Turning the Tables: Loss of Adaptive Immunity Reverses Sex Differences in Tuberculosis
<p>Increased susceptibility of female RAG2 KO mice to Mtb infection. (<b>A</b>) Experimental setup. Female and male RAG2 KO mice were aerosol-infected with <span class="html-italic">Mtb</span> HN878 and organs were collected at the indicated time points. Flex time point is defined as the time point where a mouse reached a score of 3. At the same time, a randomly selected mouse of the opposite sex, which had been assigned before the experiment, was also taken, regardless of its score. CFU of female and male RAG2 KO mice at indicated time points in (<b>B</b>) lung (day 1 <span class="html-italic">n</span> = 8; days 13 and 21 <span class="html-italic">n</span> = 10; flex <span class="html-italic">n</span> = 7; moribund <span class="html-italic">n</span> = 12 (f) or 10 (m)), (<b>C</b>) mediastinal LN (day 13 <span class="html-italic">n</span> = 8; day 21 <span class="html-italic">n</span> = 10 (f) or 9 (m); flex <span class="html-italic">n</span> = 7 (f) or 5 (m); moribund <span class="html-italic">n</span> = 12 (f) or 9(m)), (<b>D</b>) spleen (day 13 <span class="html-italic">n</span> = 10; day 21 <span class="html-italic">n</span> = 9 (f) or 10 (m); flex <span class="html-italic">n</span> = 7; moribund <span class="html-italic">n</span> = 12 (f) or 10 (m)) and (<b>E</b>) liver (day 13 <span class="html-italic">n</span> = 10 (f) or 9 (m); day 21 <span class="html-italic">n</span> = 10; flex <span class="html-italic">n</span> = 7; moribund <span class="html-italic">n</span> = 12 (f) or 10 (m)). Body weight change (<b>F</b>), clinical score (<b>G</b>), and survival (<b>H</b>) of female and male RAG2 KO mice. (<b>B</b>–<b>E</b>) Each data point represents one mouse from two experiments. (<b>F</b>,<b>G</b>) Each data point represents one mouse from one representative experiment out of two (<span class="html-italic">n</span> = 3–15). (<b>H</b>) <span class="html-italic">n</span> = 10 mice per group of one experiment. Statistical analysis was performed by Welch’s t-test (<b>B</b>–<b>E</b>), 2way ANOVA followed by Tukey’s multiple comparisons test (<b>F</b>,<b>G</b>) or log rank test (<b>H</b>).</p> "> Figure 2
<p>Inflammatory responses in the lungs of Mtb-infected RAG2 KO mice. Female and male RAG2 KO mice were aerosol infected with <span class="html-italic">Mtb</span> HN878 and lungs were collected at the indicated time points. Radar chart of cytokines and chemokines measured in lung homogenates of female and male RAG2 KO mice at day 21 p.i. (<b>A</b>) and flexible time point p.i. (<b>B</b>). Concentrations of cytokines/chemokines are shown as pg/ml. (<b>C</b>–<b>M</b>) Selected cytokines and chemokines measured in lung homogenates of female and male RAG2 KO mice at indicated time points. (<b>A</b>,<b>B</b>) Data are represented as mean of cytokine and chemokine concentration from 2 experiments ((<b>A</b>); <span class="html-italic">n</span> = 10/group) or 1 experiment ((<b>B</b>); <span class="html-italic">n</span> = 7/group). (<b>C</b>–<b>M</b>) Each data point represents one mouse from two experiments (d21; <span class="html-italic">n</span> = 10/group) or one experiment (flex; <span class="html-italic">n</span> = 7/group). Statistical analysis was performed by 2way ANOVA followed by Tukey’s multiple comparisons test.</p> "> Figure 3
<p>Increased NK cell numbers in male RAG2 KO mice associated with higher IFN-y responses and reduced neutrophil influx. Female and male RAG2 KO mice were aerosol-infected with <span class="html-italic">Mtb</span> HN878. Lungs were collected at indicated time points and PFA-fixed paraffin-embedded tissue sections were stained with HE (<b>A</b>) or antibodies to detect (<b>C</b>) macrophages (CD68<sup>+</sup>), (<b>E</b>) neutrophils (7/4<sup>+</sup>), or (<b>G</b>) NK cells (NKR-P1C<sup>+</sup>; red arrows). (<b>A</b>,<b>C</b>,<b>E</b>,<b>G</b>) Representative micrographs from one female and male RAG2 KO mouse from the flexible time point p.i. are shown. Bar = 1 mm (<b>A</b>,<b>C</b>,<b>E</b>) or 50 µm (<b>G</b>). (<b>B</b>,<b>D</b>,<b>F</b>,<b>H</b>) Quantitative analysis of the area of lung inflammation and respective immune cells as shown in (<b>A</b>,<b>C</b>,<b>E</b>,<b>G</b>). Correlation of NKR-P1C DAB<sup>+</sup> cells with IFN-γ level (<b>I</b>), 7/4 DAB<sup>+</sup> cells (<b>J</b>), and area of lung inflammation (<b>K</b>) as well as correlation of 7/4 DAB<sup>+</sup> cells with area of lung inflammation (<b>L</b>) and clinical score (<b>M</b>) at the flexible time point p.i. (<b>B</b>,<b>D</b>,<b>F</b>,<b>H</b>) Each data point represents one mouse from one representative experiment out of two (d21; <span class="html-italic">n</span> = 5/group) or one experiment (flex; <span class="html-italic">n</span> = 6–7/group). Statistical analysis was performed by 2-way ANOVA followed by Tukey’s multiple comparisons test. (<b>I</b>–<b>M</b>) Each data point represents one mouse from one experiment (flex; <span class="html-italic">n</span> = 13–14). Correlation was calculated using Pearson correlation.</p> ">
Abstract
:1. Introduction
2. Material and Methods
2.1. Ethics Statement
2.2. Mice
2.3. Mtb Infection and Determination of Bacterial Load
2.4. Clinical Score
2.5. Time Points of Organ Harvest
2.6. Multiplex Cytokine Assay
2.7. Histology
2.8. Statistical Analysis
3. Results
3.1. Female RAG2 KO Mice Are More Susceptible to Mtb HN878 Compared to Males
3.2. Sex Differences in Cytokine and Chemokine Production in Response to Mtb in Lungs of RAG2 KO Mice
3.3. Females Exhibit Neutrophil-Dominated Inflammation, While Males Have More NK Cells in the Lungs
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- WHO. Global Tuberculosis Report 2023; World Health Organization: Geneva, Switzerland, 2023. [Google Scholar]
- Hertz, D.; Schneider, B. Sex differences in tuberculosis. Semin. Immunopathol. 2019, 41, 225–237. [Google Scholar] [CrossRef]
- Gupta, M.; Srikrishna, G.; Klein, S.L.; Bishai, W.R. Genetic and hormonal mechanisms underlying sex-specific immune responses in tuberculosis. Trends Immunol. 2022, 43, 640–656. [Google Scholar] [CrossRef]
- Bini, E.I.; Mata Espinosa, D.; Marquina Castillo, B.; Barrios Payan, J.; Colucci, D.; Cruz, A.F.; Zatarain, Z.L.; Alfonseca, E.; Pardo, M.R.; Bottasso, O.; et al. The influence of sex steroid hormones in the immunopathology of experimental pulmonary tuberculosis. PLoS ONE 2014, 9, e93831. [Google Scholar] [CrossRef] [PubMed]
- Dibbern, J.; Eggers, L.; Schneider, B.E. Sex differences in the C57BL/6 model of Mycobacterium tuberculosis infection. Sci. Rep. 2017, 7, 10957. [Google Scholar] [CrossRef] [PubMed]
- Hertz, D.; Dibbern, J.; Eggers, L.; von Borstel, L.; Schneider, B.E. Increased male susceptibility to Mycobacterium tuberculosis infection is associated with smaller B cell follicles in the lungs. Sci. Rep. 2020, 10, 5142. [Google Scholar] [CrossRef] [PubMed]
- Cadena, A.M.; Flynn, J.L.; Fortune, S.M. The Importance of First Impressions: Early Events in Mycobacterium tuberculosis Infection Influence Outcome. mBio 2016, 7, e00342-16. [Google Scholar] [CrossRef]
- Shinkai, Y.; Rathbun, G.; Lam, K.P.; Oltz, E.M.; Stewart, V.; Mendelsohn, M.; Charron, J.; Datta, M.; Young, F.; Stall, A.M.; et al. RAG-2-deficient mice lack mature lymphocytes owing to inability to initiate V(D)J rearrangement. Cell 1992, 68, 855–867. [Google Scholar] [CrossRef]
- Ring, S.; Eggers, L.; Behrends, J.; Wutkowski, A.; Schwudke, D.; Kroger, A.; Hierweger, A.M.; Holscher, C.; Gabriel, G.; Schneider, B.E. Blocking IL-10 receptor signaling ameliorates Mycobacterium tuberculosis infection during influenza-induced exacerbation. JCI Insight 2019, 4, e126533. [Google Scholar] [CrossRef]
- Junqueira-Kipnis, A.P.; Kipnis, A.; Jamieson, A.; Juarrero, M.G.; Diefenbach, A.; Raulet, D.H.; Turner, J.; Orme, I.M. NK cells respond to pulmonary infection with Mycobacterium tuberculosis, but play a minimal role in protection. J. Immunol. 2003, 171, 6039–6045. [Google Scholar] [CrossRef]
- Feng, C.G.; Kaviratne, M.; Rothfuchs, A.G.; Cheever, A.; Hieny, S.; Young, H.A.; Wynn, T.A.; Sher, A. NK cell-derived IFN-gamma differentially regulates innate resistance and neutrophil response in T cell-deficient hosts infected with Mycobacterium tuberculosis. J. Immunol. 2006, 177, 7086–7093. [Google Scholar] [CrossRef]
- Muefong, C.N.; Sutherland, J.S. Neutrophils in Tuberculosis-Associated Inflammation and Lung Pathology. Front. Immunol. 2020, 11, 962. [Google Scholar] [CrossRef]
- Eruslanov, E.B.; Lyadova, I.V.; Kondratieva, T.K.; Majorov, K.B.; Scheglov, I.V.; Orlova, M.O.; Apt, A.S. Neutrophil responses to Mycobacterium tuberculosis infection in genetically susceptible and resistant mice. Infect. Immun. 2005, 73, 1744–1753. [Google Scholar] [CrossRef] [PubMed]
- Yeremeev, V.; Linge, I.; Kondratieva, T.; Apt, A. Neutrophils exacerbate tuberculosis infection in genetically susceptible mice. Tuberculosis 2015, 95, 447–451. [Google Scholar] [CrossRef] [PubMed]
- Sankar, P.; Mishra, B.B. Early innate cell interactions with Mycobacterium tuberculosis in protection and pathology of tuberculosis. Front. Immunol. 2023, 14, 1260859. [Google Scholar] [CrossRef] [PubMed]
- Desvignes, L.; Ernst, J.D. Interferon-gamma-responsive nonhematopoietic cells regulate the immune response to Mycobacterium tuberculosis. Immunity 2009, 31, 974–985. [Google Scholar] [CrossRef]
- Nandi, B.; Behar, S.M. Regulation of neutrophils by interferon-gamma limits lung inflammation during tuberculosis infection. J. Exp. Med. 2011, 208, 2251–2262. [Google Scholar] [CrossRef]
- Abebe, F. Immunological basis of early clearance of Mycobacterium tuberculosis infection: The role of natural killer cells. Clin. Exp. Immunol. 2021, 204, 32–40. [Google Scholar] [CrossRef]
- Ahmad, F.; Rani, A.; Alam, A.; Zarin, S.; Pandey, S.; Singh, H.; Hasnain, S.E.; Ehtesham, N.Z. Macrophage: A Cell With Many Faces and Functions in Tuberculosis. Front. Immunol. 2022, 13, 747799. [Google Scholar] [CrossRef] [PubMed]
- Flynn, J.L.; Chan, J.; Triebold, K.J.; Dalton, D.K.; Stewart, T.A.; Bloom, B.R. An essential role for interferon gamma in resistance to Mycobacterium tuberculosis infection. J. Exp. Med. 1993, 178, 2249–2254. [Google Scholar] [CrossRef] [PubMed]
- Herbst, S.; Schaible, U.E.; Schneider, B.E. Interferon gamma activated macrophages kill mycobacteria by nitric oxide induced apoptosis. PLoS ONE 2011, 6, e19105. [Google Scholar] [CrossRef]
- Klein, S.L.; Flanagan, K.L. Sex differences in immune responses. Nat. Rev. Immunol. 2016, 16, 626–638. [Google Scholar] [CrossRef]
- Huang, Z.; Chen, B.; Liu, X.; Li, H.; Xie, L.; Gao, Y.; Duan, R.; Li, Z.; Zhang, J.; Zheng, Y.; et al. Effects of sex and aging on the immune cell landscape as assessed by single-cell transcriptomic analysis. Proc. Natl. Acad. Sci. USA 2021, 118, e2023216118. [Google Scholar] [CrossRef] [PubMed]
- Patin, E.; Hasan, M.; Bergstedt, J.; Rouilly, V.; Libri, V.; Urrutia, A.; Alanio, C.; Scepanovic, P.; Hammer, C.; Jonsson, F.; et al. Natural variation in the parameters of innate immune cells is preferentially driven by genetic factors. Nat. Immunol. 2018, 19, 302–314. [Google Scholar] [CrossRef]
- Menees, K.B.; Earls, R.H.; Chung, J.; Jernigan, J.; Filipov, N.M.; Carpenter, J.M.; Lee, J.K. Sex- and age-dependent alterations of splenic immune cell profile and NK cell phenotypes and function in C57BL/6J mice. Immun. Ageing 2021, 18, 3. [Google Scholar] [CrossRef]
- Cheng, M.I.; Li, J.H.; Riggan, L.; Chen, B.; Tafti, R.Y.; Chin, S.; Ma, F.; Pellegrini, M.; Hrncir, H.; Arnold, A.P.; et al. The X-linked epigenetic regulator UTX controls NK cell-intrinsic sex differences. Nat. Immunol. 2023, 24, 780–791. [Google Scholar] [CrossRef] [PubMed]
- Hao, S.; Li, P.; Zhao, J.; Hu, Y.; Hou, Y. 17beta-estradiol suppresses cytotoxicity and proliferative capacity of murine splenic NK1.1+ cells. Cell. Mol. Immunol. 2008, 5, 357–364. [Google Scholar] [CrossRef]
- Stopinska-Gluszak, U.; Waligora, J.; Grzela, T.; Gluszak, M.; Jozwiak, J.; Radomski, D.; Roszkowski, P.I.; Malejczyk, J. Effect of estrogen/progesterone hormone replacement therapy on natural killer cell cytotoxicity and immunoregulatory cytokine release by peripheral blood mononuclear cells of postmenopausal women. J. Reprod. Immunol. 2006, 69, 65–75. [Google Scholar] [CrossRef]
- Jiang, X.; Orr, B.A.; Kranz, D.M.; Shapiro, D.J. Estrogen induction of the granzyme B inhibitor, proteinase inhibitor 9, protects cells against apoptosis mediated by cytotoxic T lymphocytes and natural killer cells. Endocrinology 2006, 147, 1419–1426. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; You, B.; Meng, J.; Huang, C.P.; Dong, G.; Wang, R.; Chou, F.; Gao, S.; Chang, C.; Yeh, S.; et al. Targeting the androgen receptor to enhance NK cell killing efficacy in bladder cancer by modulating ADAR2/circ_0001005/PD-L1 signaling. Cancer Gene Ther. 2022, 29, 1988–2000. [Google Scholar] [CrossRef] [PubMed]
- Shi, L.; Lin, H.; Li, G.; Sun, Y.; Shen, J.; Xu, J.; Lin, C.; Yeh, S.; Cai, X.; Chang, C. Cisplatin enhances NK cells immunotherapy efficacy to suppress HCC progression via altering the androgen receptor (AR)-ULBP2 signals. Cancer Lett. 2016, 373, 45–56. [Google Scholar] [CrossRef]
- Berletch, J.B.; Ma, W.; Yang, F.; Shendure, J.; Noble, W.S.; Disteche, C.M.; Deng, X. Escape from X inactivation varies in mouse tissues. PLoS Genet. 2015, 11, e1005079. [Google Scholar] [CrossRef]
- Sugimoto, E.; Li, J.; Hayashi, Y.; Iida, K.; Asada, S.; Fukushima, T.; Tamura, M.; Shikata, S.; Zhang, W.; Yamamoto, K.; et al. Hyperactive Natural Killer cells in Rag2 knockout mice inhibit the development of acute myeloid leukemia. Commun. Biol. 2023, 6, 1294. [Google Scholar] [CrossRef] [PubMed]
- Karo, J.M.; Schatz, D.G.; Sun, J.C. The RAG recombinase dictates functional heterogeneity and cellular fitness in natural killer cells. Cell 2014, 159, 94–107. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hertz, D.; Eggers, L.; von Borstel, L.; Goldmann, T.; Lotter, H.; Schneider, B.E. Turning the Tables: Loss of Adaptive Immunity Reverses Sex Differences in Tuberculosis. Immuno 2025, 5, 4. https://doi.org/10.3390/immuno5010004
Hertz D, Eggers L, von Borstel L, Goldmann T, Lotter H, Schneider BE. Turning the Tables: Loss of Adaptive Immunity Reverses Sex Differences in Tuberculosis. Immuno. 2025; 5(1):4. https://doi.org/10.3390/immuno5010004
Chicago/Turabian StyleHertz, David, Lars Eggers, Linda von Borstel, Torsten Goldmann, Hanna Lotter, and Bianca E. Schneider. 2025. "Turning the Tables: Loss of Adaptive Immunity Reverses Sex Differences in Tuberculosis" Immuno 5, no. 1: 4. https://doi.org/10.3390/immuno5010004
APA StyleHertz, D., Eggers, L., von Borstel, L., Goldmann, T., Lotter, H., & Schneider, B. E. (2025). Turning the Tables: Loss of Adaptive Immunity Reverses Sex Differences in Tuberculosis. Immuno, 5(1), 4. https://doi.org/10.3390/immuno5010004