Resilience of an Urban Coastal Ecosystem in the Caribbean: A Remote Sensing Approach in Western Puerto Rico
<p>Land use/land cover map of Puerto Rico. The Culebrinas River Watershed (CRW) is located in the northwest region of Puerto Rico. It includes several municipalities and offers diverse ecosystem services.</p> "> Figure 2
<p>Spatial distribution of imperviousness within the Culebrinas River Watershed in Western Puerto Rico. The urban areas can be identified in red clusters as part of the main towns of the municipalities of Aguadilla, Aguada, Moca, and San Sebastian.</p> "> Figure 3
<p>Spatial distribution of NDVI estimated from MOD13Q1 between 2012 and 2022. Data for MOD17A2 (GPP) were not available for 2012 and 2022.</p> "> Figure 4
<p>Correlation between land surface temperature and the normalized difference vegetation index.</p> "> Figure 5
<p>Spatial distribution for <math display="inline"><semantics> <mrow> <msub> <mrow> <mi mathvariant="normal">L</mi> <mi mathvariant="normal">S</mi> <mi mathvariant="normal">T</mi> </mrow> <mrow> <mi>C</mi> <mi>o</mi> <mi>r</mi> <mi>r</mi> <mi>e</mi> <mi>c</mi> <mi>t</mi> <mi>e</mi> <mi>d</mi> </mrow> </msub> </mrow> </semantics></math> estimated from Landsat 8–9 OLI-TIRS between 2013 and 2022.</p> "> Figure 6
<p>Correlation between land surface temperature and actual evapotranspiration for 2015.</p> "> Figure 7
<p>Spatial distribution of ET estimated from MOD16A2 between 2012 and 2022.</p> "> Figure 8
<p>Correlation between normalized difference vegetation index and actual ET for 2017.</p> "> Figure 9
<p>Correlation between gross primary production and evapotranspiration for 2015.</p> "> Figure 10
<p>Spatial distribution of GPP estimated from MOD17A1; an 8-day composite with a 500 m resolution.</p> "> Figure 11
<p>Correlation between land surface temperature and gross primary production for 2017.</p> "> Figure 12
<p>Correlation between normalized difference vegetation index and gross primary production for 2017.</p> "> Figure 13
<p>Correlation between NDVI, LST, ET, and GPP from 2013 to 2021.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Reference Parameters and Datasets
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, Z.; Yin, Q.; Li, L.; Hua, X. Ecosystem health assessment by using remote sensing derived data: A case study of terrestrial region along the coast in Zhejiang Province. In Proceedings of the 2010 IEEE International Geoscience and Remote Sensing Symposium, Honolulu, HI, USA, 25–30 July 2010. [Google Scholar] [CrossRef]
- Pradhan, B.; Yoon, S.; Lee, S. Examining the Dynamics of Vegetation in South Korea: An Integrated Analysis Using Remote Sensing and In Situ Data. Remote Sens. 2024, 16, 300. [Google Scholar] [CrossRef]
- Zektser, I.S.; Loaiciga, H.A. Groundwater fluxes in the global hydrologic cycle: Past, present and future. J. Hydrol. 1993, 144, 405–427. [Google Scholar] [CrossRef]
- Aili, A.; Xu, H.; Waheed, A.; Lin, T.; Zhao, W.; Zhao, X. Drought Resistance of Desert Riparian Forests: Vegetation Growth Index and Leaf Physiological Index Approach. Sustainability 2024, 16, 532. [Google Scholar] [CrossRef]
- Tao, Y.; Meng, E.; Huang, Q. Spatiotemporal Changes and Hazard Assessment of Hydrological Drought in China Using Big Data. Water 2024, 16, 106. [Google Scholar] [CrossRef]
- Latrech, B.; Hermassi, T.; Yacoubi, S.; Slatni, A.; Jarray, F.; Pouget, L.; Ben Abdallah, M.A. Comparative Analysis of Climate Change Impacts on Climatic Variables and Reference Evapotranspiration in Tunisian Semi-Arid Region. Agriculture 2024, 14, 160. [Google Scholar] [CrossRef]
- Wang, Z.; Cui, Z.; He, T.; Tang, Q.; Xiao, P.; Zhang, P.; Wang, L. Attributing the Evapotranspiration Trend in the Upper and Middle Reaches of Yellow River Basin Using Global Evapotranspiration Products. Remote Sens. 2022, 14, 175. [Google Scholar] [CrossRef]
- Wijeratne, V.P.I.S.; Li, G.; Mehmood, M.S.; Abbas, A. Assessing the Impact of Long-Term ENSO, SST, and IOD Dynamics on Extreme Hydrological Events (EHEs) in the Kelani River Basin (KRB), Sri Lanka. Atmosphere 2023, 14, 79. [Google Scholar] [CrossRef]
- Zhang, F.; Tang, P.; Zhou, T.; Liu, J.; Li, F.; Shan, B. Cloud-Based Framework for Precision Agriculture: Optimizing Scarce Water Resources in Arid Environments amid Uncertainties. Agronomy 2024, 14, 45. [Google Scholar] [CrossRef]
- Liu, S.M.; Xu, Z.W.; Zhu, Z.L.; Jia, Z.Z.; Zhu, M.J. Measurements of evapotranspiration from eddy-covariance systems and large aperture scintillometers in the Hai River Basin, China. J. Hydrol. 2013, 487, 24–38. [Google Scholar] [CrossRef]
- Vinukollu, R.K.; Wood, E.F.; Ferguson, C.R.; Fisher, J.B. Global estimates of evapotranspiration for climate studies usingultisensoryr remote sensing data: Evaluation of three process-based approaches. Remote Sens. Environ. 2011, 115, 801–823. [Google Scholar] [CrossRef]
- Tian, F.; Qiu, G.; Yang, Y.; Lü, Y.; Xiong, Y. Estimation of evapotranspiration and its partition based on an extended threetemperature model and MODIS products. J. Hydrol. 2013, 498, 210–220. [Google Scholar] [CrossRef]
- Jung, M.; Reichstein, M.; Ciais, P.; Seneviratne, S.I.; Sheffield, J.; Goulden, M.L.; Bonan, G.; Cescatti, A.; Chen, J.; de Jeu, R.; et al. Recent decline in the global land evapotranspiration trend due to limited moisture supply. Nature 2010, 467, 951–954. [Google Scholar] [CrossRef]
- Mu, Q.; Zhao, M.; Running, S.W. Improvements to a MODIS global terrestrial evapotranspiration algorithm. Remote Sens. Environ. 2011, 115, 1781–1800. [Google Scholar] [CrossRef]
- Harmsen, E.W.; Mecikalski, J.R.; Reventos, V.J.; Álvarez-Pérez, E.; Uwakweh, S.S.; Adorno-García, C. Water and energy balance model GOES-PRWEB: Development and validation. Hydrology 2021, 8, 113. [Google Scholar] [CrossRef]
- de Oliveira, M.L.; Dos Santos, C.A.C.; de Oliveira, G.; Silva, M.T.; da Silva, B.B.; Cunha, J.E.B.L.; Ruhoff, A.; Santos, C.A.G. Remote sensing-based assessment of land degradation and drought impacts over terrestrial ecosystems in Northeastern Brazil. Sci. Total Environ. 2022, 20, 155490. [Google Scholar] [CrossRef]
- Beck, H.E.; Zimmermann, N.E.; McVicar, T.R.; Vergopolan, N.; Berg, A.; Wood, E.F. Present and future Köppen-Geiger climate classification maps at 1-km resolution. Sci. Data 2018, 5, 180214. [Google Scholar] [CrossRef] [PubMed]
- Lugo, J.; Diaz, D. Developing Sustinable Planing for Heritage Conservation in the Tropics: A GIS-Based Risk and Vulnerability Assessment Profile for Historic Archives in Puerto Rico. WIT Trans. Ecol. Environ. 2018, 217, 613–623. [Google Scholar] [CrossRef]
- Kenner, B.; Russell, D.; Valdes, C.; Sowell, A.; Pham, X.; Terán, A.; Kaufman, J. Puerto Rico’s Agricultural Economy in the Aftermath of Hurricanes Irma and Maria: A Brief Overview. U.S. Department of Agriculture, Economic Research Service, AP-114. April 2023. Available online: https://www.ers.usda.gov/webdocs/publications/106261/ap-114.pdf?v=3172 (accessed on 22 December 2023).
- Running, S.; Mu, Q.; Zhao, M. MODIS/Terra Net Evapotranspiration 8-Day L4 Global 500m SIN Grid V061 [Data Set]; NASA EOSDIS Land Processes Distributed Active Archive Center: Sioux Falls, SD, USA, 2021. [Google Scholar] [CrossRef]
- Reddy, S.N.; Manikiam, B. Land Surface Temperature Retrieval from LANDSAT data using Emissivity Estimation. Int. J. Appl. Eng. Res. 2017, 12, 9679–9687. [Google Scholar]
- Vanhellemont, Q. Combined land surface emissivity and temperature estimation from Lansat 8 OLI and TIRS. ISPRS J. Photogramm. Remote Sens. 2020, 166, 390–402. [Google Scholar] [CrossRef]
- Didan, K. MODIS/Terra Vegetation Indices 16-Day L3 Global 250m SIN Grid V061 [Data Set]; NASA EOSDIS Land Processes Distributed Active Archive Center: Sioux Falls, SD, USA, 2021. [Google Scholar] [CrossRef]
- Running, S.; Mu, Q.; Zhao, M. MODIS/Terra Gross Primary Productivity 8-Day L4 Global 500m SIN Grid V061 [Data Set]; NASA EOSDIS Land Processes Distributed Active Archive Center: Sioux Falls, SD, USA, 2021. [Google Scholar] [CrossRef]
- Villalobos, F.J.; Testi, L.; Mateos, L.; Fereres, E. Soil Temperature and Soil Heat Flux. In Principles of Agronomy for Sustainable Agriculture, 1st ed.; Springer: Berlin/Heidelberg, Germany, 2017; pp. 69–77. [Google Scholar] [CrossRef]
- Anav, A.; Friedlingstein, P.; Beer, C.; Ciais, P.; Harper, A.; Jones, C.; Murray-Tortarolo, G.; Papale, D.; Parazoo, N.C.; Peylin, P.; et al. Spatiotemporal patterns of terrestrial gross primary production: A review. Rev. Geophys. 2015, 53, 785–818. [Google Scholar] [CrossRef]
- Seixas, H.T.; Brunsell, N.A.; Moraes, E.C.; Oliveira, G.; Mataveli, G. Exploring the ecosystem resilience concept with land surface model scenarios. Ecol. Modell. 2022, 464, 109817. [Google Scholar] [CrossRef]
- Fickert, T. To Plant or Not to Plant, That Is the Question: Reforestation vs. Natural Regeneration of Hurricane-Disturbed Mangrove Forests in Guanaja (Honduras). Forests 2020, 11, 1068. [Google Scholar] [CrossRef]
- Bryant, T.; Waring, K.; Sánchez Meador, A.; Bradford, J.B. A framework for quantifying resilience to forest disturbance. Front. For. Glob. Chang. 2019, 2, 56. [Google Scholar] [CrossRef]
- Zampieri, M.; Grizzetti, B.; Toreti, A.; Palma, P.; Collati, A. Rise and fall of vegetation annual primary production resilience to climate variability projected by a large ensemble of Earth System Models’ simulations. Environ. Res. Lett. 2021, 16, 105001. [Google Scholar] [CrossRef]
- Ponce-Campos, G.E.; Moran, M.S.; Huete, A.; Zhang, Y.; Bresloff, C.; Huxman, T.E.; Eamus, D.; Bosch, D.D.; Buda, A.R.; Gunter, S.A.; et al. Ecosystem resilience despite large-scale altered hydroclimatic conditions. Nature 2013, 494, 349–352. [Google Scholar] [CrossRef] [PubMed]
- Ghebrezgabher, M.G.; Yang, T.; Yang, X.; Sereke, T.E. Assessment of NDVI variations in responses to climate change in the Horn of Africa. Egypt. J. Remote Sens. Space Sci. 2020, 23, 249–261. [Google Scholar] [CrossRef]
- Hossain, L.; Li, J. NDVI-based vegetation dynamics and its resistance and resilience to different intensities of climatic events. Glob. Ecol. Conserv. 2021, 30, e01768. [Google Scholar] [CrossRef]
- Tang, X.; Li, H.; Desai, A.R.; Xu, X.; Xie, J. Comparison of multiple models for remote sensing of carbon exchange using MODIS data in conifer-dominated forests. Int. J. Remote Sens. 2014, 35, 8252–8271. [Google Scholar] [CrossRef]
- Panagos, P.; Borelli, P.; Matthews, F.; Liakos, L.; Bezak, N.; Diodato, N.; Ballabio, C. Global rainfall erosivity projections for 2050 and 2070. J. Hydrol. 2022, 610, 127865. [Google Scholar] [CrossRef]
- Zhan, X.; Fang, L.; Yin, J.; Schull, M.; Liu, J.; Hain, C.; Anderson, M.; Kustas, W.; Kalluri, S. Remote Sensing of Evapotranspiration for Global Drought Monitoring. In Global Drought and Flood: Observation, Modeling, and Prediction, 1st ed.; Geophysical Monograph Series; John Wiley & Sons: Hoboken, NJ, USA, 2021. [Google Scholar] [CrossRef]
- Rosenzweig, M.L. Net Primary Productivity of Terrestrial Communities: Prediction from Climatological Data. Am. Nat. 1968, 102, 67–74. [Google Scholar] [CrossRef]
- Falloon, P.; Jones, C.D.; Ades, M.; Paul, K. Direct soil moisture controls of future global soil carbon changes: An important source of uncertainty. Glob. Biogeochem. Cycles 2011, 25, 3. [Google Scholar] [CrossRef]
- Alberti, M.; Marzluff, J.M. Ecological resilience in urban ecosystems: Linking urban patterns to human and ecological functions. Urban Ecosyst. 2004, 7, 241–265. [Google Scholar] [CrossRef]
Variables | Description | Values |
---|---|---|
K1 | Thermal constants Band 10 | 774.8853 |
K2 | 1321.0789 | |
ML | Band-specific multiplicative rescaling factor | 3.34 × 10−4 |
AL | Band-specific additive rescaling factor | 0.1 |
Lmax | Maximum value or radiance, Band 10 | 22.0018 |
Lmin | Minimum value or radiance, Band 10 | 0.10033 |
Qcalmax | Maximum values of quantized calibration, Band 10 | 65,535 |
Qcalmin | Minimum value of quantized calibration, Band 10 | 1 |
Year | NDVI | LST | ET | GPP | ||||
---|---|---|---|---|---|---|---|---|
UNITS | ||||||||
- | °C | mm/day | kg/°C/day | |||||
Low | High | Low | High | Low | High | Low | High | |
2012 | 0.0981 | 0.986 | - | - | 1.8374 | 7.8125 | 0.0116 | 3.2762 |
2013 | 0.2229 | 0.9195 | 19.1045 | 33.2603 | 1.2250 | 7.1500 | 0.0235 | 3.2762 |
2014 | 0.265 | 0.9176 | 22 | 34 | 2.2000 | 7.3375 | 0.0372 | 3.2762 |
2015 | 0.2403 | 0.9373 | 22.6019 | 39.3491 | 1.5625 | 8.0375 | 0.0115 | 3.2762 |
2016 | 0.1296 | 0.9941 | 20.6582 | 34.6485 | 1.9875 | 6.8375 | 0.0145 | 3.2762 |
2017 | 0.0774 | 0.9768 | 22 | 35.4926 | 1.9375 | 5.8375 | 0.0147 | 3.2762 |
2018 | 0.4147 | 0.9119 | 23.3586 | 35.6335 | 1.3750 | 4.6125 | 0.0128 | 3.2762 |
2019 | 0.3045 | 0.9622 | 23 | 34 | 1.3999 | 6.1750 | 0.0241 | 3.2762 |
2020 | 0.2037 | 0.9885 | 21.1934 | 35 | 1.8125 | 5.5008 | 0.0089 | 3.2762 |
2021 | 0.2328 | 0.9346 | 22.9827 | 34.1233 | 1.5000 | 8.4250 | 0.0121 | 3.2762 |
2022 | 0.2909 | 0.9323 | 22.8446 | 35.9824 | 2.2000 | 8.3125 | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bonilla-Roman, Y.N.; Acuña-Guzman, S.F. Resilience of an Urban Coastal Ecosystem in the Caribbean: A Remote Sensing Approach in Western Puerto Rico. Earth 2024, 5, 72-89. https://doi.org/10.3390/earth5010004
Bonilla-Roman YN, Acuña-Guzman SF. Resilience of an Urban Coastal Ecosystem in the Caribbean: A Remote Sensing Approach in Western Puerto Rico. Earth. 2024; 5(1):72-89. https://doi.org/10.3390/earth5010004
Chicago/Turabian StyleBonilla-Roman, Yadiel Noel, and Salvador Francisco Acuña-Guzman. 2024. "Resilience of an Urban Coastal Ecosystem in the Caribbean: A Remote Sensing Approach in Western Puerto Rico" Earth 5, no. 1: 72-89. https://doi.org/10.3390/earth5010004
APA StyleBonilla-Roman, Y. N., & Acuña-Guzman, S. F. (2024). Resilience of an Urban Coastal Ecosystem in the Caribbean: A Remote Sensing Approach in Western Puerto Rico. Earth, 5(1), 72-89. https://doi.org/10.3390/earth5010004