Integrated Ground-Based and Satellite Remote Sensing of the Earth’s Surface and Atmosphere in East and West Antarctica with Lidar and Radiometric Systems †
<p>Results of optical measurements at station <italic>Gora Vechernyaya:</italic> (<bold>a</bold>) AOD spectrum. Markers denote the measured spectral AOD and its standard deviations for the measurement period 2008–2021. Straight lines are the linear regression of the spectral dependences in the logarithmic scale; the slopes are indicated in the legend. (<bold>b</bold>) Altitude distributions of the fine and coarse fractions averaged over 2018–2019.</p> "> Figure 2
<p>Maps of the effective grain size: (<bold>a</bold>) Antarctic Peninsula, Terra, 01/07/2022; (<bold>b</bold>) East Antarctica, Terra, 01/07/2022; (<bold>c</bold>) Antarctic Peninsula, Aqua, 01/08/2022; (<bold>d</bold>) East Antarctica, Aqua, 01/07/2022. The color scale is in micrometers.</p> ">
Abstract
:1. Introduction
2. Combined Ground-Based and Satellite Investigations of Atmospheric Aerosols in the Region of Belarusian Antarctic station Gora Vechernyaya
3. Snow Cover Studies in the Regions of East and West Antarctica Using Satellite Data
3.1. Algorithm ASAR
3.2. Spatial Distribution of the Snow Grain Size in East and West Antarctica
Author Contributions
Funding
Conflicts of Interest
References
- Zege, E.; Katsev, I.; Korol, M.; Goloub, F.; Ivanov, A.; Blarel, L.; Denisov, S.; Dick, V.; Malinka, A.; Osipenko, E.; et al. Optical studies of the atmosphere and surface in Antarctic. In Belarus in Antarctic: On the 10th Anniversary of the Beginning of Scientific and Expeditional Research; Loginov, V.F., Ed.; Belaruskaya Navuka: Minsk, Belarus, 2016; pp. 50–101. [Google Scholar]
- AERONET: The Aerosol Robotic Network. Available online: http://aeronet.gsfc.nasa.gov/ (accessed on 10 June 2022).
- Holben, B.N.; Eck, T.F.; Slutsker, I.; Tanré, D.; Buis, J.P.; Setzer, A.; Vermote, E.; Reagan, J.A.; Kaufman, Y.J.; Nakajima, T.; et al. AERONET—A federated instrument network and data archive for aerosol characterization. Remote Sens. Environ. 1998, 66, 1–16. [Google Scholar]
- Chaikovsky, A.P.; Malinka, A.V.; Korol, M.M.; Zege, E.P.; Katsev, I.L.; Prikhach, A.S.; Bril, A.I.; Dick, V.P.; Basylevich, V.A.; Denisov, S.V.; et al. Ground-based and space studies of the atmosphere and Earth’s surface in the Antarctic. In Scientific Research of Belarus in the Antarctic; Loginov, V.F., Ed.; Belaruskaya Navuka: Minsk, Belarus, 2021; pp. 36–54. [Google Scholar]
- Yavaşoğlu, H.; Karaman, H.; Özsoy, B.; Bilgi, S.; Tutak, B.; Gengeç, A.G.; Oktar, Ö.; Yirmibeşoğlu, S. Site selection of the Turkish Antarctic Research station using Analytic Hierarchy Process. Polar Sci. 2019, 22, 100473. [Google Scholar] [CrossRef]
- Wenger, M. Turkey plans its own Antarctic station. Polar J. 2021. Available online: https://polarjournal.ch/en/2021/02/25/turkey-plans-its-own-antarctic-station/ (accessed on 10 June 2022).
- Zege, E.; Katsev, I.; Malinka, A.; Prikhach, A.; Polonsky, I. New algorithm to retrieve the effective snow grain size and pollution amount from satellite data. Ann. Glaciol. 2008, 49, 139–144. [Google Scholar] [CrossRef]
- Zege, E.; Malinka, A.; Katsev, I.; Prikhach, A.; Heygster, G.; Istomina, L.; Birnbaum, G.; Schwarz, P. Algorithm to retrieve the melt pond fraction and the spectral albedo of Arctic summer ice from satellite optical data. Rem. Sens. Environ. 2015, 163, 153–164. [Google Scholar] [CrossRef]
- Calbet, X. Assessment of adequate quality and collocation of reference measurements with space-borne hyperspectral infrared instruments to validate retrievals of temperature and water vapour. Atmos. Meas. Tech. 2016, 9, 1–8. [Google Scholar] [CrossRef]
- Newchurch, M.J.; Alvarez, R.J.; Berkoff, T.A.; Carrion, W.; DeYoung, R.J.; Ganoe, R.; Gronoff, G.; Kirgis, G.; Kuang, S.; Langford, A.O.; et al. Lidar&radiometer inversion code (LIRIC) for synergetic processing of EARLINET, AERONET and CALIPSO lidar data. EPJ Web Conf. 2018, 176, 08007. [Google Scholar] [CrossRef]
- Chaikovsky, A.P.; Bril, A.I.; Fedarenka, A.S.; Peshcharankou, V.A.; Denisov, S.V.; Dick, V.P.; Asipenka, F.P.; Miatselskaya, N.S.; Balin, Y.S.; Kokhanenko, G.P.; et al. Synergy of Ground-Based and Satellite Optical Remote Measurements for Studying Atmospheric Aerosols. J. Appl. Spectrosc. 2020, 86, 1092–1099. [Google Scholar] [CrossRef]
- Chaikovsky, A.; Bril, A.; Dubovik, O.; Fedarenka, A.; Goloub, P.; Hu, Q.; Lopatin, A.; Lapyonok, T.; Miatselskaya, N.; Torres, B.; et al. Synergetic observations by ground-based and space lidar systems and AERONET sun-radiometers: A step to advanced regional monitoring of large-scale aerosol changes. EPJ Web Conf. 2020, 237, 02035. [Google Scholar] [CrossRef]
- Malinka, A.; Blarel, L.; Chaikovskaya, L.; Chaikovsky, A.; Denishchik-Nelubina, N.; Denisov, S.; Dick, V.; Fedaranka, A.; Goloub, P.; Katsev, I.; et al. Ground-Based and Satellite Optical Investigation of the Atmosphere and Surface of Antarctica. EPJ Web Conf. 2018, 176, 10006. [Google Scholar] [CrossRef]
- Grenfell, T.C.; Warren, S.G.; Mullen, P.C. Reflection of solar radiation by the Antarctic snow surface at ultraviolet, visible, and near-infrared wavelengths. J. Geophys. Res. 1994, 99, 18669–18684. [Google Scholar] [CrossRef]
- MODIS (Moderate Resolution Imaging Spectroradiometer). Available online: https://modis.gsfc.nasa.gov/ (accessed on 10 June 2022).
- Sentinel-3. Available online: https://earth.esa.int/web/guest/missions/esa-future-missions/sentinel-3 (accessed on 10 June 2022).
- LAADS (The Level-1 and Atmosphere Archive & Distribution System). Available online: https://ladsweb.modaps.eosdis.nasa.gov/search/ (accessed on 10 June 2022).
- Krol, Q.; Löwe, H. Analysis of local ice crystal growth in snow. J. Glaciol. 2016, 62, 378–390. [Google Scholar] [CrossRef]
- Flin, F.D.R.; Brzoska, J.-B.; Lesaffre, B.; Ou, C.C.C.; Pieritz, R.A. Full three-dimensional modelling of curvature-dependent snow metamorphism: First results and comparison with experimental tomographic data. J. Phys. D 2003, 36, A49–A54. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Malinka, A.; Chaikovsky, A.; Prikhach, A.; Ilkevich, E.; Bril, A.; Peshcharankou, V.; Miatselskaya, N.; Dick, V.; Korol, M.; Basylevich, V.; et al. Integrated Ground-Based and Satellite Remote Sensing of the Earth’s Surface and Atmosphere in East and West Antarctica with Lidar and Radiometric Systems. Environ. Sci. Proc. 2022, 19, 11. https://doi.org/10.3390/ecas2022-12808
Malinka A, Chaikovsky A, Prikhach A, Ilkevich E, Bril A, Peshcharankou V, Miatselskaya N, Dick V, Korol M, Basylevich V, et al. Integrated Ground-Based and Satellite Remote Sensing of the Earth’s Surface and Atmosphere in East and West Antarctica with Lidar and Radiometric Systems. Environmental Sciences Proceedings. 2022; 19(1):11. https://doi.org/10.3390/ecas2022-12808
Chicago/Turabian StyleMalinka, Aleksey, Anatoli Chaikovsky, Alexander Prikhach, Eugeny Ilkevich, Andrey Bril, Vladislav Peshcharankou, Natallia Miatselskaya, Vladimir Dick, Mikhail Korol, Vladislav Basylevich, and et al. 2022. "Integrated Ground-Based and Satellite Remote Sensing of the Earth’s Surface and Atmosphere in East and West Antarctica with Lidar and Radiometric Systems" Environmental Sciences Proceedings 19, no. 1: 11. https://doi.org/10.3390/ecas2022-12808
APA StyleMalinka, A., Chaikovsky, A., Prikhach, A., Ilkevich, E., Bril, A., Peshcharankou, V., Miatselskaya, N., Dick, V., Korol, M., Basylevich, V., Kalevich, A., Alekseev, I., Asipenka, F., Ozsoy, B., Selbesoglu, M. O., Oktar, O., Celik, B., & Karabulut, M. F. (2022). Integrated Ground-Based and Satellite Remote Sensing of the Earth’s Surface and Atmosphere in East and West Antarctica with Lidar and Radiometric Systems. Environmental Sciences Proceedings, 19(1), 11. https://doi.org/10.3390/ecas2022-12808