IgA Nephropathy: What Is New in Treatment Options?
<p>The 4-Hit hypothesis of IGAN.</p> "> Figure 2
<p>Mechanism of action of SGLT2. SGLT2 inhibition affects multiple sites in the nephron. This figure summarizes the effect of SGLT2i on a single nephron. In the diabetic kidney, glomerular hyperfiltration, dependent on increased intraglomerular capillary pressure, is a detrimental process that leads to the loss of the permselective properties of the glomerular barrier to proteins, resulting in albuminuria and ESKF. In T2D patients, because of a high filtered load of glucose, reabsorption of glucose and sodium is increased in the proximal tubule via SGLT2 by up to 50%, resulting in the diminished delivery of sodium to the macula densa. Legend: ATPase = adenosine triphosphatase; GLUT2 = glucose transport 2; ESKF end-stage kidney failure; T2D: type 2 diabetes.</p> "> Figure 3
<p>ALGORITHM for the TREATMENT of IgAN nephropathy. LEGEND: acei: angiotensin-converting enzyme inhibitor; ARB: angiotensin receptor blocker; SGLT2: Sodium–GLucose coTransporter-2 inhibitor; AT1: angiotensin II receptor; Pozzi-Locatelli [<a href="#B39-kidneydial-04-00019" class="html-bibr">39</a>] or Manno [<a href="#B101-kidneydial-04-00019" class="html-bibr">101</a>] scheme, MASP: mannan-associated lectin-binding serine protease; MMF: Mycophenolate mofetil; C5: complement component C5 (the initiator of the effector terminal phase of the complement system); APRIL: A PRoliferation-Inducing Ligand; MEST-C: Oxford classification* (excluding crescents: mesangial hypercellularity (M), endocapillary hypercellularity (E), segmental glomerulosclerosis (S), and tubular atrophy/interstitial fibrosis (T). Higher MEST-C scores, mesangial hypercellularity, segmental sclerosis, tubular atrophy, and crescents. (* the Oxford Classification has not been validated as a tool for treatment selection).</p> ">
Abstract
:1. Introduction
- Mesangial hypercellularity
- Endocapillary hypercellularity
- Segmental glomerulosclerosis
- Tubular atrophy/Interstitial fibrosis
- Crescents
2. Supportive Therapy
2.1. Inhibition of RAAS (Renin Angiotensin Aldosteron System)
2.2. Obesity in IgAN
2.3. Low-Salt Diet in IgAN
3. Immunosuppressive Therapy
3.1. Steroids
3.2. Budenoside, Oral Steroids
3.3. Other Immunosuppressive Therapies
Mycophenolate Mofetil (MMF)
3.4. Non-Steroidal Therapies Review Based on Recent Clinical Trials
3.4.1. Sodium–GLucose coTransporter-2 Inhibitors
3.4.2. Finerenone
3.5. Other Regimens
Sparsentan
4. Complement-Targeted Therapies
4.1. Narsoplimab
4.2. Iptacopan
4.3. Ravulizumab
5. New Therapies
5.1. Sibeprenlimab
5.2. Ataticept
5.3. For Other Clinical Trials, Refer to Table 1
Drug | Mechanism of Action | Clinical Trial | Reference Number |
---|---|---|---|
STEROIDS | Powerful immune-modulatory actions | NCT00554502, NCT01560052, VALIGA, TESTING, STOP IGAN | [37,38,39,40,41,42,43] |
BUDENOSIDE | Oral steroid, modulates mucosal B cells and plasma cells in the gut | NCT01738035, NCT03643965, NEFIGAN (phase IIB), NEFIGARD (phase III) | [44,45] |
MYCOPHENOLATE MOFETIL | Suppression of activated B and T lymphocytes | NCT00657059, NCT00318474, MAIN | [47,48] |
CALCINEURIN INHIBITORS | Cytochrome P450 3A4 AND a P-glycoprotein inhibitor. Inhibits the synthesis of interleukins | NCT01224028, meta-analysis | [83,84,85] |
RITUXIMAB | B cells depletion | NCT04525729, RITA | [86] |
HYDROXYCHLOROQUINE | A quinoline immunomodulatory drug used to treat or prevent malaria | NCT06350630 | [87,88,89] |
SPARSENTAN | Selective endothelin A receptor and ARB | NCT04663204 | [58,59] |
NARSOPLIMAB | Lectin inhibitor of complement, MASP-2 | NCT03608033, ARTEMIS, phase III. Early stop, no efficacy | [72] |
AVACOPAN | C5 receptor inhibitor | NCT02384317 | [70,71] |
IPTACOPAN | Inhibitor of the alternative pathway of complement | NCT04578834, APPLAUSE | [73,74] |
ATRASENTAN | Selective inhibitor of the endothelin A (ETA) receptor | NCT04573478, SONAR, phase 3 ALIGN | [90,91] |
RAVULIZUMAB | Selective C5 inhibitor | NCT06291376, I CAN | [75,76] |
SIBEPRENLIMAB | Blocks the biological actions of the B-cell growth factor, APRIL, preventing binding to its receptors | NCT05248646, VISIONARY RCT | [77,78,79,80] |
TELITACICEPT | Simultaneously targets B cell maturation signals BLyS (BAFF) and APRIL | NCT04291781 | [92,93] |
ATATICEPT | Binds B-lymphocyte stimulator (BlyS) and a proliferation inducing ligand (APRIL) and inhibits maturation and class-switching of B-cells and plasma cells | NCT04716231 JANUS and ORIGIN phase II trials | [81,82] |
FOSTAMATINIB | Oral prodrug spleen tyrosine kinase (SYK) inhibitor | NCT02112838 | [94] |
MEZAGITAMAB | Targets highly CD38-expressing cells, resulting in their depletion | NCT05174221 | Not Provided |
FELZARTAMAB | Human IgG1 monoclonal CD38 antibody | NCT05021484, IGNAZ | [95] |
POVETACICEPT | Dual antagonist of the BAFF and APRIL cytokines | NCT06564142, RUBY 3 phase1b/2a | [96] |
5.4. Alternative Therapies
5.4.1. Tonsillectomy
5.4.2. Fish Oil
5.4.3. Fecal Microbiota Transplantation
6. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Berger, J.; Hinglais, N. Intercapillary deposits of IgA-IgG. J. Urol. Nephrol. 1968, 74, 694–695. [Google Scholar]
- Schena, F.P.; Nistor, I. Epidemiology of IgA nephropathy: A global perspective. Semin. Nephrol. 2018, 38, 435–442. [Google Scholar] [CrossRef] [PubMed]
- Pitcher, D.; Braddon, F.; Hendry, B.; Mercer, A.; Osmaston, K.; Saleem, M.A.; Steenkamp, R.; Wong, K.; Turner, A.N.; Wang, K.; et al. Long-term outcomes in IgA nephropathy. Clin. J. Am. Soc. Nephrol. 2023, 18, 727–738. [Google Scholar] [CrossRef] [PubMed]
- Currie, E.G.; Coburn, B.; Porfilio, E.A.; Lam, P.; Rojas, O.L.; Novak, J.; Yang, S.; Chowdhury, R.B.; Ward, L.A.; Wang, P.W.; et al. Immunoglobulin A nephropathy is characterized by anticommensal humoral immune responses. J. Clin. Investig. 2022, 7, e141289. [Google Scholar] [CrossRef]
- Coutinho, A.E.; Chapman, K.E. The anti-inflammatory and immunosuppressive effects of glucocorticoids, recent developments and mechanistic insights. Mol. Cell. Endocrinol. 2011, 335, 2–13. [Google Scholar] [CrossRef]
- Barratt, J.; Rovin, B.H.; Cattran, D.; Floege, J.; Lafayette, R.; Tesar, V.; Trimarchi, H.; Zhang, H. Why Target the Gut to Treat IgA Nephropathy? Kidney Int. Rep. 2020, 5, 1620–1624. [Google Scholar] [CrossRef]
- Rodrigues, J.C.; Haas, M.; Reich, H.N. IgA Nephropathy. Clin. J. Am. Soc. Nephrol. 2017, 12, 677–686. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lehrke, I.; Waldherr, R.; Ritz, E.; Wagner, J. Renal endothelin-1 and endothelin receptor type b expression in glomerular diseases with proteinuria. J. Am. Soc. Nephrol. 2001, 12, 2321–2329. [Google Scholar] [CrossRef] [PubMed]
- Nihei, Y.; Haniuda, K.; Higashiyama, M.; Asami, S.; Iwasaki, H.; Fukao, Y.; Nakayama, M.; Suzuki, H.; Kikkawa, M.; Kazuno, S.; et al. Identification of IgA autoantibodies targeting mesangial cells redefines the pathogenesis of IgA nephropathy. Sci. Adv. 2023, 9, eadd6734. [Google Scholar] [CrossRef]
- Barbour, S.J.; Coppo, R.; Er, L.; Russo, M.L.; Liu, Z.-H.; Ding, J.; Katafuchi, R.; Yoshikawa, N.; Xu, H.; Kagami, S.; et al. Updating the International IgA Nephropathy Prediction Tool for use in children. Kidney Int. 2020, 99, 1439–1450. [Google Scholar] [CrossRef]
- Coppo, R.; Lofaro, D.; Camilla, R.R.; Bellur, S.; Cattran, D.; Cook, H.T.; Roberts, I.S.; Peruzzi, L.; Amore, A.; Emma, F.; et al. Risk factors for progression in children and young adults with IgA nephropathy: An analysis of 261 cases from the VALIGA European cohort. Pediatr. Nephrol. 2017, 32, 139. [Google Scholar] [CrossRef] [PubMed]
- Selvaskandan, H.; Cheung, C.K.; Muto, M.; Barratt, J. New strategies and perspectives on managing IgA nephropathy. Clin. Exp. Nephrol. 2019, 23, 577–588. [Google Scholar] [CrossRef] [PubMed]
- Rovin, B.H.; Adler, S.G.; Barratt, J.; Bridoux, F.; Burdge, K.A.; Chan, T.M.; Cook, H.T.; Fervenza, F.C.; Gibson, K.L.; Glassock, R.J.; et al. Kidney Disease Improving Global Outcomes (KDIGO) Glomerular Diseases 2021 Clinical Practice Guideline for the Management of Glomerular Diseases. Kidney Int. 2021, 100, S1–S276. [Google Scholar] [CrossRef] [PubMed]
- Thompson, A.; Carroll, K.; Inker, L.A.; Floege, J.; Perkovic, V.; Boyer-Suavet, S.; Major, R.W.; Schimpf, J.I.; Barratt, J.; Cattran, D.C.; et al. Proteinuria at follow-up and time-averaged proteinuria are the best assessed primary determinant of the rate of progression to ESKD demonstrated today. Clin. J. Am. Soc. Nephrol. 2019, 14, 469–481. [Google Scholar] [CrossRef]
- Kim, M.J.; Schaub, S.; Molyneux, K.; Koller, M.T.; Stampf, S.; Barratt, J. effect of immunosuppressive drugs on the changes of serum galactose-deficient IgA1 in patients with IgA nephropathy. PLoS ONE 2016, 11, e0166830. [Google Scholar] [CrossRef]
- Barratt, J.; Rovin, B.; Diva, U.; Mercer, A.; Komers, R. Implementing the kidney health initiative surrogate efficacy endpoint in patients with IgA nephropathy (the PROTECT trial). Kidney Int. Rep. 2019, 4, 1633–1637. [Google Scholar] [CrossRef]
- Trimarchi, H.; Barratt, J.; Cattran, D.C.; Cook, H.T.; Coppo, R.; Haas, M.; Liu, Z.H.; Roberts, I.S.; Yuzawa, Y.; Zhang, H.; et al. IgAN classification Working Group of the International IgA nephropathy Network and the Renal Pathology Society; Conference Partecipants. Oxford Classification of IgA nephropathy 2016: An update from the IgA Nephropathy Classification Working Group. Kidney Int. 2017, 91, 1014–1021. [Google Scholar] [CrossRef]
- Itami, S.; Moriyama, T.; Miyabe, Y.; Karasawa, K.; Nitta, K. A Novel Scoring System Based on Oxford Classification Indicating Steroid Therapy Use for IgA Nephropathy. Kidney Int. Rep. 2022, 7, 99–107. [Google Scholar] [CrossRef]
- Zhang, X.; Lv, J.; Liu, P.; Xie, X.; Wang, M.; Liu, D.; Zhang, H.; Jin, J. Poly-IgA Complexes and Disease Severity in IgA Nephropathy. Clin. J. Am. Soc. Nephrol. 2021, 16, 1652–1664. [Google Scholar] [CrossRef]
- Caster, D.J.; Abner, C.W.; Walker, P.D.; Wang, K.; Heo, J.; Rava, A.R.; Bunke, M. Clinicopathological Characteristics of Adult IgA Nephropathy in the United States. Kidney Int. Rep. 2023, 8, 1792–1800. [Google Scholar] [CrossRef]
- Tsai, S.-F.; Wu, M.-J.; Wen, M.-C.; Chen, C.-H. Serologic and histologic predictors of long-term renal outcome in biopsy-confirmed IgA nephropathy (Haas classification): An observational study. J. Clin. Med. 2019, 8, 848. [Google Scholar] [CrossRef] [PubMed]
- Bobart, S.A.; Alexander, M.P.; Shawwa, K.; Vaughan, L.E.; Ghamrawi, R.; Sethi, S.; Cornell, L.; Glassock, R.J.; Fervenza, F.C.; Zand, L. The association of microhematuria with mesangial hypercellularity, endocapillary hypercellularity, crescent score and renal outcomes in immunoglobulin A nephropathy. Nephrol. Dial. Transplant. 2021, 36, 840–847. [Google Scholar] [CrossRef] [PubMed]
- Markowitz, G. Updated Oxford Classification of IgA nephropathy: A new MEST-C score. Nat. Rev. Nephrol. 2017, 13, 385–386. [Google Scholar] [CrossRef] [PubMed]
- Coppo, R.; Fervenza, F.C. Persistent microscopic hematuria as a risk factor for progression of iga nephropathy: New floodlight on a nearly forgotten biomarker. J. Am. Soc. Nephrol. 2017, 28, 2831–2834. [Google Scholar] [CrossRef]
- Haaskjold, Y.L.; Lura, N.G.; Bjørneklett, R.; Bostad, L.S.; Knoop, T.; Bostad, L. Long-term follow-up of IgA nephropathy: Clinicopathological features and predictors of outcomes. Clin. Kidney J. 2023, 16, 2514–2522. [Google Scholar] [CrossRef]
- Ruggenenti, P.; Perna, A.; Gherardi, G.; Garini, G.; Zoccali, C.; Salvadori, M.; Scolari, F.; Schena, F.P.; Remuzzi, G. Renoprotective properties of ACE-inhibition in non-diabetic nephropathies with non-nephrotic proteinuria. Lancet 1999, 354, 359–364. [Google Scholar] [CrossRef]
- Maschio, G.; Alberti, D.; Locatelli, F.; Mann, J.F.E.; Motolese, M.; Ponticelli, C.; Ritz, E.; Janin, G.; Zucchelli, P. Angiotensin-converting enzyme inhibitors and kidney protection: The AIPRI trial. J. Cardiovasc. Pharmacol. 1999, 33, S16–S20. [Google Scholar] [CrossRef]
- Maschio, G.; Cagnoli, L.; Claroni, F.; Fusaroli, M.; Rugiu, C.; Sanna, G.; Sasdelli, M.; Zuccalà, A.; Zucchelli, P. ACE inhibition reduces proteinuria in normotensive patients with IgA nephropathy: A multicentre, randomized, placebo-controlled study. Nephrol. Dial. Transplant. 1994, 9, 265–269. [Google Scholar] [CrossRef]
- Kanno, Y.; Okada, H.; Saruta, T.; Suzuki, H. Blood pressure reduction associated with preservation of renal function in hypertensive patients with IgA nephropathy: A 3-year follow-up. Clin. Nephrol. 2000, 54, 360–365. [Google Scholar]
- Russo, D.; Minutolo, R.; Pisani, A.; Esposito, R.; Signoriello, G.; Andreucci, M.; Balletta, M.M. Coadministration of losartan and enalapril exerts additive antiproteinuric effect in IgA nephropathy. Am. J. Kidney Dis. 2001, 38, 18–25. [Google Scholar] [CrossRef]
- Kunz, R.; Friedrich, C.; Wolbers, M.; Mann, J.F. Meta-analysis: Effect of monotherapy and combination therapy with inhibitors of the renin–angiotensin system on proteinuria in renal disease. Ann. Intern. Med. 2008, 148, 30–48. [Google Scholar] [CrossRef] [PubMed]
- Catapano, F.; Chiodini, P.; De Nicola, L.; Minutolo, R.; Zamboli, P.; Gallo, C.; Conte, G. Antiproteinuric response to dual blockade of the renin-angiotensin system in primary glomerulonephritis: Meta-analysis and metaregression. Am. J. Kidney Dis. 2008, 52, 475–485. [Google Scholar] [CrossRef] [PubMed]
- Chagnac, A.; Herman, M.; Zingerman, B.; Erman, A.; Rozen-Zvi, B.; Hirsh, J.; Gafter, U. Obesity-induced glomerular hyperfiltration: Its involvement in the pathogenesis of tubular sodium reabsorption. Nephrol. Dial. Transplant. 2008, 23, 3946–3952. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, M.; Yamada, S.; Iwasaki, Y.; Sugishita, T.; Yonemoto, S.; Tsukamoto, T.; Fukui, S.; Takasu, K.; Muso, E. Impact of obesity on IgA nephropathy: Comparative ultrastructural study between obese and non-obese patients. Nephron Clin. Pract. 2009, 112, c71–c78. [Google Scholar] [CrossRef] [PubMed]
- Ariyasu, Y.; Torikoshi, K.; Tsukamoto, T.; Yasuda, T.; Yasuda, Y.; Matsuzaki, K.; Hirano, K.; Kawamura, T.; Yokoo, T.; Maruyama, S.; et al. Analysis of the impact of obesity on the prognosis of IgA nephropathy according to renal function and sex. Clin. Exp. Nephrol. 2024, 11, 1155–1167. [Google Scholar] [CrossRef] [PubMed]
- Konishi, Y.; Nishiyama, A.; Morikawa, T.; Kitabayashi, C.; Shibata, M.; Hamada, M.; Kishida, M.; Hitomi, H.; Kiyomoto, H.; Miyashita, T.; et al. Relationship between urinary angiotensinogen and salt sensitivity of blood pressure in patients with Iga nephropathy. Hypertension 2011, 58, 205–211. [Google Scholar] [CrossRef] [PubMed]
- Agrawal, S.; He, J.C.; Tharaux, P.-L. Nuclear receptors in podocyte biology and glomerular disease. Nat. Rev. Nephrol. 2021, 17, 185–204. [Google Scholar] [CrossRef]
- Locatelli, F.; Del Vecchio, L.; Ponticelli, C. Systemic and targeted steroids for the treatment of IgA nephropathy. Clin. Kidney J. 2023, 16 (Suppl. S2), ii40–ii46. [Google Scholar] [CrossRef] [PubMed]
- Pozzi, C.; Bolasco, P.; Fogazzi, G.; Andrulli, S.; Altieri, P.; Ponticelli, C.; Locatelli, F. Corticosteroids in IgA nephropathy: A randomised controlled trial. Lancet 1999, 353, 883–887. [Google Scholar] [CrossRef]
- Pozzi, C.; Andrulli, S.; Del Vecchio, L.; Melis, P.; Fogazzi, G.B.; Altieri, P.; Ponticelli, C.; Locatelli, F. Corticosteroid effectiveness in IgA nephropathy: Long-term results of a randomised, controlled trial. J. Am. Soc. Nephrol. 2004, 15, 157–163. [Google Scholar] [CrossRef]
- Rauen, T.; Eitner, F.; Fitzner, C.; Sommerer, C.; Zeier, M.; Otte, B.; Panzer, U.; Peters, H.; Benck, U.; Mertens, P.R.; et al. Intensive Supportive Care plus Immunosuppression in IgA Nephropathy. N. Engl. J. Med. 2015, 373, 2225–2236. [Google Scholar] [CrossRef] [PubMed]
- Tesar, V.; Troyanov, S.; Bellur, S.; Verhave, J.C.; Cook, H.T.; Feehally, J.; Roberts, I.S.; Cattran, D.; Coppo, R. Corticosteroids in IgA nephropathy: A retrospective analysis from the VALIGA study. J. Am. Soc. Nephrol. 2015, 26, 2248–2258. [Google Scholar] [CrossRef]
- Lv, J.; Wong, M.G.; Hladunewich, M.A.; Jha, V.; Hooi, L.S.; Monaghan, H.; Zhao, M.; Barbour, S.; Jardine, M.J.; Reich, H.N.; et al. Effect of Oral Methylprednisolone on Decline in Kidney Function or Kidney Failure in Patients with IgA Nephropathy. The TESTING Randomized Clinical Trial. JAMA 2022, 327, 1888–1898. [Google Scholar] [CrossRef]
- Novak, J.; Barratt, J.; Julian, B.A.; Renfrow, M.B. Aberrant glycosylation of the IgA1 molecule in IgA nephropathy. Semin. Nephrol. 2018, 38, 461–476. [Google Scholar] [CrossRef]
- Fellström, B.C.; Barratt, J.; Cook, H.; Coppo, R.; Feehally, J.; de Fijter, J.W.; Floege, J.; Hetzel, G.; Jardine, A.G.; Locatelli, F.; et al. Targeted-release budesonide versus placebo in patients with IgA nephropathy (NEFIGAN): A double-blind, randomised, placebo-controlled phase 2b trial. Lancet 2017, 389, 2117–2127. [Google Scholar] [CrossRef] [PubMed]
- Barratt, J.; Lafayette, R.; Kristensen, J.; Stone, A.; Cattran, D.; Floege, J.; Tesar, V.; Trimarchi, H.; Zhang, H.; Eren, N.; et al. Results from part A of the multi-center, double-blind, randomized, placebo-controlled NefIgArd trial, which evaluated targeted-release formulation of budesonide for the treatment of primary immunoglobulin A nephropathy. Kidney Int. 2023, 103, 391–402. [Google Scholar] [CrossRef]
- Hou, F.F.; Xie, D.; Wang, J.; Xu, X.; Yang, X.; Ai, J.; Nie, S.; Liang, M.; Wang, G.; Jia, N.; et al. Effectiveness of mycophenolate mofetil among patients with progressive IgA nephropathy: A randomized clinical trial. JAMA Netw. Open 2023, 6, e2254054. [Google Scholar] [CrossRef]
- Dooley, M.A.; Jayne, D.; Ginzler, E.M.; Isenberg, D.; Olsen, N.J.; Wofsy, D.; Eitner, F.; Appel, G.B.; Contreras, G.; Lisk, L.; et al. Mycophenolate versus Azathioprine as Maintenance Therapy for Lupus Nephritis. N. Engl. J. Med. 2011, 365, 1886–1895. [Google Scholar] [CrossRef] [PubMed]
- Jabbour, S.A.; Goldstein, B.J. Sodium glucose co-transporter 2 inhibitors: Blocking renal tubular reabsorption of glucose to improve glycaemic control in patients with diabetes. Int. J. Clin. Pract. 2008, 62, 1279–1284. [Google Scholar] [CrossRef]
- van den Heuvel, L.P.; Assink, K.; Willemsen, M.A.; Monnens, L. Autosomal recessive renal glucosuria attributable to a mutation in the sodium glucose cotransporter (SGLT2). Hum. Genet. 2002, 111, 544–547. [Google Scholar] [CrossRef]
- Cherney, D.Z.I.; Dekkers, C.C.J.; Barbour, S.J.; Cattran, D.; Gafor, A.H.A.; Greasley, P.J.; Laverman, G.D.; Lim, S.K.; Di Tanna, G.L.; Reich, H.N.; et al. Effects of the SGLT2 inhibitor dapagliflozin on proteinuria in non-diabetic patients with chronic kidney disease (DIAMOND): A randomised, double-blind, crossover trial. Lancet Diabetes Endocrinol. 2020, 8, 582–593. [Google Scholar] [CrossRef] [PubMed]
- Wheeler, D.C.; Stefánsson, B.V.; Jongs, N. Effects of dapagliflozin on major adverse kidney and cardiovascular events in patients with diabetic and non-diabetic chronic kidney disease: A prespecified analysis from the DAPA-CKD trial. Lancet Diabetes Endocrinol. 2021, 9, 22–31. [Google Scholar] [CrossRef] [PubMed]
- Tesar, V. SGLT2 inhibitors in non-diabetic kidney disease. Adv. Clin. Exp. Med. 2022, 31, 105–107. [Google Scholar] [CrossRef]
- Wheeler, D.C.; Toto, R.D.; Stefánsson, B.V.; Jongs, N.; Chertow, G.M.; Greene, T.; Hou, F.F.; McMurray, J.J.; Pecoits-Filho, R.; Correa-Rotter, R.; et al. A pre-specified analysis of the DAPA-CKD trial demonstrates the effects of dapagliflozin on major adverse kidney events in patients with IgA nephropathy. Kidney Int. 2021, 100, 215–224. [Google Scholar] [CrossRef]
- Anders, H.-J.; Peired, A.J.; Romagnani, P. SGLT2 inhibition requires reconsideration of fundamental paradigms in chronic kidney disease, ‘diabetic nephropathy’, IgA nephropathy and podocytopathies with FSGS lesions. Nephrol. Dial. Transplant. 2022, 37, 1609–1615. [Google Scholar] [CrossRef]
- Tuttle, K.R.; Hauske, S.J.; Canziani, M.E.; Caramori, M.L.; Cherney, D.; Cronin, L.; Heerspink, H.J.L.; Hugo, C.; Nangaku, M.; Rotter, R.C.; et al. Efficacy and safety of aldosterone synthase inhibition with and without empagliflozin for chronic kidney disease: A randomised, controlled, phase 2 trial. Lancet 2023, 403, 379–390. [Google Scholar] [CrossRef] [PubMed]
- Mårup, F.H.; Thomsen, M.B.; Birn, H. Additive effects of dapagliflozin and finerenone on albuminuria in non-diabetic CKD: An open-label randomized clinical trial. Clin. Kidney J. 2023, 17, sfad249. [Google Scholar] [CrossRef] [PubMed]
- Heerspink, H.J.; Radhakrishnan, J.; Alpers, C.E.; Barratt, J.; Bieler, S.; Diva, U.; Inrig, J.; Komers, R.; Mercer, A.; Noronha, I.L.; et al. Sparsentan in patients with IgA nephropathy: A prespecified interim analysis from a randomised, double-blind, active- controlled clinical trial. Lancet 2023, 401, 1584–1594. [Google Scholar] [CrossRef]
- Campbell, K.N.; Griffin, S.; Trachtman, H.; Geletka, R.; Wong, M.G. Practical Considerations for the Use of Sparsentan in the Treatment of Patients with IgAN in Clinical Practice. Int. J. Nephrol. Renov. Dis. 2023, 16, 281–291. [Google Scholar] [CrossRef]
- Barton, M.; Tharaux, P.-L. Endothelin and the podocyte. Clin. Kidney J. 2012, 5, 17–27. [Google Scholar] [CrossRef] [PubMed]
- Poppelaars, F.; Faria, B.; Schwaeble, W.; Daha, M.R. The Contribution of Complement to the Pathogenesis of IgA Nephropathy: Are Complement-Targeted Therapies Moving from Rare Disorders to More Common Diseases? J. Clin. Med. 2021, 10, 4715. [Google Scholar] [CrossRef] [PubMed]
- Ricklin, D.; Mastellos, D.C.; Reis, E.S.; Lambris, J.D. The renaissance of complement therapeutics. Nat. Rev. Nephrol. 2018, 14, 26–47. [Google Scholar] [CrossRef] [PubMed]
- Tortajada, A.; Gutiérrez, E.; de Jorge, E.G.; Anter, J.; Segarra, A.; Espinosa, M.; Blasco, M.; Roman, E.; Marco, H.; Quintana, L.F.; et al. Elevated factor H–related protein 1 and factor H pathogenic variants decrease complement regulation in IgA nephropathy. Kidney Int. 2017, 92, 953–963. [Google Scholar] [CrossRef] [PubMed]
- Evans, D.J.; Williams, D.G.; Peters, D.K.; Sissons, J.G.P.; Boulton-Jones, J.M.; Ogg, C.S.; Cameron, J.S.; Hoffbrand, B.I. Glomerular Deposition of Properdin in Henoch-Schonlein Syndrome and Idiopathic Focal Nephritis. BMJ 1973, 3, 326–328. [Google Scholar] [CrossRef]
- Maillard, N.; Wyatt, R.J.; Julian, B.A.; Kiryluk, K.; Gharavi, A.; Fremeaux-Bacchi, V.; Novak, J. Current Understanding of the Role of Complement in IgA Nephropathy. J. Am. Soc. Nephrol. 2015, 26, 1503–1512. [Google Scholar] [CrossRef]
- Wu, D.; Li, X.; Yao, X.; Zhang, N.; Lei, L.; Zhang, H.; Tang, M.; Ni, J.; Ling, C.; Chen, Z.; et al. Mesangial C3 deposition and serum C3 levels predict renal outcome in IgA nephropathy. Clin. Exp. Nephrol. 2021, 25, 641–651. [Google Scholar] [CrossRef]
- Stangou, M.; Alexopoulos, E.; Pantzaki, A.; Leonstini, M.; Memmos, D. C5b-9 glomerular deposition and tubular α3β1-integrin expression are implicated in the development of chronic lesions and predict renal function outcome in immunoglobulin A nephropathy. Scand. J. Urol. Nephrol. 2008, 42, 373–380. [Google Scholar] [CrossRef]
- Segarra, A.; Romero, K.; Agraz, I.; Ramos, N.; Madrid, A.; Carnicer, C.; Jatem, E.; Vilalta, R.; Lara, L.E.; Ostos, E.; et al. Mesangial C4d Deposits in Early IgA Nephropathy. Clin. J. Am. Soc. Nephrol. 2018, 13, 258–264. [Google Scholar] [CrossRef]
- Endo, M.; Ohi, H.; Ohsawa, I.; Fujita, T.; Matsushita, M. Glomerular deposition of mannose-binding lectin (MBL) indicates a novel mechanism of complement activation in IgA nephropathy. Nephrol. Dial. Transplant. 1998, 13, 1984–1990. [Google Scholar] [CrossRef]
- Bruchfeld, A.; Magin, H.; Nachman, P.; Parikh, S.; Lafayette, R.; Potarca, A.; Miao, S.; Bekker, P. C5a receptor inhibitor avacopan in immunoglobulin A nephropathy—An open-label pilot study. Clin. Kidney J. 2022, 15, 922–928. [Google Scholar] [CrossRef]
- Caravaca-Fontán, F.; Gutiérrez, E.; Sevillano, M.; Praga, M. Targeting complement in IgA nephropathy. Clin. Kidney J. 2023, 16 (Suppl. S2), ii28–ii39. [Google Scholar] [CrossRef] [PubMed]
- Medjeral-Thomas, N.R.; Cook, H.T.; Pickering, M.C. Complement activation in IgA nephropathy. Semin. Immunopathol. 2021, 43, 679–690. [Google Scholar] [CrossRef]
- Barratt, J.; Rovin, B.; Zhang, H.; Kashihara, N.; Maes, B.; Rizk, D.; Trimarchi, H.; Sprangers, B.; Meier, M.; Kollins, D.; et al. POS-546 efficacy and safety of iptacopan in iga nephropathy: Results of a randomized double-blind placebo-controlled phase 2 study at 6 months. Kidney Int. Rep. 2022, 7, S236. [Google Scholar] [CrossRef]
- Perkovic, V.; Barratt, J.; Rovin, B.; Kashihara, N.; Maes, B.; Zhang, H.; Trimarchi, H.; Kollins, D.; Papachristofi, O.; Jacinto-Sanders, S.; et al. Alternative Complement Pathway Inhibition with Iptacopan in IgA Nephropathy. N. Engl. J. Med. 2024, 25. [Google Scholar] [CrossRef] [PubMed]
- Stern, R.M.; Connell, N.T. Ravulizumab: A novel C5 inhibitor for the treatment of paroxysmal nocturnal hemoglobinuria. Ther. Adv. Hematol. 2019, 10, 2040620719874728. [Google Scholar] [CrossRef] [PubMed]
- Kateifides, A.; Garlo, K.; Rice, K.; Spoerri, N.; Najafian, N. WCN23-0140 a phase 2 study evaluating the efficacy and safety of ravulizumab in patients with immunoglobulin a (Iga) nephropathy or proliferative lupus nephritis (Ln). Kidney Int. Rep. 2023, 8, S54–S55. [Google Scholar] [CrossRef]
- Zhai, Y.-L.; Zhu, L.; Shi, S.-F.; Liu, L.-J.; Lv, J.-C.; Zhang, H. Increased APRIL expression induces IgA1 aberrant glycosylation in IgA nephropathy. Medicine 2016, 95, e3099. [Google Scholar] [CrossRef]
- Castigli, E.; Scott, S.; Dedeoglu, F.; Bryce, P.; Jabara, H.; Bhan, A.K.; Mizoguchi, E.; Geha, R.S. Impaired IgA class switching in APRIL-deficient mice. Proc. Natl. Acad. Sci. USA 2004, 101, 3903–3908. [Google Scholar] [CrossRef]
- Mathur, M.; Barratt, J.; Suzuki, Y.; Engler, F.; Pasetti, M.F.; Yarbrough, J.; Sloan, S.; Oldach, D. Safety, tolerability, pharmacokinetics, and pharmacodynamics of VIS649 (sibeprenlimab), an APRIL-neutralizing IgG2 monoclonal antibody, in healthy volunteers. Kidney Int. Rep. 2022, 7, 993–1003. [Google Scholar] [CrossRef]
- Mathur, M.; Barratt, J.; Chacko, B.; Chan, T.M.; Kooienga, L.; Oh, K.-H.; Sahay, M.; Suzuki, Y.; Wong, M.G.; Yarbrough, J.; et al. A Phase 2 Trial of Sibeprenlimab in Patients with IgA Nephropathy. N. Engl. J. Med. 2024, 390, 20–31. [Google Scholar] [CrossRef]
- Barratt, J.; Tumlin, J.; Suzuki, Y.; Kao, A.; Aydemir, A.; Pudota, K.; Jin, H.; Gühring, H.; Appel, G. Randomized Phase II JANUS Study of Atacicept in Patients With IgA Nephropathy and Persistent Proteinuria. Kidney Int. Rep. 2022, 7, 1831–1841. [Google Scholar] [CrossRef] [PubMed]
- Lafayette, R.; Maes, B.; Israni, R.; Lin, C.; Wei, X.; Barbour, S.; Phoon, R.; Kim, S.G.; Tesar, V.; Floege, J.; et al. Phase 2b ORIGIN study open label extension with atacicept in patients with IgA nephropathy and persistent proteinuria: Week 72 interim analysis. Nephrol. Dial. Transplant. 2024, 39 (Suppl. S1), gfae069-0030-812. [Google Scholar] [CrossRef]
- Chábová, V.; Tesar, V.; Zabka, J.; Rychlik, I.; Merta, M.; Jirsa, M.; Stejskalová, A. Long term treatment of IgA nephropathy with cyclosporine A. Ren. Fail. 2000, 22, 55–62. [Google Scholar] [CrossRef]
- Cattran, D.C. Current status of cyclosporin A in the treatment of membranous, IgA and membranoproliferative glomerulonephritis. Clin. Nephrol. 1991, 35 (Suppl. S1), S43–S47. [Google Scholar]
- Song, Y.-H.; Cai, G.-Y.; Xiao, Y.-F.; Wang, Y.-P.; Yuan, B.-S.; Xia, Y.-Y.; Wang, S.-Y.; Chen, P.; Liu, S.-W.; Chen, X.-M. Efficacy and safety of calcineurin inhibitor treatment for IgA nephropathy: A meta-analysis. BMC Nephrol. 2017, 18, 61. [Google Scholar] [CrossRef]
- Lafayette, R.A.; Canetta, P.A.; Rovin, B.H.; Appel, G.B.; Novak, J.; Nath, K.A.; Sethi, S.; Tumlin, J.A.; Mehta, K.; Hogan, M.; et al. A Randomized, Controlled Trial of Rituximab in IgA Nephropathy with Proteinuria and Renal Dysfunction. J. Am. Soc. Nephrol. 2016, 28, 1306–1313. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.-J.; Yang, Y.-Z.; Shi, S.-F.; Bao, Y.-F.; Yang, C.; Zhu, S.-N.; Sui, G.-L.; Chen, Y.-Q.; Lv, J.-C.; Zhang, H. Effects of Hydroxychloroquine on Proteinuria in IgA Nephropathy: A Randomized Controlled Trial. Am. J. Kidney Dis. 2019, 74, 15–22. [Google Scholar] [CrossRef]
- Tang, C.; Lv, J.-C.; Shi, S.-F.; Chen, Y.-Q.; Liu, L.-J.; Zhang, H. Long-term safety and efficacy of hydroxychloroquine in patients with IgA nephropathy: A single-center experience. J. Nephrol. 2022, 35, 429–440. [Google Scholar] [CrossRef]
- Si, F.-L.; Tang, C.; Lv, J.-C.; Shi, S.-F.; Zhou, X.-J.; Liu, L.-J.; Zhang, H. Comparison between hydroxychloroquine and systemic corticosteroids in IgA nephropathy: A two-year follow-up study. BMC Nephrol. 2023, 24, 175. [Google Scholar] [CrossRef]
- Heerspink, H.J.L.; Parving, H.-H.; Andress, D.L.; Correa-Rotter, R.; Hou, F.-F.; Kitzman, D.W.; Kohan, D.; Makino, H.; McMurray, J.J.V.; Melnick, J.Z.; et al. Atrasentan and renal events in patients with type 2 diabetes and chronic kidney disease (SONAR): A double-blind, randomised, placebo-controlled trial. Lancet 2019, 393, 1937–1947. [Google Scholar] [CrossRef] [PubMed]
- Heerspink, H.L.; Jardine, M.; Kohan, D.; Lafayette, R.; Levin, A.; Liew, A.; Zhang, H.; Glicklich, A.; Camargo, M.; King, A.; et al. POS-527 A Phase 3, Randomized, Double-Blind, Placebo-Controlled Study of Atrasentan in Patients with IgA Nephropathy (The ALIGN Study). Kidney Int. Rep. 2022, 7, S229–S230. [Google Scholar] [CrossRef]
- Dhillon, S. Telitacicept: First approval. Drugs 2021, 81, 1671–1675. [Google Scholar] [CrossRef] [PubMed]
- Lv, J.; Liu, L.; Hao, C.; Li, G.; Fu, P.; Xing, G.; Zheng, H.; Chen, N.; Wang, C.; Luo, P.; et al. Randomized Phase 2 Trial of Telitacicept in Patients with IgA Nephropathy with Persistent Proteinuria. Kidney Int. Rep. 2022, 8, 499–506. [Google Scholar] [CrossRef] [PubMed Central]
- McAdoo, S.; Tam, F.W. Role of the Spleen Tyrosine Kinase Pathway in Driving Inflammation in IgA Nephropathy. Semin. Nephrol. 2018, 38, 496–503. [Google Scholar] [CrossRef] [PubMed]
- Floege, J.; Lafayette, R.; Barratt, J.; Schwartz, B.; Manser, P.T.; Patel, U.D.; Pineda, L.; Faulhaber, N.; Boxhammer, R.; Haertle, S.; et al. #425 Felzartamab (anti-CD38) in patients with IgA Nephropathy—Interim results from the IGNAZ study. Nephrol. Dial. Transplant. 2024, 39, gfae069-0139-425. [Google Scholar] [CrossRef]
- Evans, L.S.; Lewis, K.E.; DeMonte, D.; Bhandari, J.G.; Garrett, L.B.; Kuijper, J.L.; Ardourel, D.; Wolfson, M.F.; Debrot, S.; Mudri, S.; et al. Povetacicept, an Enhanced DualAPRIL/BAFFAntagonist That Modulates B Lymphocytes and Pathogenic Autoantibodies for the Treatment of Lupus and Other B Cell–Related Autoimmune Diseases. Arthritis Rheumatol. 2023, 75, 1187–1202. [Google Scholar] [CrossRef] [PubMed]
- Kawamura, T.; Yoshimura, M.; Miyazaki, Y.; Okamoto, H.; Kimura, K.; Hirano, K.; Matsushima, M.; Utsunomiya, Y.; Ogura, M.; Yokoo, T.; et al. A multicenter randomized controlled trial of tonsillectomy combined with steroid pulse therapy in patients with immunoglobulin A nephropathy. Nephrol. Dial. Transplant. 2014, 29, 1546–1553. [Google Scholar] [CrossRef]
- Feehally, J.; Coppo, R.; Troyanov, S.; Bellur, S.S.; Cattran, D.; Cook, T.; Roberts, I.S.; Verhave, J.C.; Camilla, R.; Vergano, L.; et al. Tonsillectomy in a European cohort of 1147 patients with IgA nephropathy. Nephron 2016, 132, 15–24. [Google Scholar] [CrossRef] [PubMed]
- Chou, H.H.; Chiou, Y.Y.; Hung, P.H.; Chiang, P.C.; Wang, S.T. Omega-3 fatty acids ameliorate proteinuria but not renal function in IgA nephropathy: A meta-analysis of randomized controlled trials. Nephron. Clin. Pract. 2012, 121, c30–c35. [Google Scholar] [CrossRef]
- Lauriero, G.; Abbad, L.; Vacca, M.; Celano, G.; Chemouny, J.M.; Calasso, M.; Berthelot, L.; Gesualdo, L.; De Angelis, M.; Monteiro, R.C. Fecal Microbiota Transplantation Modulates Renal Phenotype in the Humanized Mouse Model of IgA Nephropathy. Front. Immunol. 2021, 12, 694787. [Google Scholar] [CrossRef]
- Manno, C.; Torres, D.D.; Rossini, M.; Pesce, F.; Schena, F.P. Randomized controlled clinical trial of corticosteroids plus ACE-inhibitors with long-term follow-up in proteinuric IgA nephropathy. Nephrol. Dial. Transplant. 2009, 24, 3694–3701. [Google Scholar] [CrossRef] [PubMed]
- Schena, F.P.; Cox, S.N. Is it time for personalized therapy in IgA nephropathy patients? J. Nephrol. 2023, 36, 2171–2173. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Scarpioni, R.; Valsania, T. IgA Nephropathy: What Is New in Treatment Options? Kidney Dial. 2024, 4, 223-245. https://doi.org/10.3390/kidneydial4040019
Scarpioni R, Valsania T. IgA Nephropathy: What Is New in Treatment Options? Kidney and Dialysis. 2024; 4(4):223-245. https://doi.org/10.3390/kidneydial4040019
Chicago/Turabian StyleScarpioni, Roberto, and Teresa Valsania. 2024. "IgA Nephropathy: What Is New in Treatment Options?" Kidney and Dialysis 4, no. 4: 223-245. https://doi.org/10.3390/kidneydial4040019
APA StyleScarpioni, R., & Valsania, T. (2024). IgA Nephropathy: What Is New in Treatment Options? Kidney and Dialysis, 4(4), 223-245. https://doi.org/10.3390/kidneydial4040019