Occupational Risk Assessment in E-Waste Plant: Progress Achieved over Years †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling
2.2. Analytical Methods
2.3. Human Health Risk Assessment
3. Results
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Golnoush, A.; Lieselot, B.; Debashish, C.; Christian, E.; Mikhail, E.; Petr, F.; Wilson, B.P.; Wong, M.H. Global occurrence, chemical properties, and ecological impacts of e-wastes (IUPAC technical report). Pure Appl. Chem. 2020, 92, 1733–1767. [Google Scholar] [CrossRef]
- Dong, L.; Wang, S.; Qu, J.; You, H.; Liu, D. New understanding of novel brominated flame retardants (NBFRs): Neuro (endocrine) toxicity. Ecotoxicol. Environ. Saf. 2021, 208, 111570. [Google Scholar] [CrossRef] [PubMed]
- Dishaw, L.V.; Macaulay, L.J.; Roberts, S.C.; Stapleton, H.M. Exposures, mechanisms, and impacts of endocrine-active flame retardants. Curr. Opin. Pharmacol. 2014, 19, 125–133. [Google Scholar] [CrossRef] [PubMed]
- Sharkey, M.; Harrad, S.; Abdallah, M.A.E.; Drage, D.S.; Berresheim, H. Phasing-out of legacy brominated flame retardants: The UNEP Stockholm Convention and other legislative action worldwide. Environ. Int. 2020, 144, 106041. [Google Scholar] [CrossRef] [PubMed]
- Pomata, D.; Di Filippo, P.; Riccardi, C.; Rossi, V.; Simonetti, G.; Sonego, E.; Buiarelli, F. Method optimisation for the simultaneous determination of legacy and emerging halogenated flame retardants in particulate matter collected in an electronic waste recycling facility. Int. J. Environ. Anal. Chem. 2020, 100, 1479–1496. [Google Scholar] [CrossRef]
- Tzoraki, O.; Lasithiotakis, M. Environmental risks associated with waste electrical and electronic equipment recycling plants. In Reference Module in Earth Systems and Environmental Sciences; Elsevier Inc.: Amsterdam, The Netherlands, 2018. [Google Scholar]
- U.S. EPA. Exposure Factors Handbook, 2011th ed.; Final Report; EPA/600/R-09/052F; U.S. Environmental Protection Agency: Washington, DC, USA, 2011. [Google Scholar]
- Pomata, D.; Di Filippo, P.; Riccardi, C.; Castellani, F.; Simonetti, G.; Sonego, E.; Buiarelli, F. Toxic Organic Contaminants in Airborne Particles: Levels, Potential Sources and Risk Assessment. Int. J. Environ. Res. Public Health 2021, 18, 4352. [Google Scholar] [CrossRef] [PubMed]
- Riccardi, C.; Buiarelli, F.; Castellani, F.; Di Filippo, P.; Lorini, L.; Majone, M.; Matos, M.; Pomata, D.; Simonetti, G.; Sommer Ferreira, B.; et al. Polychlorinated biphenyl profile in polyhydroxyalkanoates synthetized from urban organic wastes. Polymers 2020, 12, 659. [Google Scholar] [CrossRef] [PubMed]
- Risk Assessment Guidance for Superfund (RAGS). Volume I Human Health Evaluation Manual (Part. F, Supplemental Guidance for Inhalation Risk Assessment); EPA-540-R-070-002, OSWER 9285.7-82; USEPA (United State Environmental Protection Agency): Washington, DC, USA, 2009. [Google Scholar]
- Cachada, A.; Pato, P.; Rocha-Santos, T.; da Silva, E.F.; Duarte, A.C. Levels, sources and potential human health risks of organic pollutants in urban soils. Sci. Total Environ. 2012, 430, 184–192. [Google Scholar] [CrossRef] [PubMed]
- U.S. EPA. Exposure Factors Handbook (1997, Final Report); EPA/600/P-95/002F a-c; U.S. Environmental Protection Agency: Washington, DC, USA, 1997. [Google Scholar]
- Bari, M.A.; Kindzierski, W.B. Fine particulate matter (PM2.5) in Edmonton, Canada: Source apportionment and potential risk for human health. Environ. Pollut. 2016, 218, 219–229. [Google Scholar] [CrossRef] [PubMed]
- Xing, W.; Zhang, L.; Yang, L.; Zhou, Q.; Zhang, X.; Toriba, A.; Hayakawa, K.; Tang, N. Characteristics of PM2.5-bound polycyclic aromatic hydrocarbons and nitro-polycyclic aromatic hydrocarbons at a roadside air pollution monitoring station in Kanazawa, Japan. Int. J. Environ. Res. Public Health 2020, 17, 805. [Google Scholar] [CrossRef] [PubMed]
PCBs | PBDEs | BFRs |
---|---|---|
PCB77 (3,3′,4,4′-Tetrachlorobiphenyl) | BDE47 (2,2′,4,4′-Tetrabromodiphenylether) | BATE (2-bromoallyl 2,4,6-tribromophenylether) |
PCB99 (2,2′,4,4′,5-Pentachlorobiphenyl) | BDE99 (2,2′,4,4′,5-Pentabromodiphenylether) | TBECH (1,2-dibromo-4-(1,2-dibromoethyl)cyclohexane) |
PCB101 (2,2′,4,5,5′-Pentachlorobiphenyl) | BDE100 (2,2′,4,4′,6-Pentabromodiphenylether) | BTBPE (1,2-bis(2,4,6-tribromophenoxy)ethane) |
PCB105 (2,3,3′,4,4′-Pentachlorobiphenyl) | BDE153 (2,2′,4,4′,5,5′-Hexabromodiphenyl ether) | DPTE (2,3-dibromopropyl-2, 4, 6-tribromophenylether) |
PCB110 (2,3,3′,4′,6-Pentachlorobiphenyl) | BDE183 (2,2′,3,4,4′,5′,6-Heptabromodiphenylether) | HBCD (hexabromocyclododecane) |
PCB114 (2,3,4,4′,5-Pentachlorobiphenyl) | HCDBCO (hexachlorocyclopentadienyldibromocyclooctane) | |
PCB126 (3,3′,4,4′,5-Pentachlorobiphenyl) | PBEB (2,3,4,5,6-pentabromoethylbenzene) | |
PCB138 (2,2′,3,4,4′,5′-Hexachlorobiphenyl) | TBCO (1,2,5,6–tetrabromocycloctane) | |
PCB146 (2,2′,3,4′,5,5′-Hexachlorobiphenyl) | ATE (Allyl-2,4,6-tribromophenylether) | |
PCB151 (2,2′,3,5,5′,6-Hexachlorobiphenyl) | ||
PCB156 (2,3,3′,4,4′,5-Hexachlorobiphenyl) | ||
PCB157 (2,3,3′,4,4′,5′-Hexachlorobiphenyl) | ||
PCB167 (2,3′,4,4′,5,5′-Hexachlorobiphenyl) | ||
PCB169 (3,3′,4,4′,5,5′-Hexachlorobiphenyl) | ||
PCB170 (2,2′,3,3′,4,4′,5-Heptachlorobiphenyl) | ||
PCB177 (2,2′,3,3′,4′,5,6-Heptachlorobiphenyl) | ||
PCB180 (2,2′,3,4,4′,5,5′-Heptachlorobiphenyl) | ||
PCB183 (2,2′,3,4,4′,5′,6-Heptachlorobiphenyl) | ||
PCB187 (2,2′,3,4′,5,5′,6-Heptachlorobiphenyl) | ||
PCB190 (2,3,3′,4,4′,5,6-Heptachlorobiphenyl) |
(a) | |||||||
IngR | SFO | SA | GIABS | AF | ABS | CF (kg/mg) | |
PCBs | 100 | 2 | 3300 | 0.1 | 0.2 | 0.1 | 1 × 10−6 |
PBDEs | 30 | 7 × 10−4 | 5700 | 1 | 0.2 | 0.1 | 1 × 10−6 |
BFRs | 20 | 7 × 10−3 | 4615 | 1 | 0.01 | 0.03 | 1 × 10−6 |
(b) | |||||||
PCBs | IUR (μg/m3)−1 | PBDEs | RfC (mg/m3) | RfD (mg/kg/day) | BFRs | RfC (mg/m3) | RfD (mg/kg/day) |
PCB126 | 3.8 × 100 | BDE47 | 1.1 × 10−2 | 1.00 × 10−4 | BATE | 1.1 × 10−2 | 2.4 × 10−1 |
PCB169 | 1.1 × 100 | BDE99 | 7.0 × 10−3 | 1.00 × 10−4 | TBECH | 1.1 × 10−2 | 2.4 × 10−1 |
Other PCBs | 1.1 × 10−3 | BDE100 | 7.0 × 10−3 | 1.00 × 10−4 | BTBPE | 1.1 × 10−2 | 2.4 × 10−1 |
BDE153 | 1.1 × 10−2 | 2.00 × 10−4 | DPTE | 1.1 × 10−2 | 2.4 × 10−1 | ||
BDE183 | 1.1 × 10−2 | 2.00 × 10−3 | HBCD | 1.1 × 10−2 | 2.0 × 10−1 | ||
HCDBCO | 1.1 × 10−2 | 2.0 × 10−1 | |||||
PBEB | 1.1 × 10−2 | 2.4 × 10−1 | |||||
TBCO | 1.1 × 10−2 | 2.4 × 10−1 | |||||
ATE | 1.1 × 10−2 | 2.4 × 10−1 |
2017 | 2021-Z1 | 2021-Z2 | USEPA Recommended Values | |
---|---|---|---|---|
TCR | 1.03 × 10−4 | 6.67 × 10−5 | 6.68 × 10−5 | CR < 1 × 10−6 acceptable risk CR < 1 × 10−4 tolerable risk |
THQ | 1.31 × 10−1 | 5.18 × 10−2 | 7.09 × 10−2 | HQ < 1 no appreciable risk HQ > 1 appreciable risk |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Simonetti, G.; Romani, L.; Riccardi, C.; Pomata, D.; Di Filippo, P.; Buiarelli, F. Occupational Risk Assessment in E-Waste Plant: Progress Achieved over Years. Environ. Sci. Proc. 2022, 19, 19. https://doi.org/10.3390/ecas2022-12796
Simonetti G, Romani L, Riccardi C, Pomata D, Di Filippo P, Buiarelli F. Occupational Risk Assessment in E-Waste Plant: Progress Achieved over Years. Environmental Sciences Proceedings. 2022; 19(1):19. https://doi.org/10.3390/ecas2022-12796
Chicago/Turabian StyleSimonetti, Giulia, Leonardo Romani, Carmela Riccardi, Donatella Pomata, Patrizia Di Filippo, and Francesca Buiarelli. 2022. "Occupational Risk Assessment in E-Waste Plant: Progress Achieved over Years" Environmental Sciences Proceedings 19, no. 1: 19. https://doi.org/10.3390/ecas2022-12796
APA StyleSimonetti, G., Romani, L., Riccardi, C., Pomata, D., Di Filippo, P., & Buiarelli, F. (2022). Occupational Risk Assessment in E-Waste Plant: Progress Achieved over Years. Environmental Sciences Proceedings, 19(1), 19. https://doi.org/10.3390/ecas2022-12796