Comparison of the Waterlogging Tolerance and Morphological Responses of Five Urochloa spp. Grasses
<p>(<b>a</b>) Dry shoot mass (g·pot<sup>−1</sup>) and (<b>b</b>) dry root mass (g·pot<sup>−1</sup>) of five <span class="html-italic">Urochloa</span> genotypes under two soil moisture contents (field capacity—gray bar and waterlogging—white bar). Wide vertical bars indicate the mean, and thin vertical bars indicate standard-error values. Different letters indicate differences (<span class="html-italic">p</span> ≤ 0.05, Tukey test). Where G is genotype, SMC is soil moisture content, and G x SMC is the interaction between genotype and soil moisture content. F-test significance code, n.s. (<span class="html-italic">p</span> > 0.1), · (<span class="html-italic">p</span> ≤ 0.1), * (<span class="html-italic">p</span> ≤ 0.05), and *** (<span class="html-italic">p</span> ≤ 0.001).</p> "> Figure 2
<p>Example of adventitious aerial roots in Tanner grass (<span class="html-italic">Urochloa arrecta</span>) at day 28 in waterlogging conditions.</p> "> Figure 3
<p>(<b>a</b>) Leaf elongation rate (cm.day<sup>−1</sup>), (<b>b</b>) leaf length (cm), (<b>c</b>) leaf appearance rate (leaf.day<sup>−1</sup>), (<b>d</b>) total of green leaves, (<b>e</b>) stem elongation rate (cm.day<sup>−1</sup>), and (<b>f</b>) final stem length (cm) analyzed as a function of main effects: <span class="html-italic">Urochloa</span> genotypes (light gray bars) and soil moisture contents (field capacity (FC)– dark gray bar and waterlogging (WL)—white bar). Wide vertical bars indicate means, and thin vertical bars indicate standard-error values. Different letters indicate differences (<span class="html-italic">p</span> ≤ 0.05, Tukey test). Where G is genotype, SMC is soil moisture content, and G x SMC is the interaction between genotype and soil moisture content. F-test significance code, n.s. (<span class="html-italic">p</span> > 0.1) and *** (<span class="html-italic">p</span> ≤ 0.001).</p> "> Figure 4
<p>Green tillers per pot as a function of recovery days of five <span class="html-italic">Urochloa</span> genotypes: Brachipará, Cayman, Llanero, Marandú, and Tanner under two soil moisture contents (field capacity—solid line with gray squares and waterlogging—dashed line with white squares). Vertical bars indicate the confidence interval (95%).</p> ">
Abstract
:1. Introduction
2. Results
2.1. Biomass and Waterlogging Tolerance Coefficient
2.2. Root Dimensions
2.3. Morphogenesis
2.4. SPAD Index, Nitrogen Concentration, and Total Nitrogen
3. Discussion
4. Materials and Methods
4.1. Location and Weather Condition
4.2. Materials
4.3. Experimental Design and Analysis
4.4. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Bailey-Serres, J.; Voesenek, L.A.C.J. Flooding stress: Acclimations and genetic diversity. Annu. Rev. Plant Biol. 2008, 59, 313–339. [Google Scholar] [CrossRef]
- Ren, B.; Dong, S.; Zhao, B.; Liu, P.; Zhang, J. Responses of nitrogen metabolism, uptake and translocation of maize to waterlogging at different growth stages. Front. Plant Sci. 2017, 8, 1216. [Google Scholar] [CrossRef]
- Dias Filho, M.B.; de Freitas, M.V.; Lopes, M.J.d.S.; Cruz, E.D.; Barrios, S.C.L.; do Valle, C.B. Tolerância Relativa de Híbridos de Brachiaria Decumbens ao Alagamento do Solo; Embrapa Amazônia Oriental: Belém, Brazil, 2018. [Google Scholar]
- Pan, J.; Sharif, R.; Xu, X.; Chen, X. Mechanisms of waterlogging tolerance in plants: Research progress and prospects. Front. Plant Sci. 2021, 11, 627331. [Google Scholar] [CrossRef]
- Hungria, M.; Rondina, A.B.L.; Nunes, A.L.P.; Araujo, R.S.; Nogueira, M.A. Seed and leaf-spray inoculation of PGPR in brachiarias (Urochloa spp.) as an economic and environmental opportunity to improve plant growth, forage yield and nutrient status. Plant Soil 2021, 463, 171–186. [Google Scholar] [CrossRef]
- Ruiz, F.L.; Cancino, S.J.; Martínez, J.R.G.; Martínez, Y.B.; Drouaillet, B.E.; Martínez, A.G.L. Dinámica de tallos e índice de estabilidad en cinco cultivares de Urochloa en condiciones semiáridas. Trop. Grassl-Forrajes Trop. 2023, 11, 1–10. [Google Scholar] [CrossRef]
- Beloni, T.; Pezzopane, C.G.; Rovadoscki, G.A.; Fávero, A.P.; Dias-Filho, M.B.; Santos, P.M. Morphological and physiological responses and the recovery ability of Paspalum accessions to water deficit and waterlogging. Grass Forage Sci. 2017, 72, 840–850. [Google Scholar] [CrossRef]
- Jiménez, J.d.l.C.; Cardoso, J.A.; Dominguez, M.; Fischer, G.; Rao, I. Morpho-anatomical traits of root and non-enzymatic antioxidant system of leaf tissue contribute to waterlogging tolerance in Brachiaria grasses. Grassl. Sci. 2015, 61, 243–252. [Google Scholar] [CrossRef]
- Mass Junior, R.; Domiciano, L.F.; Ribeiro, L.F.C.; Pedreira, B.C. Growth responses of nine tropical grasses under flooding conditions. Trop. Grassl-Forrajes Trop. 2016, 4, 1–7. [Google Scholar] [CrossRef]
- Rincón, A.; Flórez, H.; Ballesteros, H.; León, L.M. Efectos de la fertilización en la productividad de una pastura de Brachiaria humidicola cv. Llanero en el Piedemonte de los Llanos Orientales de Colombia. Trop. Grassl-Forrajes Trop. 2018, 6, 158–168. [Google Scholar] [CrossRef]
- Pizarro, E.A.; Hare, M.D.; Mutimura, M.; Changjun, B. Brachiaria hybrids: Potential, forage use and seed yield. Trop. Grassl. -Forrajes Trop. 2013, 1, 31–35. [Google Scholar] [CrossRef]
- de Andrade, C.M.S.; de Assis, G.M.L.; Fazolin, M.; Gonçalves, R.C.; Sales, M.F.L.; Valentim, J.F.; Estrela, J.L.V. Capim-Tangola: Gramínea Forrageira Recomendada para Solos de Baixa Permeabilidade do Acr; EMBRAPA Acre: Rio Branco, Brazil, 2009. [Google Scholar]
- Alvim, M.J.; Botrel, M.A.; Xavier, D.F. As Principais Espécies de Brachiaria Utilizadas no País; EMBRAPA Gado de Leite: Juiz de Fora, Brazil, 2002. [Google Scholar]
- Queiroz, D.S.; Casagrande, D.R.; Moura, G.d.S.; Silva, E.A.d.; Viana, M.C.M.; Ruas, J.R.M. Espécies forrageiras para produção de leite em solos de várzea. Rev. Bras. Zootec. 2012, 41, 271–280. [Google Scholar] [CrossRef]
- Cardoso, J.A.; Rincón, J.; Jiménez, J.d.l.C.; Noguera, D.; Rao, I.M. Morpho-anatomical adaptations to waterlogging by germplasm accessions in a tropical forage grass. AoB PLANTS 2013, 5, plt047. [Google Scholar] [CrossRef]
- Hasanuzzaman, M.; Bhuyan, M.H.M.B.; Parvin, K.; Bhuiyan, T.F.; Anee, T.I.; Nahar, K.; Hossen, M.S.; Zulfiqar, F.; Alam, M.M.; Fujita, M. Regulation of ROS metabolism in plants under environmental stress: A review of recent experimental evidence. Int. J. Mol. Sci. 2020, 21, 8695. [Google Scholar] [CrossRef]
- Fukao, T.; Bailey-Serres, J. Ethylene—A key regulator of submergence responses in rice. Plant Sci. 2008, 175, 43–51. [Google Scholar] [CrossRef]
- Voesenek, L.; Bailey-Serres, J. Flooding tolerance: O2 sensing and survival strategies. Curr. Opin. Plant Biol. 2013, 16, 647–653. [Google Scholar] [CrossRef]
- Peters, M.; Franco, T.; Schmidt, A.; Hincapié Carvajal, B. Especies Forrajeras Multipropósito: Opciones Para Productores del Trópico Americano; CIAT: Cali, Colombia, 2011. [Google Scholar]
- Caetano, L.P.d.S.; Dias-Filho, M.B. Resposta de seis acessos de capim-braquiária ao alagamento do solo. Rev. Bras. De Zootec. 2008, 37, 795–801. [Google Scholar] [CrossRef]
- Duarte, C.F.D.; Prochera, D.L.; Paiva, L.M.; Fernandes, H.J.; Biserra, T.T.; Cassaro, L.H.; Flores, L.S.; Fernandes, R.L. Morfogênese de braquiárias sob estresse hídrico. Arq. Bras. Med. Veterinária E Zootec. 2019, 71, 1669–1676. [Google Scholar] [CrossRef]
- Dias-Filho, M.B.; Carvalho, C.J.R.D.E. Physiological and morphological responces of Brachiaria spp. to flooding. Pesqui. Agropecuária Bras. 2000, 35, 1959–1966. [Google Scholar] [CrossRef]
- Assuero, S.G.; Tognetti, J.A. Tillering regulation by endogenous and environmental factors and its agricultural management. Am. J. Plant Sci. Biotechnol. 2010, 4, 35–48. [Google Scholar]
- Ren, B.; Zhang, J.; Dong, S.; Liu, P.; Zhao, B. Root and shoot sesponses of summer maize to waterlogging at different stages. Agron. J. 2016, 108, 1060–1069. [Google Scholar] [CrossRef]
- Dias-Filho, M.B. Respostas Morfofisiológicas de Brachiaria spp. ao Alagamento do Solo e à Síndrome da Morte do Capim-Marandu; EMBRAPA Amazonia Oriental: Belem, Brazil, 2006. [Google Scholar]
- Jorge, L.d.C.; Silva, D.d.C. Safira: Manual de Utilização; EMBRAPA Instrumentacao: Sao Carlos, Brazil, 2010. [Google Scholar]
- Gomide, C.A.M.; Gomide, J.A. Morfogênese de cultivares de Panicum maximum jacq. Rev. Bras. Zootec. 2000, 29, 341–348. [Google Scholar] [CrossRef]
Genotypes | F-Test | |||||||
---|---|---|---|---|---|---|---|---|
Item | Brachipará | Cayman | Llanero | Marandú | Tanner | G | SMC | G x SMC |
Root area (mm2·plant−1) | ||||||||
Field capacity | 5.817 | 5.349 | 12.524 | 21.427 | 3.822 | n.s. | n.s | * |
Waterlogging | 19.010 | 9.231 | 8.554 | 9.075 | 12.465 | |||
Diameter (mm) | ||||||||
Field capacity | 0.603 | 0.602 | 0.584 | 0.637 | 0.584 | n.s. | n.s. | n.s. |
Waterlogging | 0.584 | 0.687 | 0.634 | 0.647 | 0.787 | |||
Volume (−1) mm3·plant | ||||||||
Field capacity | 2.537 | 2.292 | 5.063 | 15.002 | 1.515 | n.s. | n.s | * |
Waterlogging | 11.963 | 6.235 | 4.550 | 1.685 | 7.228 |
Genotypes | F-Test | |||||||
---|---|---|---|---|---|---|---|---|
Item | Brachipará | Cayman | Llanero | Marandú | Tanner | G | SMC | G x SMC |
SPAD index (dimensionless) | ||||||||
Field capacity | 25.67 | 28.15 | 38.39 | 38.47 | 27.94 | *** | *** | *** |
Waterlogging | 28.37 | 26.98 | 29.54 | 28.17 | 31.13 | |||
Nitrogen concentration (g·kg−1) | ||||||||
Field capacity | 1.22 | 1.01 | 1.71 | 1.23 | 1.31 | * | *** | · |
Waterlogging | 0.92 | 0.89 | 0.93 | 0.83 | 0.84 | |||
Total nitrogen (g·plant−1) | ||||||||
Field capacity | 0.09 | 0.08 | 0.08 | 0.13 | 0.11 | * | *** | * |
Waterlogging | 0.04 | 0.03 | 0.04 | 0.02 | 0.06 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amaral, R.M.; Sarango, L.A.C.; Reis, C.E.R.; Lins, T.O.J.D.; Schultz, E.B.; Guerrero, D.C. Comparison of the Waterlogging Tolerance and Morphological Responses of Five Urochloa spp. Grasses. Stresses 2024, 4, 320-329. https://doi.org/10.3390/stresses4020020
Amaral RM, Sarango LAC, Reis CER, Lins TOJD, Schultz EB, Guerrero DC. Comparison of the Waterlogging Tolerance and Morphological Responses of Five Urochloa spp. Grasses. Stresses. 2024; 4(2):320-329. https://doi.org/10.3390/stresses4020020
Chicago/Turabian StyleAmaral, Rafael Marzall, Lesly Astrid Calva Sarango, Cristiano Eduardo Rodrigues Reis, Tulio Otávio Jardim D’almeida Lins, Ericka Beatriz Schultz, and Daniel Carballo Guerrero. 2024. "Comparison of the Waterlogging Tolerance and Morphological Responses of Five Urochloa spp. Grasses" Stresses 4, no. 2: 320-329. https://doi.org/10.3390/stresses4020020