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Abstract: Analyzing time-series sentencing data presents many challenges. The data have many
dimensions and change with time. This makes it difficult to identify patterns and discuss their
similarities over time. This work proposes a machine learning approach to associate patterns with
clusters. This allows a representation of sentencing data regarding trajectories in the appropriate
(time, cluster) space. We propose to use the Hamming distance of trajectories to measure the similarity
of sentencing data across districts. For any offense, we can define the average Hamming distance
that has a simple interpretation as the average period when sentencing patterns are different. We
introduce simple statistical measures on trajectories to show similarities and changes in sentencing
behavior over time. We illustrate our approach by analyzing sentencing data for narcotics and
retail theft.

Keywords: time-series sentencing data; machine learning; clustering; Hamming distance

1. Introduction

Analyzing sentencing data across multiple districts presents many challenges. The
data have many dimensions and change with time. The multidimensional nature of such
data makes it difficult to visualize such changes easily and compare sentencing statistics
for different offenses and districts [1–3].

In this work, we would like to present an approach to address the following questions:

1. How do we visualize sentencing data?
2. How do we use such visualization to quantify sentencing similarities and differences

across districts for different offenses?
3. How do we measure variability in sentencing?
4. How do we measure the “most likely” sentencing?
5. How do we measure changes in sentencing over time?

Our approach is to use techniques from machine learning and represent sentencing
data in terms of patterns changing over time [4]. To that end, we choose a small number k
of patterns, or clusters, C1, . . . , Ck, and associate sentencing data for each district with these
clusters for each period. We can then construct a trajectory: a sequence of clusters over the
entire period. Trajectories can then visualize the time evolution of data in the appropriate
(time, cluster) space. We can perform a simple analysis and address the above questions by
computing simple statistics on the resulting trajectories. We will use the terms clusters and
patterns interchangeably in this paper.

To proceed, we assume that for each offense (c), such as narcotics or retail theft, in a
period tj such as a year and each district Di, we have sentencing data X(c)

ij such as a prison
term. The sentencing data could be multi-dimensional, with additional information such
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as parole conditions. For each offense c, we can split our dataset into a set of objects O(c)
ij of

the form
O(c)

ij =
{

Di, tj, X(c)
ij

}
We emphasize that since the sentencing data X(c)

ij could be pretty complex and multi-
dimensional (vector), it may be challenging to analyze and visualize the evolution of such
multi-dimensional data over time. Moreover, it is difficult to compare changes in data by
examining just statistical measures. For example, consider the sentencing data. Different
offenses result in a different severity of punishment, so sentencing patterns cannot be
directly compared to each other by just statistical measures [5].

Our approach is to cluster these objects into a small number k of clusters C1, . . . , Ck and
construct the corresponding trajectories [2]. These clusters represent patterns of sentencing.

How do we choose these clusters? There are several ways to do this. If we have
a distance metric for O(c)

ij , we can apply k-means clustering [6] and obtain the resulting

assignment. Or, if the sentencing data X(c)
ij are simple, such as just the average prison

term, then we can choose clusters based on quantiles [1]. In our approach, patterns can be
assigned by any rule(s).

Therefore, the suggested approach is quite general and the methodology presented can
be carried out for any user-defined distance between districts. For simplicity of presentation,
we choose the quartiles to assign data into clusters. This gives us k = 4 patterns (clusters).

The critical point is that we choose a small number of k of patterns and assign our
objects to these patterns across all periods. Once our objects are associated with clusters,
we can write out a trajectory of clusters over time [7]. For example, suppose we have n = 3
periods. If for period t1 the pattern is C2, for period t2 the pattern is C4, and for period t3 the
pattern is C2, then we can construct a trajectory path P(c) = (C1, C4, C2) in the (time, cluster)
space. For convenience, we will write this path by specifying the numbers of the clusters
and write P in a more compact notation as P(c) = (1, 4, 2). Once these trajectories across
all periods for offenses of interest are constructed, they can be analyzed and compared
for similarities and differences. These trajectories are conceptually similar to the crime
trajectories [8] that are widely used in criminology to analyze crime dynamics data.

We illustrate the proposed approach by analyzing sentencing data for Narcotics and
Retail Theft across six district courts over ten years (2012–2021) for Cook County in Chicago,
Illinois. We will use superscript (N) to indicate Narcotics and superscript (R) to indicate
Retail Theft.

We understand the possible limitations of such an approach. For example, the ag-
gregation of sentencing to the year/district level and then compressing that into clusters
(e.g., quartiles) misses the variation within the district. The method also misses the complex-
ity of sentences, which can combine jail, prison, probation, fines, restitution, and community
service components. Existing methods of studying trajectories in criminology (though
mostly for individual criminal behavior) often use finite mixture models [7]. Nevertheless,
our approach offers simplicity and simple, intuitive explanations, as will be illustrated in
subsequent sections.

2. Sentencing Dataset

The data are from Cook County’s open data: https://datacatalog.cookcountyil.gov/
Courts/Sentencing/tg8v-tm6u/data, last accessed on 30 November 2023. For our analysis,
we are considering only the primary charges of the cases present in the data, the cases
where the defendant was sentenced to prison, and the cases that occurred at a specific
time starting from the year 2012 to the year 2021 (10 years). After the initial filtering
of the data, the sentence time was standardized into years for the analysis using the
standard months-to-years, days-to-years, and hours-to-years conversion. This is illustrated
in Figures 1 and 2.

https://datacatalog.cookcountyil.gov/Courts/Sentencing/tg8v-tm6u/data
https://datacatalog.cookcountyil.gov/Courts/Sentencing/tg8v-tm6u/data
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Figure 1. The raw data before processing.

Figure 2. The cleaned data after processing.

Cook County has six districts in total; the primary objective was to assess how each
district sentences based on the crime in a particular year. In Table 1, we present statistics on
the district’s annual convictions for both offenses. The annual summary statistics by district
are presented in Table 1 and the summary statistics by district are presented in Table 2.

Table 1. Annual number of convictions by district.

YEAR
1 2 3 4 5 6 7 8 9 10

Narcotics
D1 2870 3050 2747 2341 2071 1907 1429 1235 380 587
D2 256 237 148 131 111 109 73 110 41 51
D3 60 40 88 71 65 55 39 50 31 16
D4 58 70 62 44 63 43 101 76 11 9
D5 252 237 196 149 121 105 135 92 48 50
D6 76 94 129 111 101 79 58 55 22 31

Retail Theft
D1 342 327 388 327 320 191 92 75 22 25
D2 275 318 207 190 161 119 76 85 30 45
D3 72 74 92 83 119 47 15 16 15 14
D4 158 175 204 171 204 114 43 36 17 16
D5 188 165 192 173 172 93 50 53 19 44
D6 57 80 78 56 85 64 21 25 3 10

Table 2. Total convictions by district (2012–2021).

Offense D1 D2 D3 D4 D5 D6 Total

Narcotics 18,617 1267 515 537 1.385 756 20,207
Retail Theft 2109 1506 547 1138 1149 479 6928

We see from Table 1 that the districts had very uneven numbers of convictions, with
some districts having many more convictions than others. For example, district D1 alone
would account for more than 90% of the convictions for narcotics (18,607/20,207) and more
than 30% of the convictions for retail theft (2109/6928). By contrast, district D3 accounts for
only 2.5% of the convictions for narcotics (515/20,207) and for less than 8% for retail theft
(547/6928). Examining Table 1, we note that the number of convictions dropped drastically
for both offenses as more paroles were offered in later years.

Next, we examine the empirical distribution of sentences shown by (normalized)
histograms of sentences for each offense. In Figure 3, we note that the empirical distribution
is more concentrated for Retail Theft than for Narcotics. This means that sentencing for
retail theft is more consistent across districts than for narcotics.
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Figure 3. Distribution of data.

3. Reason for Decline in Data Point Values

A significant decline in drug offenses and retail theft cases resulting in jail time and
probation has been observed in Cooks County due to the implementation of new state
laws [9]. These laws prioritize diverting non-violent offenders from the criminal justice
system and towards community-based programs and services. As a result, the number
of drug and theft cases resulting in jail time and probation has decreased. This shift in
approach towards rehabilitation and reintegration has been identified as a contributing
factor to the decline in data present for drug- and retail theft-related cases.

4. Constructing Trajectories

To illustrate our approach, we will consider two offenses: narcotics and retail theft. To
construct trajectories, we need to cluster sentencing data across all years into k clusters.

We can use any of the clustering methods such as k-means [4]. For simplicity of
presentation, in this paper, we consider a simple assignment of sentencing data to k = 4
patterns based on quartiles Q1, Q2, Q3, and Q4 for each offense. These quartiles are
computed from the sentence lengths separately for each offense across ten years (2012–
2021). The advantage of such an assignment is that we can compare sentencing patterns for
different districts and offenses [3]. Suppose for a particular district Di, and for a particular
period, tj, the patterns for both offenses are the same Ck. In that case, we can argue that
these patterns are similar: both reflect the severity of sentencing according to the quartiles
computed for each such offense [10]. By contrast, the sentences themselves cannot be
computed directly to each other since they could carry a different severity of punishment
depending on the offense.

Let us show how we construct these trajectories. We start with the offense “Narcotics”.
For each district and every year we computed the average sentence. This is summarized in
Table 3:

Table 3. Mean annual sentences by district.

YEAR
1 2 3 4 5 6 7 8 9 10

Narcotics
D1 2.9 3.1 2.8 2.5 2.4 2.5 2.2 2.1 1.7 1.8
D2 1.9 2.2 2.0 1.7 2.6 1.9 1.8 2.2 1.5 1.6
D3 3.5 1.9 3.2 2.9 1.9 2.1 2.1 1.3 2.1 1.9
D4 3.6 5.2 3.7 3.4 3.5 3.8 0.5 0.3 0.5 0.6
D5 1.6 1.9 2.0 2.0 1.9 1.8 1.3 1.8 1.4 1.4
D6 2.9 1.9 2.4 2.7 2.8 2.3 1.1 1.1 0.6 0.6
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Table 3. Cont.

YEAR
1 2 3 4 5 6 7 8 9 10

Retail Theft
D1 1.7 1.7 1.6 1.5 1.4 1.3 1.7 1.3 1.2 1.6
D2 1.6 1.7 1.6 1.6 1.4 1.7 2.3 1.6 1.4 1.6
D3 1.9 1.9 1.7 1.8 1.8 1.9 2.2 1.7 1.4 0.9
D4 1.5 1.9 1.4 1.5 1.2 0.9 0.9 0.8 0.8 0.5
D5 1.7 1.8 1.7 1.5 1.3 1.0 1.5 1.8 2.8 1.2
D6 1.7 1.6 1.5 1.5 1.3 0.9 1.6 1.5 0.7 1.2

For Narcotics, the quartiles from the sentencing dataset are Q(N)
1 = 1, the median

M(N) = 2, and Q(N)
3 = 3. If µ

(N)
ij is the average sentence for district Di for year tj, then we

consider the following assignment of that district Di to one of four clusters (patterns): C1,
C2, C3, and C4:

1. 0 < µ
(N)
ij ≤ 1: sentencing pattern C1 (first quartile);

2. 1 < µ
(N)
ij ≤ 2: sentencing pattern C2 (second quartile);

3. 2 < µ
(N)
ij ≤ 3: sentencing pattern C3 (third quartile);

4. 3 < µ
(N)
ij : sentencing pattern C4 (fourth quartile).

Once we have the above for assigning patterns, we can construct the corresponding
trajectories [11]. For example, take district D1 for Narcotics. We construct its trajectory as
follows. From Table 3, for year 1 the mean µ

(N)
11 = 2.7 is in the third quartile, and therefore

we have sentencing pattern C3. For year 2, the mean µ
(N)
12 = 2.9 is in the third quartile,

and therefore we again assign sentencing pattern C3. For year 3, the mean µ
(N)
13 = 3.1 is

in the fourth quartile, and therefore we assign a sentencing pattern C4. Continuing in this
manner, we compute the trajectory P(N)

1 of sentencing patterns for the remaining years

as P(N)
1 = (C3, C3, C4, C3, C3, C3, C3, C3, C3, C2, C2, C2). In compact notation, we write this

as P(N)
1 = (3, 3, 4, 3, 3, 3, 3, 3, 3, 2, 2, 2). The trajectories for Narcotics are summarized in

compact notation in Table 4.
For retail theft, the quartiles from the sentencing dataset are Q(R)

1 = 1, the median

M(R) = 1.5, and Q(R)
4 = 2. If µ

(R)
ij is the average sentence for district Di for the year j, then

we consider the following assignment of that district Di to clusters (patterns), C1, C2, C3,
and C4, like that for Narcotics:

1. 0 < µ
(R)
ij ≤ 1: sentencing pattern C1 (first quartile);

2. 1 < µ
(R)
ij ≤ 1.5: sentencing pattern C2 (second quartile);

3. 1.5 < µ
(R)
ij ≤ 2: sentencing pattern C3 (third quartile);

4. 2 < µ
(R)
ij : sentencing pattern C4 (fourth quartile).

Once we have the above for assigning patterns, we can construct the corresponding
trajectories. For example, consider the computation of the trajectory path P(R)

1 for the

same district D1. From Table 3, for year 1, the mean µ
(R)
11 = 1.8 is in the third quartile

and therefore we assign pattern C3. For year 2, the mean µ
(R)
12 = 1.7 is in the third

quartile, and we assign sentencing pattern C3. For year 3, the mean µ
(R)
13 = 1.7 is again

in the third quartile, and again we assign a sentencing pattern C3. Continuing in this
manner, we compute the trajectory P(R)

1 of sentencing patterns for the remaining years

as P(R)
1 = (C3, C3, C3, C3, C2, C2, C2, C3, C2, C2, C3, C4). In compact notation, we write this
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as P(R)
1 = (3, 3, 3, 3, 2, 2, 2, 3, 2, 2, 3, 4). The trajectories for retail theft for all districts are

summarized in compact notation in Table 4.

Table 4. Pattern trajectories by district.

YEAR
1 2 3 4 5 6 7 8 9 10 Mode Count

Narcotics
D1 (3, 4, 3, 3, 3, 3, 3, 3, 2, 2) C3 7
D2 (2, 3, 3, 2, 3, 2, 2, 3, 2, 2) C2 6
D3 (4, 2, 4, 3, 2, 3, 3, 2, 3, 2) C2 4
D4 (4, 4, 4, 4, 4, 4, 1, 1, 1, 1) C4 6
D5 (2, 2, 3, 3, 2, 2, 2, 2, 2, 2) C2 8
D6 (3, 2, 3, 3, 3, 3, 2, 2, 1, 1) C3 5

Retail Theft
D1 (3, 3, 3, 2, 2, 2, 3, 2, 2, 3) C3 5
D2 (3, 3, 3, 3, 2, 3, 4, 3, 2, 3) C3 7
D3 (3, 3, 3, 3, 3, 3, 4, 3, 2, 1) C3 7
D4 (2, 3, 2, 3, 2, 1, 1, 1, 1, 1) C1 5
D5 (3, 3, 3, 3, 2, 2, 3, 3, 4, 2) C3 6
D6 (3, 3, 3, 3, 2, 1, 3, 2, 1, 2) C3 5

Once we have the assignment of sentencing data to patterns, we can visualize the
corresponding trajectories. For Narcotics, the trajectories are shown in Figure 4, and and
for retail theft the corresponding trajectories are shown in Figure 5. These trajectories are
shown separately for each district in Figures 6 and 7.

Figure 4. Narcotics cluster visualization.
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Figure 5. Retail theft cluster visualization.

Figure 6. Narcotics district-wise cluster visualization.

Figure 7. Retail theft district-wise cluster visualization.
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Finally, lets us write down the frequency distribution of patterns for each offense.
This is summarized in Table 5. For both crimes, more than 80% of patterns are C2 and
C3, corresponding to the second and third quartiles in sentence length. It is much more
concentrated for Retail Theft: more than 50% of all patterns are pattern C3, whereas, for
Narcotics, the number of patterns C2 and C3 are split evenly (38%, 39%). This higher
concentration of pattern C3 for Retail Theft reflects a higher percentage of retail theft
offenses receiving a higher sentence than narcotics as measured by pattern counts.

Table 5. Frequency distribution of patterns.

Frequency Counts Percentage

Pattern C1 C2 C3 C4 C1 C2 C3 C4
Narcotics 6 23 22 9 6% 23% 24% 15%
Retail Theft 8 17 32 3 13% 28% 54% 5%
Narcotics and Retail Theft 14 40 54 12 12% 33% 45% 10%

5. Analyzing Similarities and Differences

Once the trajectories are computed, we can look for similarity in patterns over time.
To that end, we need to define a “distance” metric to measure this.

We propose to use the so-called Hamming distance. In information theory, the Ham-
ming distance between two strings of equal length is the number of positions at which the
corresponding symbols are different [12]. If P(c)

i and P(c)
j denote two trajectories over n

years for some offense c, then the Hamming distance h(P(c)
i , P(c)

j ) is defined as the number
of years when the corresponding patterns differ. To analyze similarities and differences in
sentencing over time, we can analyze the differences between the corresponding trajectories
using this Hamming distance [13].

For a simple numerical example, consider the Hamming distance between districts D1

and D2 for Narcotics. The corresponding trajectories are P(N)
1 and P(N)

2 from Table 4:

Year 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

P(N)
1 (3, 4, 3, 3, 3, 3, 3, 3, 2, 2)

̸= ̸= = ̸= = ̸= ̸= = = =

P(N)
2 (2, 3, 3, 2, 3, 2, 2, 3, 2, 2)

There are five years when the corresponding patterns are different. Therefore, for
this example, the Hamming distance between trajectories is h(P(N)

1 , P(N)
1 ) = 5. In other

words, for Narcotics, the sentencing patterns for districts D1 and D2 are different in 5 out
of 10 years.

In a similar manner, we can compute Hamming distances h(P(N)
i , P(N)

j ) for any pair
of trajectories from districts Di and Dj. We can summarize these pairwise distances as a
hlmatrix H(N) where an element at row i and column j represents the Hamming distance
between trajectory P(N)

i for district Di and trajectory P(R)
j for district Dj. Similarly, we can

compute the corresponding Hamming matrix H(R) for trajectories for retail theft.
These corresponding matrices for Narcotics and Retail Theft are given below:

H(N) =



0 5 6 9 6 5
5 0 9 10 4 7
6 9 0 8 5 6
9 10 8 0 10 8
6 4 5 10 0 5
5 7 6 8 5 0

, H(R) =



0 4 6 8 4 4
4 0 2 7 4 5
6 2 0 7 5 6
8 7 7 0 7 5
4 4 5 7 0 3
4 5 6 5 3 0


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We note that each Hamming matrix is symmetric with 0 on the main diagonal. For
n = 6 districts, each matrix contains (n2 − n)/2 = 15 entries (Hamming distances) above
the main diagonal corresponding to distinct pairs of trajectories. Let us write down these
15 entries as sorted sequences for Narcotics and Retail Theft. We will denote these sequences
as S(N) and S(R), respectively. We have the following:

S(N) = {4, 5, 5, 5, 5, 6, 6, 6, 7, 8, 8, 9, 9, 10, 10}

S(R) = {2, 3, 4, 4, 4, 4, 5, 5, 5, 6, 6, 7, 7, 7, 8}

We can compute some statistical measures for each of these two sequences and summa-
rize them in Table 6. This table shows that both median and mean Hamming distances are
lower for Retail Theft than for Narcotics. On average, the two trajectories differ in almost
seven out of ten years (or 70% of the time) for Narcotics (µ = 6.9) but only in about five
years out of ten years (or 50%) for Retail Theft (µ = 5.1). The variability in these distances
measured by standard deviations is lower for Retail Theft (σ = 1.6) than for Narcotics
(σ = 1.9). In other words, retail theft sentencing was comparatively more consistent across
districts than narcotics sentencing.

Table 6. Statistics of Hamming distances for Narcotics and Retail Theft.

Sequence Min Max Mode Median µ σ

S(N) 4 10 5 6 6.9 1.9
S(R) 4 8 4 5 5.1 1.6

6. Volatility and Inertia of a Trajectory

In the previous section, we examined the similarities between trajectories using the
Hamming distance. We now focus on describing the statistics on individual trajectories.
We want to characterize the following performance metrics:

1. The tendency of a trajectory to change patterns over time. We will call this the volatility
of trajectory and denote it by V.

2. The tendency of a trajectory to remain in the same pattern in consecutive years. We
will call the length of the longest such sub-sequence the inertia of the trajectory. We
denote inertia by I.

3. The “average” or “most likely” trajectories for Narcotics and Retail Theft.

We start with volatility. Suppose a pattern in each period was described by a single
number. In that case, we could take some measure of deviation, such as standard deviation,
and use it as a measure of volatility [14]. However, in general, we may not have such a single
numerical description of a pattern. Therefore, we suggest a simple alternative: measure
trajectory volatility by the number of times patterns were switched in the trajectory [15].

For example, consider district D1 for Narcotics. Its trajectory is

Year 1 2 3 4 5 6 7 8 9 10

P(N)
1 (3, 4, 3, 3, 3, 3, 3, 3, 2, 2)

This trajectory switched patterns after years 2, 3, 4, and 9. We can write it schematically as

P(N)
1 = (3 ↗ 4 ↘ 3, 3, 3, 3, 3, 3 ↘ 2, 2)

where ↗ and ↘ represent changes to a higher-numbered pattern or a lower-numbered pat-
tern, respectively. Therefore, the above trajectory P(N)

1 had three switches between patterns.

We use this number as a measure of volatility for trajectories. Therefore, V(P(N)
1 ) = 3.
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We compute this volatility V(R) and V(R) for the Narcotics and Retail Theft trajectories,
respectively, and summarize the results in Table 7. From this table, we see that for Retail
Theft, we have a slightly higher mean volatility (5.3 vs. 4.7) but a lower standard deviation
(0.9 vs. 2.1). Examining the pattern of switches, we notice that for Retail Theft, there
are many more switches in the last 6 years compared to Narcotics. This suggests that
sentencing patterns in the last six years could be quite different than in the first six years.
We will present a detailed analysis of such comparison in Section 7.

Table 7. Volatility and inertia of trajectories.

Di Trajectory Switching Pattern V I

Narcotics
D1 3 ↗ 4 ↘ (3, 3, 3, 3, 3, 3) ↘ (2, 2) 3 6
D2 2 ↗ (3, 3) ↘ 2 ↗ 3 ↘ (2, 2) ↗ 3 ↘ (2, 2) 6 2
D3 4 ↘ 2 ↗ 4 ↘ 3 ↘ 2 ↗ (3, 3)↘ 2 ↗ 3 ↘ 2 8 2
D4 (4, 4, 4, 4, 4, 4) ↘ (1, 1, 1, 1) 1 6
D5 (2, 2) ↗ (3, 3) ↘ (2, 2, 2, 2, 2, 2) 2 6
D6 3 ↘ 2 ↗ (3, 3, 3, 3) ↘ (2, 2) ↘ (1, 1) 4 4

µ : 3.0 4.3
σ : 2.6 2.0

Retail Theft
D1 (3, 3, 3) ↘ (2, 2, 2) ↗ 3 ↘ (2, 2) ↗ 3 4 3
D2 (3, 3, 3, 3) ↘ 2 ↗ 3 ↗ 4 ↘ 3 ↘ 2 ↗ 3 6 4
D3 (3, 3, 3, 3, 3, 3) ↗ 4 ↘ 3 ↘ 2 ↘ 1 4 6
D4 2 ↗ 3 ↘ 2 ↗ 3 ↘ 2 ↘ (1, 1, 1, 1, 1) 5 5
D5 (3, 3, 3, 3) ↘ (2, 2) ↗ (3, 3) ↗ 4 ↘ 2 4 4
D6 (3, 3, 3, 3) ↘ 2 ↘ 1 ↗ 3 ↘ 2 ↘ 1 ↗ 2 6 4

µ : 4.8 4.3
σ : 1.0 1.0

Next, we consider inertia—the tendency of a trajectory to stay in the same pattern over
consecutive years. We analyze inertia by computing the length of the longest sub-sequence
with the same pattern.

For example, consider district D1 for Narcotics. Its trajectory is

Year 1 2 3 4 5 6 7 8 9 10
P(N)

1 (3, 4, (3, 3, 3, 3, 3, 3), 2, 2)

This trajectory spends 6 consecutive years in the same pattern C3. It is possible to have
a case where we have multiple sub-sequences with the same duration. In such a case, we
take the length of a maximum sub-sequence. For example, consider district D3

Year 1 2 3 4 5 6 7 8 9 10
P(N)

2 (2, (3, 3), 2, 3, (2, 2), 3, (2, 2))

In this example, we have three sub-sequences of the same length, 2. In such a case, we
will use a sub-sequence containing the most frequent pattern. For this district, pattern C2 is
the most frequent and, therefore, we will use (2, 2) as the sub-sequence to measure inertia.

In Table 7, we present the results for inertia for both offenses. The average inertia is
slightly higher for Retail Theft vs. Narcotics (5.3 vs. 4.7) and has a lower standard deviation
(0.9 vs. 1.8). This suggests that sentencing patterns for retail theft are more static.

Finally, we can ask the following question: what are the “average” or most likely
trajectories for Narcotics and Retail Theft? [16] We can construct such trajectories as follows.
For each offense and year, we write down the most frequent (mode) pattern for that year.
This is illustrated in Table 8.
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Table 8. Computing “average” trajectories.

YEAR
1 2 3 4 5 6 7 8 9 10

Narcotics {2,3,4} 2 3 3 3 3 2 2 2 2
Retail Theft 3 3 3 3 2 {1,2,3} 3 3 2 {1,2,3}

For some years, we may have multiple choices for the mode. For example, for Nar-
cotics, we have multiple choices for year 1, namely clusters C2, C3, and C4. For Retail Theft,
we have multiple choices for year 6 (clusters C1, C2, and C3) and year 10 (clusters C1, C2,
and C3). In such cases, we will use the procedure commonly used in machine learning [1,4]:
use the most frequent pattern across all districts and years for that offense. For example,
for year 1 in Narcotics, we must choose between patterns C2 and C3. From Table 5, we
find that for Narcotics, pattern C2 is (slightly) more frequent than pattern C3 (23% vs. 22%).
Therefore, we assign C2 for year 2 in Narcotics.

By contrast, for Retail Theft from Table 5, we find that pattern C3 is much more frequent
than C2 (54% vs. 28%). Therefore, we assign pattern C3 in years 6 and 10.

With the above construction, we can compute the “average” trajectories, their volatility
V, and inertia I for Narcotics and Retail Theft:

Year 1 2 3 4 5 6 7 8 9 10
P(N)

ave (2, 2, 3, 3, 3, 3, (2, 2, 2, 2))
P(R)

ave ((3, 3, 3, 3), 2, 3, 3, 3, 2, 3)

Let us rewrite the above paths by indicating pattern switches and sub-trajectories in
the same cluster.

P(N)
ave = ((2, 2) ↗ (3, 3, 3, 3) ↘ (2, 2, 2, 2))

P(R)
ave = ((3, 3, 3, 3) ↘ 2 ↗ (3, 3, 3) ↘ 2 ↗ 3)

These “average” trajectories are illustrated in Figure 8. Comparing these new “average”
trajectories, we note the following:

1. For Narcotics, the trajectory has inertia I = 5. It spends the last five years in pattern
C2. During the first 7 years, it switched between patterns C2 and C3. Its volatility is
V = 3.

2. For Retail Theft, the trajectory also has inertia I = 5, but it spends the first five years
in pattern C3. During the last seven years, it has switched between patterns C2 and
C3. Its volatility is V = 5 and is higher than that of Narcotics.

Figure 8. The Average trajectories for Narcotics and Retail Theft.
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7. Changes in Sentencing Patterns over Aggregated Time Periods

In the previous analysis, we constructed the trajectory for patterns and analyzed their
similarity and differences by focusing on all 10 years. We now ask the following question:
do differences in patterns change over larger (aggregated) periods [17]?

We illustrate how such analysis is carried out with our trajectories. We will aggregate
our ten years into the first five years (years 1–5) and the last five years (years 6–10). Consider
the Narcotics offenses first. If we take district Di, then its trajectory P(N)

1 from Table 4,

P(N)
1 = (3, 4, 3, 3, 3, 3, 3, 3, 2, 2),

will be split into sub-trajectories F(N)
1 and L(N)

1 corresponding to the first five and last five
years, respectively,

F(N)
1 = (3, 4, 3, 3, 3), L(N)

1 = (2, 3, 4, 3, 3).

We can split all trajectories into two halves. The resulting partial trajectories are
summarized in Table 9.

Table 9. Sub-trajectories for years 1–6 and years 7–12.

Narcotics Retail Theft
Years 1–5 Years 6–10 Years 1–5 Years 6–10

F(N)
i L(N)

i F(R)
i F(R)

i

D1 (3, 4, 3, 3, 3) (3, 3, 3, 2, 2) (3, 3, 3, 2, 2) (2, 3, 2, 2, 3)
D2 (2, 3, 3, 2, 3) (2, 2, 3, 2, 2) (3, 3, 3, 3, 2) (3, 4, 3, 2, 3)
D3 (4, 2, 4, 3, 2) (3, 3, 2, 3, 2) (3, 3, 3, 3, 3) (3, 4, 3, 2, 1)
D4 (4, 4, 4, 4, 4) (4, 1, 1, 1, 1) (2, 3, 2, 3, 2) (1, 1, 1, 1, 1)
D5 (2, 2, 3, 3, 2) (2, 2, 2, 2, 2) (3, 3, 3, 3, 2) (2, 3, 3, 4, 2)
D6 (3, 2, 3, 3, 3) (3, 2, 2, 1, 1) (3, 3, 3, 3, 2) (1, 3, 2, 1, 2)

The trajectories are illustrated in Figure 9 and 10:

Figure 9. Sub-trajectories for years 1–5.
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Figure 10. Sub-trajectories for years 6–10.

Once we have the sub-trajectories, we can compute the Hamming matrices for the first
and last five years. We will use the subscripts ( f ) and (l) to denote the first five years and
the last five years. With this notation, we have the following:

1. Hamming distance matrices for Narcotics in the first and last five years:

H(N)
f =



0 3 4 4 3 1
3 0 5 5 3 3
4 5 0 3 2 3
4 5 3 0 5 5
3 3 2 5 0 2
1 3 3 5 2 0

, H(N)
l =



0 2 2 5 3 4
2 0 4 5 1 4
2 4 0 5 3 3
5 5 5 0 5 3
3 1 3 5 0 3
4 4 3 3 3 0


2. Hamming distance matrices for first and last five years for Retail Theft:

H(R)
f =



0 1 2 3 1 1
1 0 1 2 0 0
2 1 0 3 1 1
3 2 3 0 2 2
1 0 1 2 0 0
1 0 1 2 0 0

, H(R)
l =



0 3 4 5 3 3
3 0 1 5 4 5
4 1 0 4 4 5
5 5 4 0 5 3
3 4 4 5 0 3
3 5 5 3 3 0


As before, for our n = 6 districts, each Hamming distance matrix contains (n2 −

n)/2 = 15 entries (Hamming distances for sub-trajectories). We can write down these
entries in sorted order. As with the Hamming matrices above, we will use subscripts ( f )
and (g). We have

S(N)
f = {1, 2, 2, 3, 3, 3, 3, 3, 3, 4, 4, 5, 5, 5, 5}

S(N)
l = {1, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 5, 5, 5, 5}

S(R)
f = {0, 0, 0, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3}

S(R)
l = {1, 3, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 5}

As before, we can compute some statistical measures for Hamming distances for each
sequence. These are summarized in Table 10. We note that for Narcotics, the statistics
on Hamming distances have remained practically unchanged between the two periods.
The median Hamming distance for Narcotics remained the same, and the mean changed
slightly between the first five years (µ = 3.4) and the last five years (µ = 3.5). The standard
deviation remained the same at σ = 1.2.

By contrast, we see a dramatic difference between the first and last periods for Retail
Theft. In the first period, the sub-trajectories were very similar, with a median Hamming
distance of 1. This median distance increased dramatically to 4 in the second period. The
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mean distance increased dramatically from 1.3 to 3.8. At the same time, the variability in
Hamming distances increased only slightly from σ = 0.9 to σ = 1.1. In other words, the
sub-trajectories for Retail Theft became considerably more distinct in the last five years
than during the first five years.

Table 10. Statistics of Hamming distances for Narcotics and Retail Theft in the first and last five years.

Offense Years Min Max Median µ σ

Narcotics 1–5 1 5 3 3.4 1.2
6–10 1 5 3 3.5 1.2

Retail Theft 1–5 0 3 1 1.3 0.9
6–10 1 5 4 3.8 1.1

Next, we compare both periods separately in terms of volatility V and inertia I. We
compute these by examining Table 9. Our results are summarized in Table 11. Examining
this table, we see a dramatic change in sentencing between the two periods. For Narcotics,
the average inertia µ(I) increased from 2.7 to 3, while the average volatility µ(V) decreased
from 2.2 to 1.5. The standard deviations for both inertia and volatility decreased as well.
By contrast, for Retail Theft, the average inertia µ(I) decreased drastically from 3.5 to 2,
while the average volatility µ(V) increased drastically from 1.3 to 3. Standard deviations
for these measures increased, especially for volatility from 1.3 to 3. This means that for
Retail Theft, the districts became much more different in their sentencing patterns. The
most dramatic change for Retail Theft is observed in district D3. For the first five years, the
trajectory remained in the same cluster C3, whereas it changed clusters from one year to
the next for the last five years. These results are consistent with the above observation that
sub-trajectories became more distinct for Retail Theft than for Narcotics when measured by
Hamming distances.

Table 11. Volatility V and inertia I for sub-trajectories.

Narcotics Retail Theft
Years 1–5 Years 6–10 Years 1–5 Years 6–10

I V I V I V I V

D1 3 2 3 1 3 1 2 3
D2 2 3 2 2 4 1 1 4
D3 1 4 2 3 5 0 1 4
D4 5 0 4 1 1 4 5 0
D5 2 2 5 0 4 1 2 3
D6 3 2 2 2 4 1 1 4

µ 2.7 2.2 3.0 1.5 3.5 1.3 2.0 3.0
σ 1.4 1.3 1.3 1.0 1.4 1.4 1.5 1.5

8. Side-by-Side Comparison of Districts

So far, we have compared trajectories to each other separately for Narcotics and Retail
Theft and have identified differences and similarities in sentencing patterns. We now ask
a different question: how do individual districts compare in terms of their sentencing
patterns [18]?

We can only make such a comparison if we have the same number of patterns and
each cluster Ci for Narcotics is “equivalent” to cluster Ci for Retail Theft. In our case, we
took the same number k = 4 of clusters, and districts were assigned to clusters by similar
rules based on quartiles of average sentences. Therefore, although the sentences could
be radically different, we can compare the individual districts in corresponding patterns.
Side-by-side comparisons are shown in Figures 11 and 12.
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Figure 11. Side-by-side comparison for district D3.

Figure 12. Side-by-side comparison for district D5.

In Table 12, we consider pairwise trajectories for each district and compute their
volatility V and inertia I from Table 7 and their Hamming distances h(P(N)

i , P(R)
i ).

We can see that the most significant difference is in district D3.
For this district, the Hamming distance is 8. For Narcotics, this district has a maximum

value of 8 for volatility and a minimum value of 2 for inertia across all possible trajectories.
By contrast, for Retail Theft, this district has a median volatility value of 4 but a maximum
value of 6 for inertia across all possible trajectories.

The most minor difference is in district D5, with a Hamming distance of 6.
For both Narcotics and Retail Theft, we have the same value of 7. For Narcotics, this

district has a value of 3. By contrast, for Retail Theft, this district has an inertia value of 4,
which is the median value for inertia across all trajectories.

The above comparison suggests that district 3 has the most differences in sentencing
patterns for both offenses, whereas district 5 has the most similar patterns in sentencing.

Table 12. Side-by-side comparison of districts.

YEAR
Di (c) 1 2 3 4 5 6 7 8 9 10 V I h

D1
(N) 3 4 3 3 3 3 3 3 2 2 2 6 6(R) 3 3 3 2 2 2 3 2 2 3 4 3

D2
(N) 2 3 3 2 3 2 2 3 2 2 7 3 6(R) 3 3 3 3 2 3 4 3 2 3 6 4

D3
(N) 4 2 4 3 2 3 3 2 3 2 8 2 8(R) 3 3 3 3 3 3 4 3 2 1 4 6

D4
(N) 4 4 4 4 4 4 1 1 1 1 2 6 6(R) 2 3 2 3 2 1 1 1 1 1 5 5
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Table 12. Cont.

YEAR
Di (c) 1 2 3 4 5 6 7 8 9 10 V I h

D5
(N) 2 2 3 3 2 2 2 2 2 2 2 6 5(R) 3 3 3 3 2 2 3 3 4 2 4 4

D6
(N) 3 2 3 3 3 3 2 2 1 1 4 4 5(R) 3 3 3 3 2 1 3 2 1 2 6 4

9. Summary of Results and Discussion

Let us start by summarizing our findings for Narcotics and Retail Theft.

• The median and mean Hamming distances are lower for Retail Theft than for Narcotics,
suggesting that retail theft sentencing was more consistent than Narcotics sentencing

• The volatility of trajectories was much higher for Retail Theft than for Narcotics
• the inertia is similar for both Narcotics and Retail Theft
• For Narcotics, the sentencing patterns did not change much during the last five years

as compared to the first five years. For Retail Theft, there was a dramatic change
in sentencing patterns as measured by changes in Hamming distances, inertia, and
volatility

• In a side-by-side comparison of sentencing by district, the most consistent sentencing
for both offenses was carried out by district 2, and the most inconsistent sentencing
was carried out by district 3

10. Conclusions

In this paper, we presented a general approach to compare sentencing data. The
key idea is to associate sentencing data with a small number of patterns (clusters) for
each period. This allows a representation of (possibly multi-dimensional) sentencing data
in terms of trajectories in the (time, cluster) space. We defined inertia and volatility for
these trajectories and used Hamming distance to analyze similarities and differences in
sentencing based on visualization. We illustrated our approach by presenting a detailed
comparison of sentencing data for Narcotics and Retail Theft. We believe the proposed
approach would provide additional tools for quantitative analysis in criminology.
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