 
of the SFLA and the MVO. The RDA provides low recall (89% in recall tests) but good 
precision (97% in validation), with validation accuracy at 89% and test accuracy at 91%. 
The RDA has good precision, but it may not be the best option in situations where recall 
is important, like in medical diagnosis, where it could be expensive to overlook positive 
cases. Lastly, the MVO algorithm performs better than the other approaches on nearly all 
criteria. It achieves good precision (97%) and recall (95% validation, 96% test) as well as 
the highest validation accuracy (93%) and test accuracy (94%). The MVO is the most de-
pendable optimization technique for brain MRI classification because of its capacity to 
strike a compromise between precision and recall, minimizing false positives and false 
negatives. This method is the most appropriate optimization technique for this problem 
because of its performance stability across validation and test sets, which indicates that it 
is the best option for obtaining both high accuracy and robustness. 

Table 4. The results by applying different optimization approaches. 

Data Model 
Accuracy 

(%) 
Precision 

(%) 
Recall 

(%)  

Validation 

Our model + SFLA [61] 

91 93 96 

 
Test 91 94 96 

Validation 

Our model + WOA [62] 

85 97 85 

 

Test 88 98 87 

Validation Our model + RDA [63] 89 97 89 

Test 91 94 96

Validation
Our model + WOA [62]

85 97 85

BioMed 2024, 4 518 
 

 

offers a more balanced methodology by enhancing overall precision and recall, which is 
essential for applications that require the reduction of both false positives and false nega-
tives. This equilibrium highlights the robustness of the suggested model for dependable 
tumor classification despite ResNet50’s superior performance in particular domains. In 
the comparative analysis of the suggested structure integrated with several optimization 
algorithms (the Shuffled Frog Leaping Algorithm (SFLA), Multi-verse Optimizer (MVO), 
Red Deer Algorithm (RDA), and Whale Optimization Algorithm (WOA)) distinct patterns 
emerge regarding their influence on the model’s precision, recall, and accuracy. The ob-
tained results by applying different optimization approaches are described in Table 4 and 
Figure 13. 

This approach, which begins with the SFLA, achieves a strong balance across all met-
rics, with test accuracy and validation accuracy at 91% and 91%, respectively. Recall and 
precision are both quite high, with recall reaching 96%. This makes it a good option for 
applications where reducing false negatives is essential. Although there are some preci-
sion trade-offs compared to some other approaches, the robustness of this approach is 
demonstrated by the consistency between validation and test measurements. However, 
an alternative strength is shown by the WOA optimization. The WOA is the least accurate 
approach overall, with test accuracy at 88% and validation accuracy at 85%, but it excels 
in precision. With a precision of 97% in validation and 98% in testing, it is the most effec-
tive way to lower false positives. The reduced recall scores (85% validation, 87% test), 
however, imply that the WOA forgoes its capacity to accurately identify positive cases in 
favor of conservatism, which may result in an increased number of false negatives in the 
classification task. 

In terms of overall metrics, the RDA performs better than the WOA but still falls short 
of the SFLA and the MVO. The RDA provides low recall (89% in recall tests) but good 
precision (97% in validation), with validation accuracy at 89% and test accuracy at 91%. 
The RDA has good precision, but it may not be the best option in situations where recall 
is important, like in medical diagnosis, where it could be expensive to overlook positive 
cases. Lastly, the MVO algorithm performs better than the other approaches on nearly all 
criteria. It achieves good precision (97%) and recall (95% validation, 96% test) as well as 
the highest validation accuracy (93%) and test accuracy (94%). The MVO is the most de-
pendable optimization technique for brain MRI classification because of its capacity to 
strike a compromise between precision and recall, minimizing false positives and false 
negatives. This method is the most appropriate optimization technique for this problem 
because of its performance stability across validation and test sets, which indicates that it 
is the best option for obtaining both high accuracy and robustness. 

Table 4. The results by applying different optimization approaches. 

Data Model 
Accuracy 

(%) 
Precision 

(%) 
Recall 

(%)  

Validation 

Our model + SFLA [61] 

91 93 96 

 
Test 91 94 96 

Validation 

Our model + WOA [62] 

85 97 85 

 

Test 88 98 87 

Validation Our model + RDA [63] 89 97 89 
Test 88 98 87

Validation
Our model + RDA [63]

89 97 89

BioMed 2024, 4 519 
 

 

Data Model Accuracy 
(%) 

Precision 
(%) 

Recall 
(%) 

 

Test 91 89 91 

 
Validation 

Our model + MVO [40] 

93 97 95 

 

Test 94 97 96 

 
Figure 13. A performance comparison of the suggested model with different optimization tech-
niques. 

5. Conclusions and Outlook 
This study has successfully revealed the application of advanced DL techniques in 

the classification of brain MRI images into tumor and non-tumor categories. By integrat-
ing two robust CNN architectures, ResNet50 and VGG16, and optimizing them with the 
MVO, the research has paved the way for more accurate and efficient diagnostic ap-
proaches in medical imaging. The preprocessing phase, including image resizing, gray-
scale conversion, and Gaussian blurring, has proven to be effective in preparing the MRI 
images for analysis. The optimization of data augmentation parameters and trainable lay-
ers utilizing the MVO has further enhanced the models’ performance, resulting in high 
precision, accuracy, and recall. These findings underscore the potential of combining mul-
tiple CNN architectures and advanced optimization techniques in tackling the complexi-
ties of medical image classification. 

Looking forward, there are several avenues for expanding upon this study. Future 
studies could explore the integration of additional neural network architectures and com-
pare their effectiveness in brain tumor classification. The applicability of the suggested 
methodology to other types of medical imaging data, such as PET images or CT scans, is 
another area worth investigating. Additionally, incorporating more advanced forms of 
metaheuristic algorithms could lead to even better optimization results. As ML and DL 
continue to evolve, their application in healthcare promises to bring significant advance-
ments. The techniques developed in this study contribute to this ongoing progression and 

Test 91 89 91

Validation
Our model + MVO [40]

93 97 95

BioMed 2024, 4 519 
 

 

Data Model Accuracy 
(%) 

Precision 
(%) 

Recall 
(%) 

 

Test 91 89 91 

 
Validation 

Our model + MVO [40] 

93 97 95 

 

Test 94 97 96 

 
Figure 13. A performance comparison of the suggested model with different optimization tech-
niques. 

5. Conclusions and Outlook 
This study has successfully revealed the application of advanced DL techniques in 

the classification of brain MRI images into tumor and non-tumor categories. By integrat-
ing two robust CNN architectures, ResNet50 and VGG16, and optimizing them with the 
MVO, the research has paved the way for more accurate and efficient diagnostic ap-
proaches in medical imaging. The preprocessing phase, including image resizing, gray-
scale conversion, and Gaussian blurring, has proven to be effective in preparing the MRI 
images for analysis. The optimization of data augmentation parameters and trainable lay-
ers utilizing the MVO has further enhanced the models’ performance, resulting in high 
precision, accuracy, and recall. These findings underscore the potential of combining mul-
tiple CNN architectures and advanced optimization techniques in tackling the complexi-
ties of medical image classification. 

Looking forward, there are several avenues for expanding upon this study. Future 
studies could explore the integration of additional neural network architectures and com-
pare their effectiveness in brain tumor classification. The applicability of the suggested 
methodology to other types of medical imaging data, such as PET images or CT scans, is 
another area worth investigating. Additionally, incorporating more advanced forms of 
metaheuristic algorithms could lead to even better optimization results. As ML and DL 
continue to evolve, their application in healthcare promises to bring significant advance-
ments. The techniques developed in this study contribute to this ongoing progression and 

Test 94 97 96

In terms of overall metrics, the RDA performs better than the WOA but still falls short
of the SFLA and the MVO. The RDA provides low recall (89% in recall tests) but good
precision (97% in validation), with validation accuracy at 89% and test accuracy at 91%.
The RDA has good precision, but it may not be the best option in situations where recall
is important, like in medical diagnosis, where it could be expensive to overlook positive
cases. Lastly, the MVO algorithm performs better than the other approaches on nearly
all criteria. It achieves good precision (97%) and recall (95% validation, 96% test) as well
as the highest validation accuracy (93%) and test accuracy (94%). The MVO is the most
dependable optimization technique for brain MRI classification because of its capacity to
strike a compromise between precision and recall, minimizing false positives and false
negatives. This method is the most appropriate optimization technique for this problem
because of its performance stability across validation and test sets, which indicates that it is
the best option for obtaining both high accuracy and robustness.

5. Conclusions and Outlook

This study has successfully revealed the application of advanced DL techniques in the
classification of brain MRI images into tumor and non-tumor categories. By integrating
two robust CNN architectures, ResNet50 and VGG16, and optimizing them with the MVO,
the research has paved the way for more accurate and efficient diagnostic approaches in
medical imaging. The preprocessing phase, including image resizing, grayscale conver-
sion, and Gaussian blurring, has proven to be effective in preparing the MRI images for
analysis. The optimization of data augmentation parameters and trainable layers utilizing
the MVO has further enhanced the models’ performance, resulting in high precision, ac-
curacy, and recall. These findings underscore the potential of combining multiple CNN
architectures and advanced optimization techniques in tackling the complexities of medical
image classification.
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Looking forward, there are several avenues for expanding upon this study. Future
studies could explore the integration of additional neural network architectures and com-
pare their effectiveness in brain tumor classification. The applicability of the suggested
methodology to other types of medical imaging data, such as PET images or CT scans, is
another area worth investigating. Additionally, incorporating more advanced forms of
metaheuristic algorithms could lead to even better optimization results. As ML and DL
continue to evolve, their application in healthcare promises to bring significant advance-
ments. The techniques developed in this study contribute to this ongoing progression and
open up new possibilities for improving diagnostic accuracy and patient care in the fields
of neurology and oncology.

One potential limitation in the dataset selection for this study is that the brain MRI
scans are derived from a singular medical source or demographic group, thus failing
to encompass the diversity prevalent in worldwide populations. This may affect the
model’s capacity to generalize well when utilized on MRI scans from diverse institutions,
scanners, or patient demographics with differing attributes, such as age, family history,
or preexisting health issues. Moreover, the dataset predominantly emphasizes binary
classification (tumor versus non-tumor), which may restrict the model’s utility in more
intricate situations necessitating the distinction among diverse tumor types or grades.
Consequently, although our suggested method exhibits superior performance on the chosen
dataset, further validation and testing on more varied and multicenter datasets are essential
to ascertain its resilience and dependability over a broader spectrum of clinical applications.
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tumor detection and classification using deep saliency map and improved dragonfly optimization algorithm. Int. J. Imaging Syst.
Technol. 2022, 33, 572–587. [CrossRef]

34. Balaha, H.M.; Hassan, A.E.S. A variate brain tumor segmentation, optimization, and recognition framework. Artif. Intell. Rev.
2023, 56, 7403–7456. [CrossRef]

35. Deepa, S.; Janet, J.; Sumathi, S.; Ananth, J.P. Hybrid Optimization Algorithm Enabled Deep Learning Approach Brain Tumor
Segmentation and Classification Using MRI. J. Digit. Imaging 2023, 36, 847–868. [CrossRef] [PubMed]

https://doi.org/10.1016/j.drudis.2017.08.010
https://doi.org/10.1016/j.buildenv.2022.109633
https://doi.org/10.1155/2022/5052435
https://doi.org/10.1109/COMPSAC61105.2024.00265
https://doi.org/10.1016/j.jksuci.2021.01.007
http://arxiv.org/abs/1705.02364
https://doi.org/10.1155/2022/1450723
https://www.ncbi.nlm.nih.gov/pubmed/35378947
https://doi.org/10.18280/rces.080202
https://doi.org/10.1016/j.ejor.2020.08.045
https://doi.org/10.1016/j.jdent.2023.104581
https://doi.org/10.1007/s40747-022-00815-5
https://doi.org/10.1007/s11517-023-02873-4
https://doi.org/10.1007/s11042-020-08898-3
https://doi.org/10.1016/j.simpa.2022.100340
https://doi.org/10.1007/s11042-022-12240-4
https://doi.org/10.2139/ssrn.4024177
https://doi.org/10.1016/j.inffus.2022.10.022
https://doi.org/10.1007/s41315-022-00231-5
https://doi.org/10.3390/fi13030079
https://doi.org/10.2139/SSRN.4791157
https://doi.org/10.1016/j.measen.2022.100412
https://doi.org/10.1155/2022/6447769
https://doi.org/10.1016/j.mehy.2020.109922
https://doi.org/10.3390/s22114297
https://doi.org/10.1002/ima.22831
https://doi.org/10.1007/s10462-022-10337-8
https://doi.org/10.1007/s10278-022-00752-2
https://www.ncbi.nlm.nih.gov/pubmed/36622465


BioMed 2024, 4 522

36. Ezugwu, A.E.; Shukla, A.K.; Nath, R.; Akinyelu, A.A.; Agushaka, J.O.; Chiroma, H.; Muhuri, P.K. Metaheuristics: A comprehen-
sive overview and classification along with bibliometric analysis. Artif. Intell. Rev. 2021, 54, 4237–4316. [CrossRef]

37. França, R.P.; Monteiro, A.C.B.; Estrela, V.V.; Razmjooy, N. Using Metaheuristics in Discrete-Event Simulation. In Lecture Notes
in Electrical Engineering; Springer Science and Business Media Deutschland GmbH: Cham, Switzerland, 2021; Volume 696, pp.
275–292. [CrossRef]

38. Razmjooy, N.; Ashourian, M.; Foroozandeh, Z. (Eds.) Metaheuristics and Optimization in Computer and Electrical Engineering.
In Lecture Notes in Electrical Engineering; Springer International Publishing: Cham, Switzerland, 2021; Volume 696. [CrossRef]

39. Hu, A.; Razmjooy, N. Brain tumor diagnosis based on metaheuristics and deep learning. Int. J. Imaging Syst. Technol. 2020, 31,
657–669. [CrossRef]

40. Mirjalili, S.; Mirjalili, S.M.; Hatamlou, A. Multi-Verse Optimizer: A nature-inspired algorithm for global optimization. Neural
Comput. Appl. 2015, 27, 495–513. [CrossRef]

41. Son, P.V.H.; Dang, N.T.N. Solving large-scale discrete time–cost trade-off problem using hybrid multi-verse optimizer model. Sci.
Rep. 2023, 13, 1987. [CrossRef]

42. Han, Y.; Chen, W.; Heidari, A.A.; Chen, H.; Zhang, X. A solution to the stagnation of multi-verse optimization: An efficient
method for breast cancer pathologic images segmentation. Biomed. Signal Process. Control. 2023, 86, 105208. [CrossRef]

43. Haseeb, A.; Waleed, U.; Ashraf, M.M.; Siddiq, F.; Rafiq, M.; Shafique, M. Hybrid Weighted Least Square Multi-Verse Optimizer
(WLS–MVO) Framework for Real-Time Estimation of Harmonics in Non-Linear Loads. Energies 2023, 16, 609. [CrossRef]

44. Xu, W.; Yu, X. A multi-objective multi-verse optimizer algorithm to solve environmental and economic dispatch. Appl. Soft
Comput. 2023, 146, 110650. [CrossRef]

45. Shorten, C.; Khoshgoftaar, T.M. A survey on Image Data Augmentation for Deep Learning. J. Big Data 2019, 6, 60. [CrossRef]
46. Nalepa, J.; Marcinkiewicz, M.; Kawulok, M. Data Augmentation for Brain-Tumor Segmentation: A Review. Front. Comput.

Neurosci. 2019, 13, 83. [CrossRef]
47. Zeiser, F.A.; da Costa, C.A.; Zonta, T.; Marques, N.M.C.; Roehe, A.V.; Moreno, M.; Righi, R.d.R. Segmentation of Masses on

Mammograms Using Data Augmentation and Deep Learning. J. Digit. Imaging 2020, 33, 858–868. [CrossRef] [PubMed]
48. de la Rosa, F.L.; Gómez-Sirvent, J.L.; Sánchez-Reolid, R.; Morales, R.; Fernández-Caballero, A. Geometric transformation-based

data augmentation on defect classification of segmented images of semiconductor materials using a ResNet50 convolutional
neural network. Expert Syst. Appl. 2022, 206, 117731. [CrossRef]

49. Deepa, N.; Chokkalingam, S. Optimization of VGG16 utilizing the Arithmetic Optimization Algorithm for early detection of
Alzheimer’s disease. Biomed. Signal Process. Control. 2022, 74, 103455. [CrossRef]

50. Zhu, F.; Li, J.; Zhu, B.; Li, H.; Liu, G. UAV remote sensing image stitching via improved VGG16 Siamese feature extraction
network. Expert Syst. Appl. 2023, 229, 120525. [CrossRef]

51. Bakasa, W.; Viriri, S. VGG16 Feature Extractor with Extreme Gradient Boost Classifier for Pancreas Cancer Prediction. J. Imaging
2023, 9, 138. [CrossRef]

52. Sarker, S.; Tushar, S.N.B.; Chen, H. High accuracy keyway angle identification using VGG16-based learning method. J. Manuf.
Process. 2023, 98, 223–233. [CrossRef]

53. Mpova, L.; Shongwe, T.C.; Hasan, A. The Classification and Detection of Cyanosis Images on Lightly and Darkly Pigmented
Individual Human Skins Applying Simple CNN and Fine-Tuned VGG16 Models in TensorFlow’s Keras API. In Proceedings of
the 2023 IEEE International Conference on Computational Intelligence and Virtual Environments for Measurement Systems and
Applications (CIVEMSA), Gammarth, Tunisia, 12 June 2023; pp. 1–6. [CrossRef]

54. Zhang, Y.; Liu, Y.-L.; Nie, K.; Zhou, J.; Chen, Z.; Chen, J.-H.; Wang, X.; Kim, B.; Parajuli, R.; Mehta, R.S.; et al. Deep Learning-based
Automatic Diagnosis of Breast Cancer on MRI Using Mask R-CNN for Detection Followed by ResNet50 for Classification. Acad.
Radiol. 2023, 30, S161–S171. [CrossRef]

55. Sharma, A.K.; Nandal, A.; Dhaka, A.; Zhou, L.; Alhudhaif, A.; Alenezi, F.; Polat, K. Brain tumor classification using the modified
ResNet50 model based on transfer learning. Biomed. Signal Process. Control. 2023, 86, 105299. [CrossRef]

56. Lee, J.-R.; Ng, K.-W.; Yoong, Y.-J. Face and Facial Expressions Recognition System for Blind People Using ResNet50 Architecture
and CNN. J. Informatics Web Eng. 2023, 2, 284–298. [CrossRef]

57. Hossain, B.; Iqbal, S.H.S.; Islam, M.; Akhtar, N.; Sarker, I.H. Transfer learning with fine-tuned deep CNN ResNet50 model for
classifying COVID-19 from chest X-ray images. Informatics Med. Unlocked 2022, 30, 100916. [CrossRef]

58. Brain Tumor Classification (MRI). Available online: https://www.kaggle.com/datasets/sartajbhuvaji/brain-tumor-classification-
mri/data (accessed on 4 May 2024).

59. Krishnapriya, S.; Karuna, Y. Pre-trained deep learning models for brain MRI image classification. Front. Hum. Neurosci. 2023, 17,
1150120. [CrossRef] [PubMed]

60. Gore, D.V.; Sinha, A.K.; Deshpande, V. Automatic CAD System for Brain Diseases Classification Using CNN-LSTM Model.
In Proceedings of the Emerging Technologies in Data Mining and Information Security. Advances in Intelligent Systems and
Computing; Springer: Singapore, 2023; pp. 623–634. [CrossRef]

61. Saadi, S.B.; Sarshar, N.T.; Ranjbarzadeh, R.; Forooshani, M.K.; Bendechache, M. Investigation of Effectiveness of Shuffled
Frog-Leaping Optimizer in Training a Convolution Neural Network. J. Heal. Eng. 2022, 2022, 1–11. [CrossRef] [PubMed]

https://doi.org/10.1007/s10462-020-09952-0
https://doi.org/10.1007/978-3-030-56689-0_14
https://doi.org/10.1007/978-3-030-56689-0
https://doi.org/10.1002/ima.22495
https://doi.org/10.1007/s00521-015-1870-7
https://doi.org/10.1038/s41598-023-29050-9
https://doi.org/10.1016/j.bspc.2023.105208
https://doi.org/10.3390/en16020609
https://doi.org/10.1016/j.asoc.2023.110650
https://doi.org/10.1186/s40537-019-0197-0
https://doi.org/10.3389/fncom.2019.00083
https://doi.org/10.1007/s10278-020-00330-4
https://www.ncbi.nlm.nih.gov/pubmed/32206943
https://doi.org/10.1016/j.eswa.2022.117731
https://doi.org/10.1016/j.bspc.2021.103455
https://doi.org/10.1016/j.eswa.2023.120525
https://doi.org/10.3390/jimaging9070138
https://doi.org/10.1016/j.jmapro.2023.04.019
https://doi.org/10.1109/CIVEMSA57781.2023.10231017
https://doi.org/10.1016/j.acra.2022.12.038
https://doi.org/10.1016/j.bspc.2023.105299
https://doi.org/10.33093/jiwe.2023.2.2.20
https://doi.org/10.1016/j.imu.2022.100916
https://www.kaggle.com/datasets/sartajbhuvaji/brain-tumor-classification-mri/data
https://www.kaggle.com/datasets/sartajbhuvaji/brain-tumor-classification-mri/data
https://doi.org/10.3389/fnhum.2023.1150120
https://www.ncbi.nlm.nih.gov/pubmed/37151901
https://doi.org/10.1007/978-981-19-4676-9_54
https://doi.org/10.1155/2022/4703682
https://www.ncbi.nlm.nih.gov/pubmed/35368933


BioMed 2024, 4 523

62. Mirjalili, S.; Lewis, A. The Whale Optimization Algorithm. Adv. Eng. Softw. 2016, 95, 51–67. [CrossRef]
63. Fathollahi-Fard, A.M.; Hajiaghaei-Keshteli, M.; Tavakkoli-Moghaddam, R. Red deer algorithm (RDA): A new nature-inspired

meta-heuristic. Soft Comput. 2020, 24, 14637–14665. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.advengsoft.2016.01.008
https://doi.org/10.1007/s00500-020-04812-z

	Introduction 
	Literature Review 
	Materials and Methods 
	Data Preprocessing 
	Optimization Method 
	Data Augmentation 
	Model Building with VGG16 and ResNet50 
	Model Training 
	Dataset 
	Model Evaluation 

	Results and Discussion 
	Conclusions and Outlook 
	References

