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Abstract: In urban areas with a flat terrain, pumping stations must be included to elevate wastewater
and avoid extreme excavation depths. These systems are characterized by high operational costs
due to the pump’s power consumption. The present work presents a methodology for the optimal
design of sewer networks including pumping stations, whose objective function is to minimize
the construction and operation costs of the system. The methodology was tested on three sewer
benchmark networks using two cost functions proposed in the literature. In all the sewer benchmarks,
the cost achieved in the present work was compared with the best costs reported in the literature.

Keywords: sewer optimal design; sewer networks; pumping stations; direct graph model; Bellman-
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1. Introduction

The design of an optimal sewer network involves finding the lowest-cost solution. This
problem is divided into two subproblems: first, the layout selection phase, the tree structure
of the network is determined, which involves selecting the flow direction and type of pipe
connection, and second, the hydraulic design phase, which involves defining the diameter
and upstream and downstream invert elevation of the pipes. For flat topographies, in
which pumping is required to comply with the maximum excavation depth, it is obligatory
to consider pumping stations in the optimal design methodology, since the cost of pumping
is a significant percentage of the overall cost of a sewer network. Engineers commonly place
pumping stations at the end of sewer systems to lift wastewater to the outfall. However,
according to a recent study [1], this may not be the most efficient approach. That study
found that pumping at the end increases the pumping cost since the pumping flow rate is
greater than that in other areas of the network.

2. Methodology

The implementation of pumping stations is proposed in an existing sewer network design
methodology that was introduced by Duque et al. [2] and then extended by Saldarriaga et al. [3].

2.1. Layout Section

Duque et al. [2] proposed to solve the layout selection using a mixed-integer program-
ming (MIP) model in which the decision variables represent the flow rate and direction of
pipes. Later on, for the layout selection, the three criteria proposed by [3] are employed.
Criterion 1 aims to prioritize pipes that align with the direction of the land slope, and to
discard from the layout the pipes that are against the slope. Criterion 2 considers both the land
slope and the number of outer-branch pipes. However, this criterion also aims to incorporate
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the energy per unit weight to transport the design flow rate, thus prioritizing pipes with
higher head available. Criterion 3 is proposed for flat topographies and aims to minimize the
length of the main sewer network series so that the final excavation depth decreases.

2.2. Hydraulic Design

Duque et al. [2] proposed modeling the problem as a directed graph. In this approach,
each node represents a specific manhole’s combination of an upstream diameter and an
invert elevation, while the arcs depict the feasible joints of nodes, which are the pipes,
considering that the downstream diameter must be larger or equal to its upstream diameter
to avoid blockages, and the downstream invert elevation must be deeper or equal to its
upstream invert elevation to ensure gravity flow.

2.3. Pumping Stations in Sewer Network Design

The methodology outlined here proposes to make a change in the hydraulic design
objective function proposed by [2]. It begins by adding a term to the equation that takes
pumping stations into consideration (Equation (1)), where CTvk

i ,vk′
j

represents the cost of

pipe installation and CBvk
i ,vk′

j
represents the cost of installing a pumping system, to obtain

the following:

min
(

∑(vk
i ,vk′

j )∈AD1
CTvk

i ,vk′
j

Xij + ∑(vk
i ,vk′

j )∈AD2
CBvk

i ,vk′
j

Yij

)
(1)

In this case, AD1 represents all pipe combinations along with the depths they can be
installed at within the network. CTvk

i ,vk′
j

includes additional properties such as diameter

and start and end depth. Additionally, AD2 represents the connections within the node for
the possible installation of a pumping system. CBvk

i ,vk′
j

has additional properties, such as

the required pumping head height at the selected manhole. To model the condition that
establishes that only one of the two arcs can be active at a given time, a restriction is added
to the model presented in Equation (2). Xij and Yij represent binary variables taking values
of 1 and 0, respectively, depending on whether a pipe is installed or a pump is installed,
such that

Xij + Yij ≥ 1 (2)

3. Case Studies

The networks included as case studies were the following. All three networks were
tested under equal hydraulic constraints as presented in Table 1.

Table 1. Implemented sewer networks.

Moeini [4] Chicó Sur [2] Flattened Chicó [2]

Manholes 81 109 109
Pipes 144 160 160

Topography Flat Variable Flat
Pipe length 100 m Variable Variable

Total flow rate Constant Variable Variable

Restrictions

Table 2 shows the hydraulic design constraints for the pipes with their conditions.
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Table 2. Hydraulic constraints.

Constraint Value Condition Constraint Value Condition

Minimum diameter 0.2 m Always Minimum velocity 0.7 m/s d ≤ 0.5 m Flow rate > 0.015 m3/s

Maximum filling
ratio

0.6 d ≤ 0.3 m 0.8 m/s d > 0.5 m Flow rate > 0.015 m3/s
0.7 0.35 m ≤ d ≤ 0.45 m Maximum velocity 5 m/s Always

0.75 0.5 m ≤ d ≤ 0.9 m Minimum gradient 0.003 Flow rate < 0.015 m3/s
0.8 d ≥ 1 m Minimum depth 1 m Always

4. Results

Table 3 shows optimized costs based on the equations presented by Li and Matthew [5].
It is observed that criteria 1 and 2 yield the same value given that a flat topography does
not penalize pipe installation costs. Criterion 3 increases the number of continuous pipes,
thus increasing the length and depth of the series, which leads to higher costs. In the three
considered cases, a clear trend to locate pumping systems in the upstream regions of the
network is observed, as detailed in Figure 1. The upstream location of pump systems
translates to a diminishing of pumping costs, since these costs are directly correlated to
flow rate and depth, both of which are smaller in the upstream regions of the network.

Table 3. Construction costs per criterion for Moeini and Afshar network [4].

Criterion Construction Cost Pumps Location (Manhole)

Criterion 1 JPY 1,506,694.51 2 4, 10
Criterion 2 JPY 1,506,694.51 2 4, 10
Criterion 3 JPY 2,145,321.12 3 12, 19, 28
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Figure 1. Scheme of the best design of the benchmark network proposed by [4] obtained from three 
criteria proposed by [3]. (a) Criterion 1; (b) Criterion 2; (c) Criterion 3. 
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Figure 1. Scheme of the best design of the benchmark network proposed by [4] obtained from three
criteria proposed by [3]. (a) Criterion 1; (b) Criterion 2; (c) Criterion 3.

Table 4 shows the optimized costs for the flattened Chicó Sur network. Due to the
topography being flat and the lack of penalties related to pipe costs, criteria 1 and 2 yield
the same cost. Criterion 3 yields the minimal construction cost.

Table 4. Construction costs per criterion for flattened Chicó Sur network.

Criterion Construction Cost Pumps Location (Manhole)

Criterion 1 JPY 25,616,939.11 8 3, 8, 20, 24, 27, 28, 42, 44
Criterion 2 JPY 25,616,939.11 8 3, 8, 20, 24, 27, 28, 42, 44
Criterion 3 JPY 1,911,292.69 2 3, 4

In the three considered cases, it is observed that, under criteria one and two, there is
a trend to locate pumping systems in the upstream regions of the network, which in this
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case increases costs due to more pumps being required. On the other hand, under criterion
three, the pump location is more spatially balanced, making more efficient use of energy
losses, as presented in Figure 2.
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5. Conclusions

A methodology is proposed with the aim to minimize construction costs in sewer
networks that include in-line pumping stations, ensuring proper hydraulic performance.
The results demonstrate the applicability and efficiency of the methodology in optimized
sewer design with in-line pumping stations, in economic terms and while complying with
all the hydraulic constraints. The methodology cannot be extended to steep terrain and
drop manholes, as these cases result in a loop in the algorithm, thus rendering the Bellman–
Ford algorithm inapplicable. Future research on the use of algorithms that allow loops
within the graph is required to include drop manholes and other structures.
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