[MxLy]n[MwXz]m Non-Perovskite Hybrid Halides of Coinage Metals Templated by Metal–Organic Cations: Structures and Photocatalytic Properties
"> Figure 1
<p>Some of the characteristic structures of hybrid haloargentates from the CSD. The lines correspond to the unit cell dimensions and the letter codes to CSD codes. The colors of the atoms in a ball and stick representation: carbon—dark gray, hydrogen—light gray, chlorine—bright green, bromine—dark orange, iodine—purple, nitrogen—blue, oxygen—red, nickel—green, copper—dark orange, silver—gray, zinc—dark blue.</p> "> Figure 2
<p>Some of the characteristic structures of hybrid haloargentates from the CSD. The lines correspond to the unit cell dimensions and the letter codes to CSD codes. The colors of the atoms in a ball and stick representation: carbon—dark gray, hydrogen—light gray, chlorine—bright green, bromine—dark orange, iodine—purple, nitrogen—blue, oxygen—red, sulfur—yellow, silver—gray, zinc—dark blue, iron—light red, manganese—light purple, ruthenium—turquoise.</p> "> Figure 3
<p>Some of the characteristic structures of hybrid haloargentates from the CSD. The lines correspond to the unit cell dimensions and the letter codes to CSD codes. The colors of the atoms in a ball and stick representation: carbon—dark gray, hydrogen—light gray, bromine—dark orange, iodine—purple, nitrogen—blue, oxygen—red, sulfur—yellow, copper—dark orange, silver—gray, zinc—dark blue, vanadium—gray, iron—light red, neodymium—light green.</p> "> Figure 4
<p>Some of the characteristic structures of hybrid haloargentates from the CSD. The lines correspond to the unit cell dimensions and the letter codes to CSD codes. The colors of the atoms in a ball and stick representation: carbon—dark gray, hydrogen—light gray, chlorine—bright green, bromine—dark orange, iodine—purple, nitrogen—blue, oxygen—red, sulfur—yellow, aluminum—pink, copper—dark orange, silver—gray, zinc—dark blue, lead—dark gray, potassium—dark violet, barium—green, lanthanum—light blue, dysprosium—light green.</p> "> Figure 5
<p>Some of the characteristic structures of hybrid haloargentates from the CSD. The lines correspond to the unit cell dimensions and the letter codes to CSD codes. The colors of the atoms in a ball and stick representation: carbon—dark gray, hydrogen—light gray, chlorine—bright green, bromine—dark orange, iodine—purple, nitrogen—blue, oxygen—red, sulfur—yellow, nickel—green, silver—gray (polyhedron), cobalt—violet, iron—light red, manganese—light purple, barium—green (polyhedron), lead—dark gray, praseodymium—light green (polyhedron), dysprosium—light green.</p> "> Figure 6
<p>Some of the characteristic structures of mixed-metal haloargentate structures. The lines correspond to the unit cell dimensions and the letter codes to CSD codes. The colors of the atoms in a ball and stick representation: carbon—dark gray, hydrogen—light gray, bromine—dark orange, iodine—purple, nitrogen—blue, oxygen—red, sulfur—yellow, nickel—green, iron—dark orange, silver—gray, zinc—dark blue, lead—dark gray, barium—green, potassium—dark violet, neodymium—light green.</p> "> Figure 7
<p>Some of the characteristic structures of halocuprate structures. The lines correspond to the unit cell dimensions and the letter codes to CSD codes. For the structure of VAHWAD the hydrogen atoms were omitted. The colors of the atoms in a ball and stick representation: carbon—dark gray, hydrogen—light gray, chlorine—bright green, bromine—dark orange, iodine—purple, nitrogen—blue, oxygen—red, sulfur—yellow, copper—dark orange, barium—green, lithium—pink.</p> "> Figure 8
<p>Some of the characteristic structures of halocuprate compounds. The lines correspond to the unit cell dimensions and the letter codes to CSD codes. The colors of the atoms in a ball and stick representation: carbon—dark gray, hydrogen—light gray, chlorine—bright green, bromine—dark orange, iodine—purple nitrogen—blue, oxygen—red, copper—dark orange, cobalt—violet, manganese—light purple.</p> ">
Abstract
:1. Introduction
2. Discussion
2.1. Haloargentates
2.2. Mixed-Metal Haloargentates
2.3. Halocuprates
2.4. Photocatalytic Degradation of Dyes
3. Conclusions and Outlook
Funding
Conflicts of Interest
Abbreviations
- The following abbreviations are used in this manuscript:
DMSO | Dimethyl Sulfoxide |
DMF | N,N-Dimethylformamide |
DMA | N,N-Dimethylacetamide |
THF | tetrahydrofuran |
ATRP | Atom Transfer Radical Polymerization |
phen | 1,10-Phenantholine |
bipy | 2,2’-Bipyridine |
en | Ethylenediamine |
RT | Room Temperature |
NA | Data Not Available |
References
- Cheetham, A.K.; Rao, C.; Feller, R.K. Structural diversity and chemical trends in hybrid inorganic-organic framework materials. Chem. Commun. 2006, 46, 4780–4795. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, A.; Bienemann, O.; dos Santos Vieira, I.; Herres-Pawlis, S. New guanidine-pyridine copper complexes and their application in ATRP. Polymers 2014, 6, 995–1007. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, Y.; Zhao, Y.; Jia, H.; Yang, Z.; Yin, B.; Wu, Y.; Yi, Y.; Zhang, C.; Yao, J. Crystal-liquid-glass transition and near-unity photoluminescence quantum yield in low melting point hybrid metal halides. J. Am. Chem. Soc. 2023, 145, 12360–12369. [Google Scholar] [CrossRef] [PubMed]
- Yu, G.; Liu, H.; Yan, W.; Guo, R.; Wu, A.; Zhao, Z.; Liu, Z.; Bian, Z. 4f→3d sensitization: A luminescent EuII-MnII heteronuclear complex with a near-unity quantum yield. Mater. Horizons 2023, 10, 625–631. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Slavney, A.H.; Tao, S.; McGillicuddy, R.D.; Lee, C.C.; Wenny, M.B.; Billinge, S.J.; Mason, J.A. Designing glass and crystalline phases of metal-bis(acetamide) networks to promote high optical contrast. J. Am. Chem. Soc. 2022, 144, 22262–22271. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Li, Y.; Zhou, L.; Li, M.; Zhou, Y.; He, R. Coupling Intracompound Charge Transfer and Cluster-Centered Excited States in Cu(I) Halide Hybrids for Efficient White Light Emission. Adv. Opt. Mater. 2022, 10, 2200944. [Google Scholar] [CrossRef]
- Almushaikeh, A.M.; Wang, H.; Gutiérrez-Arzaluz, L.; Yin, J.; Huang, R.W.; Bakr, O.M.; Mohammed, O.F. Zero-dimensional Cu(I)-based organometallic halide with green cluster-centred emission for high resolution X-ray imaging screens. Chem. Commun. 2023, 59, 4447–4450. [Google Scholar] [CrossRef] [PubMed]
- Wei, Q.; Wang, D.; Pan, J.; Han, S.D.; Wang, G.M. A series of iodoargentates directed by solvated metal cations featuring uptake and photocatalytic degradation of organic dye pollutants. Chem. Asian J. 2019, 14, 640–646. [Google Scholar] [CrossRef] [PubMed]
- Du, Y.; Yang, M.; Yu, J.; Pan, Q.; Xu, R. An unexpected photoelectronic effect from [Co(en)3]2(Zr2F12)(SiF6)x4H2O, a compound containing an H-bonded assembly of discrete [Co(en)3]3+, (Zr2F12)4−, and (SiF6)2− ions. Angew. Chem. (Int. Ed. Engl.) 2005, 44, 7988–7990. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.; Zhang, L.; Li, S.; Sun, P.; Jiang, W.; Jia, D. Syntheses, Crystal Structures, and Photocatalytic Properties of Bromoargentates Induced by Transition-Metal–phen Complex Cations. Eur. J. Inorg. Chem. 2018, 6, 826–834. [Google Scholar] [CrossRef]
- Liu, Q.X.; Yang, X.Q.; Zhao, X.J.; Ge, S.S.; Liu, S.W.; Zang, Y.; Song, H.b.; Guo, J.H.; Wang, X.G. Macrocyclic dinuclear silver (I) complexes based on bis (N-heterocyclic carbene) ligands: Synthesis and structural studies. CrystEngComm 2010, 12, 2245–2255. [Google Scholar] [CrossRef]
- Jiang, Y.S.; Yao, H.G.; Ji, S.H.; Ji, M.; An, Y.L. New framework iodoargentates: M(en)3Ag2I4 (M = Zn, Ni) with tridymite topology. Inorg. Chem. 2008, 47, 3922–3924. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Ng, S.W.B.; Jiang, L.; Leong, W.J.; Zhao, J.; Hor, T.A. Cyclopentadienyl molybdenum(II) N,C-chelating benzothiazole-carbene complexes: Synthesis, structure, and application in cyclooctene epoxidation catalysis. Organometallics 2014, 33, 2457–2466. [Google Scholar] [CrossRef]
- Baker, M.V.; Brown, D.H.; Haque, R.A.; Skelton, B.W.; White, A.H. Dinuclear N-heterocyclic carbene complexes of silver(I), derived from imidazolium-linked cyclophanes. Dalton Trans. 2004, 21, 3756–3764. [Google Scholar] [CrossRef]
- Chen, W.; Liu, F. Synthesis and characterization of oligomeric and polymeric silver-imidazol-2-ylidene iodide complexes. J. Organomet. Chem. 2003, 673, 5–12. [Google Scholar] [CrossRef]
- Saito, S.; Saika, M.; Yamasaki, R.; Azumaya, I.; Masu, H. Synthesis and structure of dinuclear silver(I) and palladium(II) complexes of 2,7-bis(methylene) naphthalene-bridged bis-N-heterocyclic carbene ligands. Organometallics 2011, 30, 1366–1373. [Google Scholar] [CrossRef]
- Baron, M.; Tubaro, C.; Cairoli, M.L.; Orian, L.; Bogialli, S.; Basato, M.; Natile, M.M.; Graiff, C. Gold(III) Bis(Di-N-Heterocyclic Carbene) Square Planar Trication with Axial Ligand Interactions with Bromides from Ag/Br Counteranion Assemblies. Organometallics 2017, 36, 2285–2292. [Google Scholar] [CrossRef]
- Chen, C.; Qiu, H.; Chen, W.; Wang, D. Structural variations in nickel, palladium, and platinum complexes containing pyrimidyl N-heterocyclic carbene ligand. J. Organomet. Chem. 2008, 693, 3273–3280. [Google Scholar] [CrossRef]
- Pugh, D.; Boyle, A.; Danopoulos, A.A. ‘Pincer’pyridine dicarbene complexes of nickel and their derivatives. Unusual ring opening of a coordinated imidazol-2-ylidene. Dalton Trans. 2008, 8, 1087–1094. [Google Scholar] [CrossRef]
- Mohamed, H.A.; Shepherd, S.; William, N.; Blundell, H.A.; Das, M.; Pask, C.M.; Lake, B.R.; Phillips, R.M.; Nelson, A.; Willans, C.E. Silver(I) N-Heterocyclic Carbene Complexes Derived from Clotrimazole: Antiproliferative Activity and Interaction with an Artificial Membrane-Based Biosensor. Organometallics 2020, 39, 1318–1331. [Google Scholar] [CrossRef]
- Keske, E.C.; Zenkina, O.V.; Wang, R.; Crudden, C.M. Synthesis and structure of silver and rhodium 1,2,3-triazol-5-ylidene mesoionic carbene complexes. Organometallics 2012, 31, 456–461. [Google Scholar] [CrossRef]
- Mishra, S.; Jeanneau, E.; Ledoux, G.; Daniele, S. Lanthanide complexes in hybrid halometallate materials: Interconversion between a novel 2D microporous framework and a 1D zigzag chain structure of iodoargentates templated by octakis-solvated terbium(III) cation. Dalton Trans. 2009, 25, 4954–4961. [Google Scholar] [CrossRef]
- Pan, H.M.; Ma, Y.Y.; Li, D.Y.; Wu, S.; Jing, Z. Broadband yellow light emissions of hybrid lead silver bimetallic halides. J. Solid State Chem. 2022, 307, 122814. [Google Scholar] [CrossRef]
- Mariconda, A.; Grisi, F.; Costabile, C.; Falcone, S.; Bertolasi, V.; Longo, P. Synthesis, characterization and catalytic behaviour of a palladium complex bearing a hydroxy-functionalized N-heterocyclic carbene ligand. New J. Chem. 2014, 38, 762–769. [Google Scholar] [CrossRef]
- Kiefer, C.; Bestgen, S.; Gamer, M.T.; Kühn, M.; Lebedkin, S.; Weigend, F.; Kappes, M.M.; Roesky, P.W. Coinage Metal Complexes of Bis-Alkynyl-Functionalized N-Heterocyclic Carbenes: Reactivity, Photophysical Properties, and Quantum Chemical Investigations. Chem. Eur. J. 2017, 23, 1591–1603. [Google Scholar] [CrossRef] [PubMed]
- Xue, C.; Zou, Y.; Zhang, J.; Ren, X.M.; Ichihashi, K.; Maruyama, R.; Nishihara, S. Structural, Optical, Magnetic, and Dielectric Properties in Hybrid Solid Solutions of ZnαNi1-α(en)3Ag2I4 (0 < α < 1) by Varying the Relative Zn/Ni Content. ACS Omega 2018, 3, 10725–10732. [Google Scholar] [PubMed]
- Ma, L.L.; An, Y.Y.; Sun, L.Y.; Wang, Y.Y.; Hahn, F.E.; Han, Y.F. Supramolecular control of photocycloadditions in solution: In situ stereoselective synthesis and release of cyclobutanes. Angew. Chem. 2019, 131, 4026–4031. [Google Scholar] [CrossRef]
- Deißler, C.; Rominger, F.; Kunz, D. Controlling the coordination modes of a new and highly flexible ligand bearing two N-heterocyclic carbene moieties at a bipyridine backbone. Dalton Trans. 2009, 35, 7152–7167. [Google Scholar] [CrossRef]
- Grande-Carmona, F.; Iglesias-Sigüenza, J.; Álvarez, E.; Díez, E.; Fernández, R.; Lassaletta, J.M. Synthesis and characterization of axially chiral imidazoisoquinolin-2-ylidene silver and gold complexes. Organometallics 2015, 34, 5073–5080. [Google Scholar] [CrossRef]
- Chen, X.; Yao, Z.Y.; Xue, C.; Yang, Z.X.; Liu, J.L.; Ren, X.M. Novel isomorphism of two hexagonal non-centrosymmetric hybrid crystals of M(en)3Ag2I4 (M = transition metal Mn2+ or main-group metal Mg2+; en = ethylenediamine). CrystEngComm 2018, 20, 356–361. [Google Scholar] [CrossRef]
- Mishra, S.; Jeanneau, E.; Daniele, S.; Ledoux, G. Reactions of metal iodides as a simple route to heterometallics: Synthesis, structural transformations, thermal and luminescent properties of novel hybrid iodoargentate derivatives templated by [YL8]3+ or [YL7]3+ cations (L = DMF or DMSO). Dalton Trans. 2008, 45, 6296–6304. [Google Scholar] [CrossRef]
- Lei, X.W.; Yue, C.Y.; Zhao, J.Q.; Han, Y.F.; Ba, Z.R.; Wang, C.; Liu, X.Y.; Gong, Y.P.; Liu, X.Y. Syntheses, Crystal Structures, and Photocatalytic Properties of Polymeric Iodoargentates [TM(2,2-bipy)3]Ag3I5 (TM= Mn, Fe, Co, Ni, Zn). Eur. J. Inorg. Chem. 2015, 26, 4412–4419. [Google Scholar] [CrossRef]
- Lei, X.W.; Yue, C.Y.; Feng, L.J.; Han, Y.F.; Meng, R.R.; Yang, J.T.; Ding, H.; Gao, C.S.; Wang, C.Y. Syntheses, crystal structures and photocatalytic properties of four hybrid iodoargentates with zero-and two-dimensional structures. CrystEngComm 2016, 18, 427–436. [Google Scholar] [CrossRef]
- Kaufhold, S.; Petermann, L.; Sorsche, D.; Rau, S. “Trojan Horse” Effect in Photocatalysis-How Anionic Silver Impurities Influence Apparent Catalytic Activity. Chem. Eur. J. 2017, 23, 2271–2274. [Google Scholar] [CrossRef] [PubMed]
- McKie, R.; Murphy, J.; Park, S.; Spicer, M.; Zhou, S.z. Homoleptic crown N-heterocyclic carbene complexes. Agewandte-Chem.-Int. Ed. 2007, 46, 6525–6528. [Google Scholar] [CrossRef]
- Zhang, B.; Li, W.A.; Li, J.; Xu, Y.P.; Xu, Y.R.; Wang, W.H.; Zou, G.D. [Ni(5,5′-dmbpy)3]2Ag4.9I8.9·4H2O: A discrete iodoargentate with transition metal complexes. Inorg. Chem. Commun. 2020, 121, 108219. [Google Scholar] [CrossRef]
- Zheng, W.; Gao, Y.; Chen, N.; Wu, B.; Jia, D.; Zhao, S. Syntheses, crystal structures, and optical properties of polymeric iodoargentates containing transition metal-complexes with aromatic ligands. Inorganica Chim. Acta 2020, 510, 119762. [Google Scholar] [CrossRef]
- Li, H.H.; Chen, Z.R.; Sun, L.G.; Lian, Z.X.; Chen, X.B.; Li, J.B.; Li, J.Q. Two iodoargentate hybrid coordination polymers induced by transition-metal complexes: Structures and properties. Cryst. Growth Des. 2010, 10, 1068–1073. [Google Scholar] [CrossRef]
- Lei, X.W.; Yue, C.Y.; Wu, F.; Jiang, X.Y.; Chen, L.N. Syntheses, crystal structures and photocatalytic properties of transition metal complex directed iodoargentates: [TM(2,2-bipy)3]Ag5I7. Inorg. Chem. Commun. 2017, 77, 64–67. [Google Scholar] [CrossRef]
- Baker, L.; Bowmaker, G.; Skelton, B.; White, A. Structure of [(tmpp)2Ag]+2[Ag5I7]2−; an Unusual Ionic Adduct of Tris(2,4,6-trimethoxyphenyl)phosphine (tmpp) With Silver(I) Iodide. Aust. J. Chem. 1992, 45, 1909–1917. [Google Scholar] [CrossRef]
- Bowmaker, G.A.; Skelton, B.W.; Somers, N.; White, A.H. Syntheses, structures and vibrational spectroscopy of some unusual silver(I)(pseudo-) halide/unidentate nitrogen base polymers. Inorganica Chim. Acta 2005, 358, 4307–4326. [Google Scholar] [CrossRef]
- Tong, Y.-B. CCDC 1976963: Experimental Crystal Structure Determination, 2020. Available online: https://doi.org/10.5517/ccdc.csd.cc24c60r (accessed on 1 February 2025).
- Mishra, S.; Jeanneau, E.; Ledoux, G.; Daniele, S. Novel barium-organic incorporated iodometalates: Do they have template properties for constructing rare heterotrimetallic hybrids? Inorg. Chem. 2014, 53, 11721–11731. [Google Scholar] [CrossRef]
- Lei, X.W.; Yue, C.Y.; Zhao, J.Q.; Han, Y.F.; Yang, J.T.; Meng, R.R.; Gao, C.S.; Ding, H.; Wang, C.Y.; Chen, W.D.; et al. Two types of 2D layered iodoargentates based on trimeric [Ag3I7] secondary building units and hexameric [Ag6I12] ternary building units: Syntheses, crystal structures, and efficient visible light responding photocatalytic properties. Inorg. Chem. 2015, 54, 10593–10603. [Google Scholar] [CrossRef]
- Wang, D.H.; Zhao, L.M.; Lin, X.Y.; Wang, Y.K.; Zhang, W.T.; Song, K.Y.; Li, H.H.; Chen, Z.R. Iodoargentate/iodobismuthate-based materials hybridized with lanthanide-containing metalloviologens: Thermochromic behaviors and photocurrent responses. Inorg. Chem. Front. 2018, 5, 1162–1173. [Google Scholar] [CrossRef]
- Mather, J.C.; Wyllie, J.A.; Hamilton, A.; da Costa, T.P.S.; Barnard, P.J. Antibacterial silver and gold complexes of imidazole and 1,2,4-triazole derived N-heterocyclic carbenes. Dalton Trans. 2022, 51, 12056–12070. [Google Scholar] [CrossRef]
- Li, H.H.; Huang, S.W.; Lian, Z.X.; Liu, J.B.; Wang, M.; Chen, Z.R. Incorporating rare earth metal complexes and conjugated organic cations into polymeric iodoargentate: Structures and properties of two hybrid iodoargentates. Z. Anorg. Und Allg. Chem. 2012, 638, 851–855. [Google Scholar] [CrossRef]
- Mu, Y.; Wang, D.; Meng, X.D.; Pan, J.; Han, S.D.; Xue, Z.Z. Construction of iodoargentates with diverse architectures: Template syntheses, structures, and photocatalytic properties. Cryst. Growth Des. 2020, 20, 1130–1138. [Google Scholar] [CrossRef]
- Tang, C.; Yao, J.; Li, Y.; Xia, Z.; Liu, J.; Zhang, C.y. Transition-metal-complex-directed synthesis of hybrid iodoargentates with single-crystal to single-crystal structural transformation and photocatalytic properties. Inorg. Chem. 2020, 59, 13962–13971. [Google Scholar] [CrossRef]
- Zhang, B.; Li, J.; Chen, X.; Yang, M.F.; Shen, H.Y.; Zhu, J.C. [NH4][Fe(bipy)3]2[Ag6Br11]: Synthesis, structure, characterization and photocurrent response. Inorg. Chem. Commun. 2022, 137, 109250. [Google Scholar] [CrossRef]
- Li, H.H.; Li, J.B.; Wang, M.; Huang, S.W.; Chen, Z.R. Two Neutral Heterometallic Iodoargentate Hybrid Frameworks: Structures and Properties. J. Clust. Sci. 2011, 22, 573–586. [Google Scholar] [CrossRef]
- Shen, Y.; Zhang, L.; Sun, P.; Liu, S.; Jiang, W.; Jia, D. Iodoargentates from clusters to 1D chains and 2D layers induced by solvated lanthanide complex cations: Syntheses, crystal structures, and photoluminescence properties. CrystEngComm 2018, 20, 520–528. [Google Scholar] [CrossRef]
- Shen, Y.; Lu, J.; Tang, C.; Fang, W.; Jia, D.; Zhang, Y. Syntheses and properties of 2-D and 3-D Pb-Ag heterometallic iodides decorated with ethylene polyamines at the Pb(II) center. Dalton Trans. 2014, 43, 9116–9125. [Google Scholar] [CrossRef]
- Gao, Y.; Chen, N.; Tian, Y.; Zhang, J.; Jia, D. Polymeric iodoargentate hybrids incorporating octakis-or heptakis-solvated lanthanide complexes: Syntheses, crystal structures, and photocatalysis. Inorg. Chem. 2021, 60, 3761–3772. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Xin, Y.; Xing, Y.H.; Bai, F.Y.; Shi, Z. Construction and Properties of Ag-I Polymeric Clusters Attach with Nitrogen Heterocyclic Transition Metal Moiety. J. Inorg. Organomet. Polym. Mater. 2022, 32, 1695–1711. [Google Scholar] [CrossRef]
- Yu, T.; Fu, Y.; Wang, Y.; Hao, P.; Shen, J.; Fu, Y. Hierarchical symmetry transfer and flexible charge matching in five [M(phen)3]2+ directed iodoargentates with 1 to 3D frameworks. CrystEngComm 2015, 17, 8752–8761. [Google Scholar] [CrossRef]
- Huang, W.; Wei, H.; Li, L.; Qian, J.; Zhang, C. Metal-Cation-Directed Assembly of Two M-I (M= Cu, Ag) Clusters: Structures, Thermal Behaviors, Theoretical Studies, and Luminescence Properties. J. Clust. Sci. 2016, 27, 1463–1474. [Google Scholar] [CrossRef]
- Ren, X.C.; Li, J.; Wang, W.H.; Shao, Y.N.; Zhang, B.; Li, L.Z. Hybrid silver haloplumbates containing metal complexes: Syntheses, structures and photoelectric properties. J. Solid State Chem. 2022, 308, 122912. [Google Scholar] [CrossRef]
- Zhang, B.; Wang, Y.N.; Li, J.; Ren, X.C.; Yang, Y.; Yang, X.R. Two silver halobismuthate hybrids decorated by photosensitive metal complexes: Syntheses, structures, photoelectric properties, and theoretical studies. Cryst. Growth Des. 2022, 22, 7434–7442. [Google Scholar] [CrossRef]
- Lu, J.; Zhang, J.; Yang, X.; Jia, D.; Zhao, S. Syntheses and photocatalytic properties of polymeric iodoargentate and Pb-iodoargentate hybrids incorporating lanthanide complex. Inorganica Chim. Acta 2022, 537, 120962. [Google Scholar] [CrossRef]
- Tang, C.; Wang, F.; Jia, D.; Jiang, W.; Zhang, Y. Syntheses and characterizations of polymeric silver iodoplumbates, and iodoplumbates with lanthanide complexes. CrystEngComm 2014, 16, 2016–2024. [Google Scholar] [CrossRef]
- Zhang, B.; Li, J.; Pang, M.; Wang, Y.S.; Liu, M.Z.; Zhao, H.M. Four discrete silver iodobismuthates/bromobismuthates with metal complexes: Syntheses, structures, photocurrent responses, and theoretical studies. Inorg. Chem. 2021, 61, 406–413. [Google Scholar] [CrossRef]
- Pang, M.; Ren, X.C.; Chen, X.; Shen, H.Y.; Li, J.; Zhang, B.; Li, L.Z. Two heterometallic silver-iodoplumbates with [Fe(phen)3]2+ complexes: Syntheses, structures, photocurrent responses and theoretical studies. Inorg. Chem. Commun. 2022, 139, 109342. [Google Scholar] [CrossRef]
- Zheng, W.; Chen, N.N.; Gao, Y.; Wu, B.; Jia, D. Heterometallic Pb-Ag Iodides from 1-D Chains to 2-D Layers Induced by Transition Metal Complex Cations: Syntheses, Crystal Structures, and Photocatalytic Properties. Eur. J. Inorg. Chem. 2019, 44, 4752–4759. [Google Scholar] [CrossRef]
- Yue, C.Y.; Lei, X.W.; Han, Y.F.; Lu, X.X.; Tian, Y.W.; Xu, J.; Liu, X.F.; Xu, X. Transition-metal-complex cationic dyes photosensitive to two types of 2D layered silver bromides with visible-light-driven photocatalytic properties. Inorg. Chem. 2016, 55, 12193–12203. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Yu, T.; An, L.; Wang, Y.; Shen, J.; Fu, Y.; Fu, Y. Heterometal silver/copper(I) modulated thermochromism of two isostructural iodoplumbates. J. Solid State Chem. 2015, 221, 140–144. [Google Scholar] [CrossRef]
- Kapoor, R.; Kataria, A.; Venugopalan, P.; Kapoor, P.; Corbella, M.; Rodríguez, M.; Romero, I.; Llobet, A. New tetranuclear Cu(II) complexes: Synthesis, structure, and magnetic properties. Inorg. Chem. 2004, 43, 6699–6706. [Google Scholar] [CrossRef]
- Artem’ev, A.V.; Davydova, M.P.; Berezin, A.S.; Samsonenko, D.G.; Bagryanskaya, I.Y.; Brel, V.K.; Hei, X.; Brylev, K.A.; Artyushin, O.I.; Zelenkov, L.E.; et al. New approach toward dual-emissive organic-inorganic hybrids by integrating Mn(II) and Cu(I) emission centers in ionic crystals. ACS Appl. Mater. Interfaces 2022, 14, 31000–31009. [Google Scholar] [CrossRef]
- Fotouhi, L.; Dehghanpour, S.; Heravi, M.M.; Ardakani, M.D. Electrochemical synthesis and structural characterization of a novel mixed-valence copper(I)-copper(II) complex:{[Bis (ethylenediamine)copper(II)] bis[diiodocuprate(I)]}. Molecules 2007, 12, 1410–1419. [Google Scholar] [CrossRef]
- Canty, A.; Engelhardt, L.; Healy, P.; Kildea, J.; Minchin, N.; White, A. Lewis-Base Adducts of Group-11 Metal(I) Compounds. XXXI. Reaction of 2,6-Bis[1-phenyl-1-(pyridin-2-yl)ethyl]pyridine (L), and Copper(I) Halides in Acetonitrile: Structural Characterization of Salts of the [(MeCN)Cu(meso-L)]+ Cation. Aust. J. Chem. 1987, 40, 1881–1891. [Google Scholar] [CrossRef]
- Park, I.H.; Kang, Y.; Lee, E.; Ju, H.; Kim, S.; Seo, S.; Jung, J.H.; Lee, S.S. Snapshot and crystallographic observations of kinetic and thermodynamic products for NO2S2 macrocyclic complexes. IUCrJ 2018, 5, 45–53. [Google Scholar] [CrossRef] [PubMed]
- Loukopoulos, E.; Kallitsakis, M.; Tsoureas, N.; Abdul-Sada, A.; Chilton, N.F.; Lykakis, I.N.; Kostakis, G.E. Cu(II) coordination polymers as vehicles in the A3 coupling. Inorg. Chem. 2017, 56, 4898–4910. [Google Scholar] [CrossRef] [PubMed]
- Zink, D.M.; Grab, T.; Baumann, T.; Nieger, M.; Barnes, E.C.; Klopper, W.; Bräase, S. Experimental and theoretical study of novel luminescent di-, tri-, and tetranuclear copper triazole complexes. Organometallics 2011, 30, 3275–3283. [Google Scholar] [CrossRef]
- Su, C.Y.; Cai, Y.P.; Chen, C.L.; Lissner, F.; Kang, B.S.; Kaim, W. Self-Assembly of Trigonal-Prismatic Metallocages Encapsulating BF4− or CuI32− as Anionic Guests: Structures and Mechanism of Formation. Angew. Chem. Int. Ed. 2002, 41, 3371–3375. [Google Scholar] [CrossRef]
- Haldon, E.; Alvarez, E.; Nicasio, M.C.; Perez, P.J. Copper(I) complexes with trispyrazolylmethane ligands: Synthesis, characterization, and catalytic activity in cross-coupling reactions. Inorg. Chem. 2012, 51, 8298–8306. [Google Scholar] [CrossRef] [PubMed]
- Kapoor, R.; Kataria, A.; Kapoor, P.; Pannu, A.P.S.; Hundal, M.S.; Corbella, M. Synthesis, X-ray structure and magnetic studies of Cu(II) complexes of tridentate SNS ligands (S-dbpt, N,N,N′,N′-tetraisobutylpyridine-2,6-dithiocarboxamide; S-dppt, N,N,N′,N′-tetraisopropylpyridine-2,6-dithiocarboxamide): Role of steric factors on the geometry around Cu(II). Polyhedron 2007, 26, 5131–5138. [Google Scholar]
- Le Gall, B.; Conan, F.; Cosquer, N.; Kerbaol, J.M.; Kubicki, M.M.; Vigier, E.; Le Mest, Y.; Pala, J.S. Unexpected behaviour of copper(I) towards a tridentate Schiff base: Synthesis, structure and properties of new Cu(I) Cu(II) and Cu(II) complexes. Inorganica Chim. Acta 2001, 324, 300–308. [Google Scholar] [CrossRef]
- Nurtaeva, A.; Holt, E. (15-crown-5)caesium dicopper(I) triiodide, (15-crown-5)potassium dicopper(I) triiodide and (15-crown-5)rubidium dicopper(I) triiodide. Acta Crystallogr. Sect. C Cryst. Struct. Commun. 1998, 54, 594–597. [Google Scholar] [CrossRef]
- Nurtaeva, A.K.; Hu, G.; Holt, E.M. Tetraethylammonium dicopper(I) triiodide and (18-crown-6)potassium dicopper(I) triiodide. Acta Crystallogr. Sect. C Cryst. Struct. Commun. 1998, 54, 597–600. [Google Scholar] [CrossRef]
- Mohr, F.; Binfield, S.A.; Fettinger, J.C.; Vedernikov, A.N. A practical, fast, and high-yielding aziridination procedure using simple Cu(II) complexes containing N-donor pyridine-based ligands. J. Org. Chem. 2005, 70, 4833–4839. [Google Scholar] [CrossRef] [PubMed]
- Mishra, S.; Jeanneau, E.; Ledoux, G.; Daniele, S. Solid-state structural transformations in metal organic-inorganic hybrids constructed from terbium(III) complexes and iodocuprate clusters. CrystEngComm 2012, 14, 3894–3901. [Google Scholar] [CrossRef]
- Manzur, J.; García, A.M.; Vega, A.; Ibañez, A. Synthesis and structure of copper(II) complexes with L-OH (L-OH= 2,6-bis-[N-(2-pyridylethyl)-formidoyl]-4-methyl-phenol). Polyhedron 2007, 26, 115–122. [Google Scholar] [CrossRef]
- Mishra, S.; Jeanneau, E.; Chermette, H.; Daniele, S.; Hubert-Pfalzgraf, L.G. Crystal-to-crystal transformations in heterometallic yttrium(III)-copper(I) iodide derivatives in a confined solvent-free environment: Influence of solvated yttrium cations on the nuclearity and dimensionality of iodocuprate clusters. Dalton Trans. 2008, 5, 620–630. [Google Scholar] [CrossRef]
- Ghorai, D.; Mani, G. Single-step substitution of all the α, β-positions in pyrrole: Choice of binuclear versus multinuclear complex of the novel polydentate ligand. Inorg. Chem. 2014, 53, 4117–4129. [Google Scholar] [CrossRef] [PubMed]
- Patra, A.; Haldar, S.; Kumar, G.V.; Carrella, L.; Ghosh, A.K.; Bera, M. New symmetrical dinucleating ligand based assembly of bridged dicopper(II) and dizinc(II) centers: Synthesis, structure, spectroscopy, magnetic properties and glycoside hydrolysis. Inorganica Chim. Acta 2015, 436, 195–204. [Google Scholar] [CrossRef]
- Crescenzi, R.; Solari, E.; Floriani, C.; Chiesi-Villa, A.; Rizzoli, C. One-and Two-Electron Oxidative Pathways Leading to Cyclopropane-Containing Oxidized Porphyrinogens and C-C-Coupled Porphyrinogens from Alkali Cation- and Transition Metal-meso-Octaethylporphyrinogen Complexes. J. Am. Chem. Soc. 1999, 121, 1695–1706. [Google Scholar] [CrossRef]
- Begum, A.; Seewald, O.; Seshadri, T.; Flörke, U.; Henkel, G. Secondary Structures in Inorganic Helicates of an Octadentate Phenanthroline-Type Schiff Base Ligand. Eur. J. Inorg. Chem. 2016, 8, 1157–1160. [Google Scholar] [CrossRef]
- Liu, B.; Pan, S.; Liu, B.; Chen, W. Di-, tri-, and tetranuclear copper(I) complexes of phenanthroline-linked dicarbene ligands. Inorg. Chem. 2014, 53, 10485–10497. [Google Scholar] [CrossRef] [PubMed]
- Feng, H.; Zhou, X.P.; Wu, T.; Li, D.; Yin, Y.G.; Ng, S.W. Hydrothermal synthesis of copper complexes of 4′-pyridyl terpyridine: From discrete monomer to zigzag chain polymer. Inorganica Chim. Acta 2006, 359, 4027–4035. [Google Scholar] [CrossRef]
- Baisch, U.; Poli, R. Copper(I/II) and cobalt(II) coordination chemistry of relevance to controlled radical polymerization processes. Polyhedron 2008, 27, 2175–2185. [Google Scholar] [CrossRef]
- Jiang, Y.; Gendy, C.; Roesler, R. Nickel, ruthenium, and rhodium NCN-pincer complexes featuring a six-membered N-heterocyclic carbene central moiety and pyridyl pendant arms. Organometallics 2018, 37, 1123–1132. [Google Scholar] [CrossRef]
- Protsenko, A.; Shakirova, O.; Kuratieva, N. Synthesis and the crystal structures of double complexes of copper(II) and cobalt(II) with tris(3,5-dimethylpyrazol-1-yl)methane. J. Mol. Struct. 2019, 1175, 782–787. [Google Scholar] [CrossRef]
- Artem’ev, A.V.; Pritchina, E.A.; Rakhmanova, M.I.; Gritsan, N.P.; Bagryanskaya, I.Y.; Malysheva, S.F.; Belogorlova, N.A. Alkyl-dependent self-assembly of the first red-emitting zwitterionic {Cu4I6} clusters from [alkyl-P(2-Py)3]+ salts and CuI: When size matters. Dalton Trans. 2019, 48, 2328–2337. [Google Scholar] [CrossRef] [PubMed]
- Mishra, S.; Jeanneau, E.; Daniele, S.; Hubert-Pfalzgraf, L.G. Rare example of a polynuclear heterometallic yttrium(III)-copper(I) iodide cluster with a [Y6(μ6-O)(μ3-OH)8]8+ core structure showing single crystal-to-single crystal transformation. CrystEngComm 2008, 10, 814–816. [Google Scholar] [CrossRef]
- Qin, X.; Zhang, G.; Gao, Y.; Liu, H.; Du, C.; Liu, Z. Metallo-supramolecular grid-type architectures for highly and selectively efficient adsorption of dyes in water. RSC Adv. 2015, 5, 43334–43337. [Google Scholar] [CrossRef]
- Hammond, R.P.; Chesnut, D.J.; Zubieta, J.A. Investigations of the Copper Bromide-Ethylenediamine System: The Hydrothermal Synthesis and X-Ray Crystal Structure of [Cu(H2NCH2CH2NH2)2][{Cu2Br4}] and [Cu(H2NCH2CH2NH2)2][{Cu5Br7}]. J. Solid State Chem. 2001, 158, 55–60. [Google Scholar] [CrossRef]
- Kozhevnikov, D.N.; Kozhevnikov, V.N.; Prokhorov, A.M.; Ustinova, M.M.; Rusinov, V.L.; Chupakhin, O.N.; Aleksandrov, G.G.; König, B. Consecutive nucleophilic substitution and aza Diels-Alder reaction—an efficient strategy to functionalized 2,2′-bipyridines. Tetrahedron Lett. 2006, 47, 869–872. [Google Scholar] [CrossRef]
- Bushuev, M.B.; Krivopalov, V.P.; Pervukhina, N.V.; Naumov, D.Y.; Moskalenko, G.G.; Vinogradova, K.A.; Sheludyakova, L.A.; Larionov, S.V. Copper(II) complexes based on a new chelating 4-(3,5-diphenyl-1H-pyrazol-1-yl)-6-(piperidin-1-yl)pyrimidine ligand: Synthesis and crystal structures. Lone pair-π, C-H···π, π-π and C-H··· A (A=N, Cl) non-covalent interactions. Inorganica Chim. Acta 2010, 363, 1547–1555. [Google Scholar] [CrossRef]
- Živec, P.; Perdih, F.; Turel, I.; Giester, G.; Psomas, G. Different types of copper complexes with the quinolone antimicrobial drugs ofloxacin and norfloxacin: Structure, DNA-and albumin-binding. J. Inorg. Biochem. 2012, 117, 35–47. [Google Scholar] [CrossRef] [PubMed]
- Lonnon, D.G.; Craig, D.C.; Colbran, S.B. Monomeric and dimeric metal complexes of a simply prepared and versatile pentapyridyldiamine. Inorg. Chem. Commun. 2002, 5, 958–962. [Google Scholar] [CrossRef]
- Florke, U. CCDC 974788: Experimental Crystal Structure Determination, 2016. Available online: https://doi.org/10.5517/cc11qbsw (accessed on 1 February 2025).
- Hoyer, M.; Hartl, H. Synthese und Strukturuntersuchungen von Iodocupraten(I). XV Iodocuprate(I) mit solvatisierten Kationen: [Li(CH3CN)4][Cu2I3] und [Mg{(CH3)2CO}6][Cu2I4]. Z. Anorg. Und Allg. Chem. 1992, 612, 45–50. [Google Scholar] [CrossRef]
- Shekhovtsov, N.A.; Kokina, T.E.; Vinogradova, K.A.; Panarin, A.Y.; Rakhmanova, M.I.; Naumov, D.Y.; Pervukhina, N.V.; Nikolaenkova, E.B.; Krivopalov, V.P.; Czerwieniec, R.; et al. Near-infrared emitting copper(I) complexes with a pyrazolylpyrimidine ligand: Exploring relaxation pathways. Dalton Trans. 2022, 51, 2898–2911. [Google Scholar] [CrossRef] [PubMed]
- Herres-Pawlis, S.; Haase, R.; Akin, E.; Flörke, U.; Henkel, G. Syntheses and X-ray Structure Analyses of the First Bis (chelated) Copper and Iron Bisguanidine Complexes. Z. Anorg. Und Allg. Chem. 2008, 634, 295–298. [Google Scholar] [CrossRef]
- Escriche, L.; Lucena, N.; Casabó, J.; Teixidor, F.; Kivekäs, R.; Sillanpää, R. Synthesis and crystal structure of bis[(7,9-diaza-3,14-dithiatetracycle [15,4,0,04,5,013,14] nonacosa-1(17),18,20,4(22),23,25,13(26),27,29-nonaene)chlorocopper(II)] tetrachlorodicuprate(I) bismethanol. Atypical non-planar conformation of the [Cu2Cl4]2− anion. Polyhedron 1995, 14, 649–654. [Google Scholar]
- Bienemann, O.; Haase, R.; Flörke, U.; Doering, A.; Kuckling, D.; Herres-Pawlis, S. New Bisguanidine-Copper Complexes and their Application in ATRP. Z. Naturforsch 2010, 65, 798–806. [Google Scholar] [CrossRef]
- Flörke, U.; Bernard, M.; Henkel, G. CCDC 1532436: Experimental Crystal Structure Determination, 2017. Available online: https://doi.org/10.5517/ccdc.csd.cc1nfmf4 (accessed on 1 February 2025).
- Belaj, F.; Tüchler, M.; Mösch-Zanetti, N.C. CCDC 2201365: Experimental Crystal Structure Determination, 2022. Available online: https://doi.org/10.5517/ccdc.csd.cc2cwpsr (accessed on 1 February 2025).
- Nyburg, S.C.; Baker, R.; Szymanski, J. Crystal and molecular structure of bis (N-benzoylhydrazine) copper(II) pentachlorotricuprate(I), a new complex containing copper in mixed oxidation states. Inorg. Chem. 1971, 10, 138–146. [Google Scholar] [CrossRef]
- Rath, N.P.; Holt, E.M. Copper(I) iodide complexes of novel structure: [Cu4I6][Cu8I13]K7(12-crown-4)6, [Cu4I6]K2(15-crown-5)2, and [Cu3I4]K(dibenzo-24-crown-8). J. Chem. Soc. Chem. Commun. 1985, 10, 665–667. [Google Scholar] [CrossRef]
- Belsky, V.; Streltsova, N.; Kireeva, O.; Bulychev, B.; Sokolova, T. Complexation of metal salts with macrocyclic polyethers in aprotic organic solvents. Crystal structures of ionic complexes [CuCl·15-C-5·CH3CN]2 [Cu2Cl6] and {[Cu·15-C-5·(CH3CN)2][Cu3Cl8]}n. Inorganica Chim. Acta 1991, 183, 189–194. [Google Scholar] [CrossRef]
- Cabrera, B.R.; Wang, R.J.; Li, J.; Yuen, T. A New Type of Coordination Polymer: Hydrothermal Synthesis, Crystal Structure, and Magnetic Properties of [(C10H8N2)2CuBr]Cu3Br4. MRS Online Proc. Libr. 1998, 547, 493. [Google Scholar] [CrossRef]
- Vafazadeh, R.; Ehsani, M.; Willis, A.C. Synthesis and structural characterization of copper(II) complexes with a tetradentate semicarbazone ligand derived from 2,5-hexadione. J. Iran. Chem. Soc. 2019, 16, 2509–2518. [Google Scholar] [CrossRef]
- Wang, X.; Tang, Y.; Xiong, R. {[Cu2Br3](n)[Cu(H-Leof)2] center dot 2H2O} where Leof is levofloxacin. Chin. J. Inorg. Chem. 2005, 21, 1275–1276. [Google Scholar]
- Liu, Y.; Zhang, J.; Gong, L.; Zhang, C. A Unique Mixed-Valence CuII/CuI Organic-Inorganic Hybrid Supramolecular Cluster: Syntheses, Crystal Structure, Luminescence and 2,4,6-Trinitrophenol Sensing Properties. J. Clust. Sci. 2016, 27, 1353–1364. [Google Scholar] [CrossRef]
- Paulsson, H.; Fischer, A.; Kloo, L. Bis[bis(12-crown-4)potassium]hexaiodotetracuprate(I). Acta Crystallogr. Sect. E Struct. Rep. Online 2004, 60, m548–m550. [Google Scholar] [CrossRef]
- Nurtaeva, A.; Holt, E.M. Aqua(benzo-15-crown-5)lithium-hexa-μ-iodotetracopper-benzo-15-crown-5(2/1/2), bis[bis(benzo-15-crown-5)caesium] hexa-μ-iodotetracopper and μ-aqua-bis[aqua(18-crown-6)sodium] hexa-μ-iodotetracopper. Acta Crystallogr. Sect. C Cryst. Struct. Commun. 1999, 55, 1453–1457. [Google Scholar] [CrossRef]
- Zabierowski, P.; Hodorowicz, M.; Szklarzewicz, J. Templated metalophilicity: Synthesis of halometallic double salts directed by a dicopper(I) hydrazinyl-tetraimine nanocation. New J. Chem. 2018, 42, 817–821. [Google Scholar] [CrossRef]
- Kokina, T.; Glinskaya, L.; Piryazev, D.; Baranov, A.Y.; Agafontsev, A.; Eremina, Y.A.; Vorontsova, E.; Bogomyakov, A.; Naumov, D.Y.; Tkachev, A.; et al. Synthesis and structures of CuI,II complexes with a 2,2′-bipyridine derivative bearing a (+)-3-carene moiety. Russ. Chem. Bull. 2018, 67, 1251–1260. [Google Scholar] [CrossRef]
- Asada, T.; Hoshimoto, Y.; Ogoshi, S. Rotation-triggered transmetalation on a heterobimetallic Cu/Al N-phosphine-oxide-substituted imidazolylidene complex. J. Am. Chem. Soc. 2020, 142, 9772–9784. [Google Scholar] [CrossRef]
- Rusanova, J.A.; Domasevitch, K.V.; Vassilyeva, O.Y.; Kokozay, V.N.; Rusanov, E.B.; Nedelko, S.G.; Chukova, O.V.; Ahrens, B.; Raithby, P.R. New luminescent copper(I) halide complexes containing Rb+ complexes of 18-crown-6 as counter ions prepared from zerovalent copper. J. Chem. Soc. Dalton Trans. 2000, 13, 2175–2182. [Google Scholar] [CrossRef]
- Dasgupta, S.; Liu, J.; Shoffler, C.A.; Yap, G.P.; Watson, M.P. Enantioselective, Copper-Catalyzed Alkynylation of Ketimines To Deliver Isoquinolines with α-Diaryl Tetrasubstituted Stereocenters. Org. Lett. 2016, 18, 6006–6009. [Google Scholar] [CrossRef] [PubMed]
- Mishra, S.; Pfalzgraf, L.G.H.; Jeanneau, E.; Chermette, H. From discrete [Y(DMF)8][Cu4(μ3-I)2(μ-I)3I2] ion pairs to extended [Y(DMF)6(H2O)2][Cu7(μ4-I)3(μ3-I)2(μ-I)4(I)]1∞ and [Y(DMF)6(H2O)3][CuI7CuII2(μ3-I)8(μ-I)6]2∞ arrays by H-bond templating in a confined solvent-free environment. Dalton Trans. 2007, 410–413. [Google Scholar] [CrossRef] [PubMed]
- Floerke, U. CCDC 976543: Experimental Crystal Structure Determination, 2014. Available online: https://doi.org/10.5517/cc11s5dd (accessed on 1 February 2025).
- Davydova, M.; Bagryanskaya, I.Y.; Sadykov, E.K.; Brel, V. Hybrid Mn(II)-Cu(I) Complex Based on 1,3,5-Tris(diphenylphosphinyl) benzene. Russ. J. Gen. Chem. 2023, 93, 1767–1773. [Google Scholar] [CrossRef]
- Nurtaeva, A.; Holt, E.M. Triaquocalcium(18-crown-6) heptaiodopentacuprate(I), triaquostrontium(18-crown-6) heptaiodopentacuprate(I), and triaquozinc(18-crown-6) heptaiodopentacuprate(I). J. Chem. Crystallogr. 2002, 32, 337–346. [Google Scholar] [CrossRef]
- Li, W.; Hui, R.H.; Zhou, P.; Hou, P.; You, Z.L. Synthesis, Characterization, and Crystal Structure of a Novel Trinuclear Schiff Base Copper(II) Complex Containing a [Cu5I7] Cluster. Synth. React. Inorg.-Met.-Org.-Nano-Met. Chem. 2012, 42, 256–259. [Google Scholar] [CrossRef]
- Mereiter, K.; Kirchner, K. CCDC 916978: Experimental Crystal Structure Determination, 2013. Available online: https://doi.org/10.5517/cczs5yv (accessed on 1 February 2025).
- Pan, J.; Zhang, D.; Han, S.D.; Hu, J.X.; Xue, Z.Z.; Wang, G.M. White-light emission and magnetism behaviors endowed by inorganic lanthanide templates in iodocuprates. Cryst. Growth Des. 2019, 19, 1825–1831. [Google Scholar] [CrossRef]
- Lei, X.W.; Yue, C.Y.; Zhao, J.Q.; Han, Y.F.; Yang, J.T.; Meng, R.R.; Gao, C.S.; Ding, H.; Wang, C.Y.; Chen, W.D. Low-Dimensional Hybrid Cuprous Halides Directed by Transition Metal Complex: Syntheses, Crystal Structures, and Photocatalytic Properties. Cryst. Growth Des. 2015, 15, 5416–5426. [Google Scholar] [CrossRef]
- Thorn, A.A.; Willett, R.D.; Twamley, B. Structures of [(n-C4H9)2NH2]2Cd9Cl20·2H2O and [Cu(C14H24N4)]2Cu13Cl30(H2O)2·xH2O: Perforated Layer Structures Based on the CdCl2 Layer Network. Inorg. Chem. 2008, 47, 5775–5779. [Google Scholar] [CrossRef] [PubMed]
- DeBord, J.D.; Warren, C.; Haushalter, R.; Zubieta, J. Hydrothermal synthesis and structural characterization of [Cu(en)2]2Cu7Cl11: A three-dimensional open-framework copper halide with occluded [Cu(en)2]2+ cations. Chem. Commun. 1997, 15, 1365–1366. [Google Scholar] [CrossRef]
- Li, Q.; Fu, Y. A layered iodocuprate based on a 3D cationic supramolecular network of dimeric Co(II) complexes by offset face-to-face interactions. CrystEngComm 2009, 11, 1515–1518. [Google Scholar] [CrossRef]
- Yu, J.H.; Jia, H.B.; Pan, L.Y.; Yang, Q.X.; Wang, T.G.; Xu, J.Q.; Cui, X.B.; Liu, Y.J.; Li, Y.Z.; Lü, C.H.; et al. Hydrothermal synthesis, crystal structure and third-order non-linear optical property of a discrete decanuclear iodocuprate(I) [CuI10H2I16]4− with [NiII(phen)3]2+ as a template. J. Solid State Chem. 2003, 175, 152–158. [Google Scholar] [CrossRef]
- Tershansy, M.A.; Goforth, A.M.; Ellsworth, J.M.; Smith, M.D.; zur Loye, H.C. [Co(phen)3]2[Cu11I15]: A mixed-metal iodocuprate containing the novel [Cu10I15]5− and [Cu12I15]3− clusters. CrystEngComm 2008, 10, 833–838. [Google Scholar] [CrossRef]
- Yue, C.Y.; Lei, X.W.; Lu, X.X.; Li, Y.; Wei, J.C.; Wang, W.; Yin, Y.D.; Wang, N. Comparison studies of hybrid lead halide [MPb2X7]2− (M = Cu, Ag; X = Br, I) chains: Band structures and visible light driven photocatalytic properties. Dalton Trans. 2017, 46, 9235–9244. [Google Scholar] [CrossRef] [PubMed]
- Tang, C.; Sun, Y.; Liu, J.; Xu, Q.; Zhang, C.y. [Co(2,2′-bipy)3]Ag3I6 with a hole structure facilitates dye adsorption and photocatalytic reduction. Dalton Trans. 2022, 51, 16784–16789. [Google Scholar] [CrossRef] [PubMed]
Sum Formula | Nuclearity | Dim. | CCDC Code | Synthesis | Ref. |
---|---|---|---|---|---|
(, n( | 2 | 1D | CEQJAM | RT | [10] |
, NO, | 2 | 0D | CEQJEQ | RT | [10] |
, | 2 | 0D | CUXWOI | antisolvent | [11] |
(, n( | 2 | 3D | EFATIP | RT | [12] |
(, n( | 2 | 3D | EFATOV | RT | [12] |
, 0.5( | 2 | 0D | EFELIM | RT | [13] |
, , 4(NO) | 2 | 0D | GAJLOT | RT | [14] |
(, n( | 2 | 1D | IHINES | hot DMSO | [15] |
, | 2 | 0D | IVODIH | RT | [16] |
, , 0.5() | 2 | 0D | JATLUO | RT | [17] |
, , 2(O) | 2 | 0D | JOHLIC | antisolvent | [18] |
, 0.5( | 2 | 0D | LIYTUJ | antisolvent | [19] |
2(), 0.5(), | 2 | 0D | LUMZIF | RT | [20] |
, , 2() | 2 | 0D | MASSIK | antisolvent | [21] |
(, n(, n( | 2 and 5 | 2D | RUNSID | antisolvent | [22] |
2(), | 2 | 0D | SAZNEQ | solvothermal | [23] |
2(), , N | 2 | 0D | SIXLUI | RT | [24] |
2 | 0D | VAWRUJ | antisolvent | [25] | |
2 | 3D | VIPFIM | RT | [26] | |
2 | 3D | VIPFUY | RT | [26] | |
2 | 0D | VITZEG | RT | [27] | |
2 | 1D | VUDKUB | hot DMSO | [28] | |
2 | 0D | VUZGOO | RT | [29] | |
2 | 3D | WEKVAM | RT | [30] | |
2 | 3D | WEKVEQ | RT | [30] | |
2 | 0D | XOKQAQ | antisolvent | [31] | |
2 | 0D | ZOMCOV | reflux | [13] |
Sum Formula | Nuclearity | Dim. | CCDC Code | Synthesis | Ref. |
---|---|---|---|---|---|
3 | 1D | PUNKIU | solvothermal | [32] | |
3 | 1D | PUNKOA | solvothermal | [32] | |
3 | 1D | PUNKUG | solvothermal | [32] | |
3 | 1D | PUNLAN | solvothermal | [32] | |
3 | 1D | PUNLER | solvothermal | [32] | |
3 | 0D | PUZJUR | solvothermal | [33] | |
4 | 1D | YASYEZ | RT | [34] | |
4 | 0D | YIJHIJ | hot DMSO | [35] | |
5 | 0D | CUTZEZ | solvothermal | [36] | |
5 | 1D | DUQLIN | RT | [37] | |
5 | 1D | DUQLOT | RT | [37] | |
5 | 1D | DUQLUZ | RT | [37] | |
5 | 1D | DUQMIO | RT | [37] | |
5 | 1D | HUZCIP | RT | [38] | |
5 | 1D | KAMJEQ | solvothermal | [39] | |
5 | 1D | KAMJIU | solvothermal | [39] | |
5 | 1D | KAMJOA | solvothermal | [39] | |
5 | 1D | KUXDOW | reflux | [40] | |
5 | 0D | XAYQOE | RT | [41] | |
5 | 1D | XAYQUK | RT | [41] | |
5 | 1D | ZOZDIE | NA | [42] | |
6 | 0D | COZGOP | antisolvent | [43] | |
6 | 2D | DUYBEG | solvothermal | [44] | |
6 | 1D | FETCEP | RT | [45] | |
6 | 1D | FETCIT | RT | [45] | |
6 | 2D | JEPJEX | NA | [46] | |
6 | 1D | LAZBIZ | antisolvent | [47] | |
6 | 0D | LIYVOF | antisolvent | [19] | |
6 | 2D | PUCVAN | solvothermal | [48] | |
6 | 1D | QITJUB | solvothermal | [8] | |
6 | 1D | RUNSOJ | antisolvent | [22] | |
6 | 1D | RUQBIP | antisolvent | [22] | |
6 | 0D | RUVYEP | RT | [49] | |
6 | 0D | RUVYIT | RT | [49] | |
6 | 1D | XOKQEU | antisolvent | [31] | |
6 | 2D | ZEXMUO | solvothermal | [50] | |
6 | 1D | ZICVUF | RT | [45] | |
7 | 2D | KAPSOL | RT | [51] | |
7 | 2D | MEMPIG | antisolvent | [52] | |
8 | 0D | BIZRIN | solvothermal | [53] | |
8 | 1D | COZHIK | antisolvent | [43] | |
9 | 1D | AMOZOU | antisolvent | [54] | |
9 | 2D | LINROS | solvothermal | [45] | |
10 | 1D | CENHUC01 | RT | [55] | |
10 | 1D | HUZCEL | RT | [38] | |
10 | 2D | PUZKEC | solvothermal | [33] | |
13 | 3D | QUSNOJ | solvothermal | [56] | |
13 | 3D | CEQHIS | RT | [10] | |
13 | 3D | CEQHOY | RT | [10] | |
13 | 3D | CEQHUE | RT | [10] | |
14 | 0D | ATAPOC | antisolvent | [57] | |
14 | 0D | COZGIJ | antisolvent | [43] | |
16 | 1D | AMOZUA | antisolvent | [54] | |
16 | 1D | AMUBAO | antisolvent | [54] | |
22 | 0D | MEMNOK | antisolvent | [52] | |
22 | 0D | MEMNUQ | antisolvent | [52] |
Sum Formula | Nuclearity | Dim. | CCDC Code | Synthesis | Ref. |
---|---|---|---|---|---|
3 | 1D | JAYVEO | solvothermal | [58] | |
3 | 1D | JAYVIS | solvothermal | [58] | |
3 | 1D | JAYVOY | solvothermal | [58] | |
4 | 0D | COZJEI | 273 K | [43] | |
4 | 0D | HEVZOB | solvothermal | [59] | |
4 | 1D | KEGDEJ | RT | [60] | |
4 | 1D | KOBCIP | RT | [61] | |
4 | 1D | KOBCOV | RT | [61] | |
4 | 1D | KOBCUB | RT | [61] | |
4 | 0D | LANCOW | solvothermal | [62] | |
4 | 0D | LANCUC | solvothermal | [62] | |
4 | 0D | LANDAJ | solvothermal | [62] | |
4 | 0D | LANDEN | solvothermal | [62] | |
4 | 1D | NEHKEU | solvothermal | [63] | |
5 | 2D | LOWYEE | solvothermal | [64] | |
6 | 0D | YEJQUD | solvothermal | [59] | |
6 | 0D | YEJRAK | solvothermal | [59] | |
7 | 3D | UBIWIO | solvothermal | [65] | |
7 | 3D | DUYFAG | solvothermal | [44] | |
7 | 3D | DUYFEK | solvothermal | [44] | |
7 | 3D | UBIWOU | solvothermal | [65] | |
7 | 3D | UBIWUA | solvothermal | [65] | |
7 | 3D | UBIXAH | solvothermal | [65] | |
8 | 1D | COZJAE | antisolvent | [43] | |
9 | 1D | MUBSAF | RT | [66] |
Sum Formula | Nuclearity | Dim. | CCDC Code | Synthesis | Ref. |
---|---|---|---|---|---|
2 | 0D | ACAROM | reflux | [67] | |
2 | 0D | COZGUV | 273 K | [43] | |
2 | 0D | DEFMEK | RT | [68] | |
2 | 0D | DEFMIO | RT | [68] | |
2 | 1D | ENCUID02 | electrochemical | [69] | |
2 | 0D | FOMTUW | RT | [70] | |
2 | 0D | FOMVAE | RT | [70] | |
2 | 0D | FOMVEI | RT | [70] | |
2 | 0D | GEKPEU | antisolvent | [71] | |
2 | 0D | HAXHAS | solvothermal | [72] | |
2 | 0D | IDALOQ | antisolvent | [73] | |
2 | 0D | LUDRUX | RT | [74] | |
2 | 0D | LUDSAE | RT | [74] | |
2 | 0D | MAXYOB | RT | [75] | |
2 | 0D | NINFUM | reflux | [76] | |
2 | 0D | NINGAT | reflux | [76] | |
2 | 0D | NOFNOL | antisolvent | [77] | |
2 | 1D | NOFQOO | RT | [78] | |
2 | 1D | NOFRAB | RT | [78] | |
2 | 1D | NOFRIJ | RT | [79] | |
2 | 0D | PAPGOD | RT | [80] | |
2 | 0D | PARSUY | antisolvent | [81] | |
2 | 0D | PEVBUO | hot MeCN | [82] | |
2 | 0D | PIXZEC | RT | [83] | |
2 | 0D | POFCAQ | antisolvent | [84] | |
2 | 0D | PUKNOA | RT | [85] | |
2 | 0D | QACWEW | RT | [86] | |
2 | 0D | QADPOD | antisolvent | [87] | |
2 | 0D | QOWMEW | RT | [88] | |
2 | 0D | REQJAZ | hydrothermal | [89] | |
2 | 0D | REQJUT | hydrothermal | [89] | |
2 | 0D | ROBXAI | 277 K | [90] | |
2 | 0D | SEYYIH | RT | [91] | |
2 | 0D | SIKSUD | RT | [92] | |
2 | 0D | SITWEA | RT | [93] | |
2 | 0D | SOCYIT | RT | [94] | |
2 | 0D | TUNDUD | solvothermal | [95] | |
2 | 1D | VAHWAD | hydrothermal | [96] | |
2 | 0D | VECGIU | RT | [97] | |
2 | 0D | WUWWIV | RT | [98] | |
2 | 0D | XELPAH | 393 K | [99] | |
2 | 0D | XUPDOB | antisolvent | [100] | |
2 | 0D | XUZDAZ | NA | [101] | |
2 | 1D | YADTUS | RT | [102] | |
2 | 0D | YASVAT | RT | [103] | |
2 | 0D | YEMXUN | antisolvent | [2] | |
2 | 0D | YITXAB | RT | [104] | |
2 | 0D | YUDFAE | RT | [105] | |
2 | 0D | YUXBOJ | RT | [106] | |
2 | 0D | ZAJBIY | NA | [107] | |
2 | 0D | ZELWOG | NA | [108] | |
3 | 1D | BOHYCU | RT | [109] | |
3 | 1D | CUMWEM | RT | [110] | |
3 | 1D | JIZBUP | RT | [111] | |
3 | 1D | REBDOR | hydrothermal | [112] | |
3 | 1D | VOVFOE | RT | [113] |
Sum Formula | Nuclearity | Dim. | CCDC Code | Synthesis | Ref. |
---|---|---|---|---|---|
3 | 1D | WARXAP | NA | [114] | |
4 | 1D | ATAMIT | antisolvent | [115] | |
4 | 1D | ATUQIP | RT | [116] | |
4 | 0D | BEQREU | RT | [117] | |
4 | 0D | BEQRIY | RT | [117] | |
4 | 0D | BEQROE | RT | [117] | |
4 | 0D | COZHAC | RT | [43] | |
4 | 0D | COZHEG | RT | [43] | |
4 | 0D | DEFMAG | RT | [68] | |
2 and 4 | 0D | DEFPIR | RT | [68] | |
4 | 0D | LESVIR | 353 K | [118] | |
4 | 1D | QINGAY | RT | [119] | |
4 | 0D | RUJWOL | RT | [120] | |
4 | 0D | VEQWUJ | RT | [121] | |
4 | 0D | VIBSEI | 254 K | [7] | |
4 | 0D | YAFWEK | antisolvent | [122] | |
4 | 0D | YEWVOM | RT | [123] | |
4 | 0D | ZEJWAQ | RT | [6] | |
4 | 0D | ZEJWIY | RT | [6] | |
4 | 0D | ZIVMOI | NA | [124] | |
5 | 0D | BIPSEC | RT | [125] | |
5 | 1D | EKIGIO | RT | [126] | |
5 | 1D | EKIGOU | RT | [126] | |
5 | 1D | EKIGUA | RT | [126] | |
5 | 0D | NAZNUZ | RT | [127] | |
5 | 0D | NENWOU | NA | [128] | |
5 | 1D | NOCBOZ | RT | [129] | |
5 | 1D | VAHWEH | hydrothermal | [96] | |
5 | 1D | WUYZOH | solvothermal | [130] | |
5 | 1D | WUYZUN | solvothermal | [130] | |
5 | 1D | WUZBAW | solvothermal | [130] | |
5 | 1D | WUZBIE | solvothermal | [130] | |
6 | 0D | DEFLOT | RT | [68] | |
7 | 2D | LODVEG | RT | [131] | |
7 | 3D | NIGNOG | hydrothermal | [132] | |
7 | 1D | WUYNUB | solvothermal | [130] | |
7 | 1D | WUZCAX | solvothermal | [130] | |
7 | 1D | YEWVUS | RT | [123] | |
8 | 1D | WUZBEA | solvothermal | [130] | |
9 | 2D | PARTOT | RT | [81] | |
9 | 2D | YEWWAZ | RT | [123] | |
9 | 1D | UHOWUK | solvothermal | [133] | |
10 | 0D | IWEZEP | hydrothermal | [134] | |
10 | 0D | SODMUU | solvothermal | [135] |
k [] | [min] | Dye | Reference |
---|---|---|---|
0.0111 | 62.45 | CV | [49] |
0.0136 | 50.97 | CV | [49] |
0.0207 | 33.49 | CV | [49] |
0.0033 | 210.04 | CV | [49] |
0.009 | 77.02 | CV | [49] |
0.0109 | 63.59 | CV | [49] |
0.0062 | 111.80 | CV | [49] |
0.0127 | 54.58 | CV | [49] |
0.0143 | 48.47 | CV | [49] |
0.0107 | 64.78 | RhB | [49] |
0.005 | 138.63 | RhB | [49] |
0.0213 | 32.54 | RhB | [49] |
0.0079 | 87.74 | RhB | [49] |
0.0066 | 105.02 | RhB | [49] |
0.0107 | 64.78 | RhB | [49] |
0.0065 | 106.64 | RhB | [49] |
0.0055 | 126.03 | RhB | [49] |
0.0077 | 90.02 | RhB | [49] |
0.047 | 14.75 | CV | [39] |
0.037 | 18.73 | CV | [39] |
0.028 | 24.76 | CV | [39] |
0.046 | 15.07 | CV | [136] |
0.030 | 23.10 | CV | [136] |
0.035 | 19.80 | CV | [136] |
0.131 | 5.29 | CV | [136] |
0.337 | 2.06 | RhB | [65] |
0.201 | 3.45 | RhB | [65] |
0.255 | 2.72 | RhB | [65] |
0.301 | 2.30 | RhB | [65] |
0.119 | 5.82 | RhB | [65] |
0.239 | 2.90 | RhB | [65] |
0.047 | 14.75 | CV | [33] |
0.037 | 18.73 | CV | [33] |
0.028 | 24.76 | CV | [33] |
0.01599 | 43.35 | RhB | [137] |
0.0016 | 433.22 | CV | [54] |
0.006167 | 112.40 | CV | [54] |
0.009017 | 76.87 | CV | [54] |
0.004883 | 141.95 | RhB | [54] |
0.0011 | 630.13 | RhB | [54] |
0.002083 | 332.76 | RhB | [54] |
0.0775 | 8.94 | CV | [44] |
0.0433 | 16.01 | CV | [44] |
0.0135 | 51.34 | CV | [44] |
0.0256 | 27.08 | CV | [44] |
0.0303 | 22.88 | CV | [44] |
0.0209 | 33.16 | CV | [44] |
0.1037 | 6.68 | RhB | [44] |
0.0249 | 27.84 | RhB | [44] |
0.0083 | 83.51 | RhB | [44] |
0.0155 | 44.72 | RhB | [44] |
0.0185 | 37.47 | RhB | [44] |
0.0142 | 48.81 | RhB | [44] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zabierowski, P.W. [MxLy]n[MwXz]m Non-Perovskite Hybrid Halides of Coinage Metals Templated by Metal–Organic Cations: Structures and Photocatalytic Properties. Solids 2025, 6, 6. https://doi.org/10.3390/solids6010006
Zabierowski PW. [MxLy]n[MwXz]m Non-Perovskite Hybrid Halides of Coinage Metals Templated by Metal–Organic Cations: Structures and Photocatalytic Properties. Solids. 2025; 6(1):6. https://doi.org/10.3390/solids6010006
Chicago/Turabian StyleZabierowski, Piotr W. 2025. "[MxLy]n[MwXz]m Non-Perovskite Hybrid Halides of Coinage Metals Templated by Metal–Organic Cations: Structures and Photocatalytic Properties" Solids 6, no. 1: 6. https://doi.org/10.3390/solids6010006
APA StyleZabierowski, P. W. (2025). [MxLy]n[MwXz]m Non-Perovskite Hybrid Halides of Coinage Metals Templated by Metal–Organic Cations: Structures and Photocatalytic Properties. Solids, 6(1), 6. https://doi.org/10.3390/solids6010006