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Abstract: Spiking Neural Networks (SNNs) are recognised for processing spatiotemporal information
with ultra-low power consumption. However, applying a non-efficient encoding-decoding algorithm
can counter the efficiency advantages of the SNNs. In this sense, this paper presents one-step ahead
forecasting centered on the application of an optimised encoding-decoding algorithm based on
Pulse Width Modulation (PWM) for SNNs. The validation is carried out with sine-wave, 3 UCI and
1 available real-world datasets. The results show the practical disappearance of the computational
and energy costs associated with the encoding and decoding phases (less than 2% of the total costs)
and very satisfactory forecasting results (MAE lower than 0.0357) for any dataset.

Keywords: Spiking Neural Networks; Pulse Width Modulation (PWM) based encoding-decoding
algorithm; forecasting

1. Introduction

In the past few years the use of Artificial Intelligence (AI) techniques has grown
exponentially. However, recent studies [1,2] have highlighted the negative impact of this
uncontrolled use in the global energy consumption, encouraging the scientific community
to employ more efficient hardware and software.

In this sense, Spiking Neural Networks (SNNs) have gained popularity in recent years.
These neural models, also known as the third generation of neural networks, are beginning
to be considered more power efficient than Artificial Neural Networks [3,4]. The reason for
this statement lies on how SNNs work. In SNNs the information is encoded in temporal
spike sequences or spike trains, trying to mimic more closely the functioning of human
brain. The use of spikes as working unit involves that: (a) SNNs are an event-driven,
hence, when a neuron does not receive a spike, that neuron can be considered inactive
leading to a decrease in the computational and energy cost of the algorithm; and (b) the
cost of multiplying the inputs by the weights can be reduced considerably in hardware
implementations [5]. In addition, SNNs present important advantages to be implemented
in neuromorphic hardware with ultra-low power consumption.

Despite possessing intrinsic features to manage temporal data, SNNs are mainly
applied in classification problems [6–8] rather than in regression or forecasting tasks, where
the variable of time is relevant. This fact is based on two limitations. The first limitation is
that traditionally there has been a lack of algorithms that can decode accurately the SNNs
output into real values [9]. Notice that the decoding is a necessary process in regression
and forecasting problems but not in classification ones. The second limitation is related to
the difficulty of applying supervised training strategies, such as backpropagation, in SNNs.
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In this sense, in [10] the first supervised training general methodology based on SNNs that
can be applied to one-step ahead forecasting problem independently of the characteristics
of the application field is presented.

This methodology [10] to overcome the aforementioned limitations applies: (i) a novel
temporal encoding-decoding algorithm based on Pulse Width Modulation (PWM) [9],
and (ii) a Surrogate Gradient (SG) method [11] that enables to employ a supervised train-
ing strategy.

Regarding the PWM based encoding-decoding algorithm applied in [10], this algo-
rithm [9] was originally designed to provide substantial improvements in terms of precision
in the encoding and decoding phases with respect to predecessor algorithms, being con-
sidered the efficiency of the algorithm as a non-crucial criterion. However, in terms of
ultra-low energy consumption, if the encoding-decoding algorithm applied is not efficient
enough, the efficiency advantages of SNNs may be countered. Thus, it is essential to apply
the most efficient possible encoding-decoding algorithm.

In [12] an optimisation of the PWM based encoding-decoding algorithm is presented.
This optimisation yields significant improvements in the accuracy of the encoding and
decoding phases and reduces the computational and energy costs.

In this sense, this paper presents one-step ahead forecasting based on the application
of the optimised PWM algorithm to SNNs. The aim of this work is to achieve significant im-
provements in accuracy and computational and energy costs of the SNNs based forecasting
methodology by applying a more efficient and accurate encoding-decoding algorithm.

The rest of this paper is organized as follows: Section 2 gives a brief summary about
SNNs. In Section 3 the methodology for one-step ahead forecasting based on the PWM
optimised version applied to SNNs is presented. Section 4 describes the experimental setup
used to assess the performance of the optimised algorithm in the SNNs training. Section 5
presents the results and the discussion is included in Section 6. Finally, Section 7 concludes
the paper.

2. Spiking Neural Networks

For many years, neuroscience and AI have been cooperating to try to design and de-
velop an algorithm that would try to reach the potential of human brain. This is the premise
on which Artificial Neural Networks (ANNs) were created. However, the performance and
efficiency of ANNs are not so close to biological networks.

SNNs try to mimic biological neurons more closely than ANNs encoding the infor-
mation in temporal spike sequences or spike trains, such as the nervous system. This
means that the information is contained in the number and timing of the spikes, but not in
its shape.

Spiking neuron models are defined by differential equations. There is a wide variety
of neuron models based on differential equations [13], but generally speaking the oper-
ation in discrete time of any spiking neuron model can be described by the following
three equations:

Ht = f (Vt−1, Xt) (1)

St = Θ(Ht − Vth) (2)

Vt = Ht(1 − St) + Vrest · St (3)

Equation (1) describes how the neuron is charged or discharged depending on if the
neuron receives as input (Xt) a spike or not, respectively. This equation also depends on
a function ( f ) that is different for each spiking neuron model and on the potential of the
neuron in the previous time instant (Vt−1).

Equation (2) applies the Heaviside step function (Θ) to compare the potential of the
neuron in the current time instant (Ht) with a threshold (Vth). If the value of Ht is higher
than the threshold, the neuron will emit a spike, otherwise it will emit a zero.

Equation (3) describes the potential of the neuron for the next time instant. If the
neuron does not emit a spike in the current time instant, the remaining potential is equal to
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Ht. However, if a spike is emitted, the potential is reset to a value known as Vrest and this
will be the initial potential value of the neuron for the next time instant.

The most well-known spiking neuron models are Integrate-and-Fire (IF), Leaky
Integrate-and-Fire (LIF) and Spike Response Neuron Model (SRNM). The neuron model
used in this paper is the LIF model [14] since it is the neuron model applied in [10]. The
LIF model is the most widely neuron model used in SNNs due to its simplicity and low
computational cost [15] and its functioning is usually abstracted into a resistor-capacitance
circuit. In Figure 1 an example of a SNN using LIF neurons in hidden and output layer is
shown. As in the case of ANNs, in SNNs the neurons in the input layer are only responsible
for the forward propagation of the encoded data.
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Figure 1. Example of a SNN structure.

3. Application of the Optimised PWM Algorithm to SNNs for One-Step
Ahead Forecasting
3.1. Optimised PWM Based Encoding-Decoding Algorithm

In SNNs it is necessary to encode all the real value information into spikes before
forwarding the data through any SNN. This is done by an encoding algorithm. The PWM
based encoding-decoding algorithm is based on the PWM principles, emitting spikes where
there is any intersection between the time-series signal and the carrier signal, commonly
represented by a sawtooth. The carrier signal is used as a temporal reference during the
encoding and decoding phases, hence, defining correctly this signal is essential. The carrier
signal depends on two hyperparameters:

• Number of carriers (nc), straightly related to the carrier frequency.
• Number of points per carrier (npc), which is related to the resolution of the algorithm

(see Figure 2A, where npc is four points represented in orange colour).

Regarding the comparison between the functioning of the original PWM based
encoding-decoding algorithm (Vor) [9] and its optimisation (Vopt) [12], two main differences
can be highlighted:

1. Vor processes point by point the complete time-series (signals formed by nc ∗ npc
values) to encode or decode. However, Vopt encodes and decodes each time instant
separately by calculating the intersection between the line that joints two values of
the time-series and the line that defines the sawtooth (see Figure 2A). This change
leads to simplified operations and reductions in memory and computational costs by
more than half.

2. As shown in Figure 2A, Vor always emits the spike at the npc instant immediately
after the intersection, while Vopt emits the spike at the closest npc instant. This
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modification involves a improvement in the accuracy up to double of the encoding
and decoding phases.
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Figure 2. Encoding process and input-output pairs formation.

3.2. Input-Ouput Pairs Formation and SNN Structure

Once the time-series is encoded, the samples can already be propagated through the
SNN. As explained in [10], in this methodology the samples are formed by the information
that is contained within each sawtooth. Hence, the input layer of the SNN is formed by the
number of previous values (Np) to make the forecast multiplied by npc, and the output
layer consists of npc neurons since it is a one step-ahead forecasting. Figure 2B shows an
example of the proposed structure being Np equal to 2 and npc equal to 4.

3.3. Surrogate Gradient (SG) Method

In ANNs, the supervised training algorithm is Back Propagation (BP). BP employs
partial derivatives of the error committed by an ANN to update its parameters. If BP is
applied to SNNs, the weights are updated following the next equations:

wij,l = wij,l − η∆wij,l (4)

∆wij,l =
∂E

∂wt
ij,l

=
∂E

∂St
i,l

·
∂St

i,l

∂Ht
i,l

·
∂Ht

i,l

∂wt
ij,l

(5)

In Equation (5), the term St
i,l represents the output of a SNN, which is defined by

Equation (2) where Θ is the Heaviside step function. If Equation (2) is derived at the time
instant where the spike is emitted, this derivative will tend to infinite, making it impossible
to apply the BP itself to SNNs.

In [10] BP is applied to SNNs employing a SG method. SG methods apply the differ-
ential equations of a spiking neuron model (Equations (1), (2) and (3)) during the samples
propagation; however, during backprogation they apply a surrogate gradient function
(θ(x)) instead of Θ(x). This new function is continuous in time, removing the problem of
the non-differentiability and enabling the application of BP in SNNs.

4. Experimental Setup

In this section the validation of the SNNs training methodology with Vopt is presented.
The validation lies in retraining the best selected SNN for each of the datasets applied
in [10] and comparing the new results with the original ones.
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4.1. Datasets

As in [10], the validation of the training methodology with Vopt is carried out with the
same 5 datasets so as to assess that the methodology does not lose its generality with the
introduction of Vopt. The 5 datasets are:

• A sine-wave signal, whose parameters are: frequency fo = 100 Hz, amplitude A = 3,
sampling frequency fs = 60 · fo and the number of cycles equal to 20.

• The Mackey-Glass Time Series Dataset (MGTSD), which is available in [16].
• The power consumption of the zone 3 in Tetouan. This dataset is available in [17]

and the values from 00:00 1 January 2017 to 23:50 31 January 2017 are selected for the
validation phase.

• The PM10 hourly monitoring dataset measured by the station of London Bloomsburry
in the Greater London Area, which is available in [18]. The period from 10:00 21
February 2017 to 20:00 3 June 2017 is selected for the validation phase.

• The ARTIC dataset that is available in [19] and the voice selected is in the file “arc-
tic_a0001.wav” from the subfolder “US English bdl (made)”. The samples selected for
the validation phase are from 11,600 to 14,750.

4.2. Performance Metrics Formulation

The validation of the proposed methodology with Vopt is assessed from two different
perspectives: (i) the accuracy of the forecasting results; and (ii) the computational and
energy cost of the algorithm.

Regarding the accuracy, the Mean Absolute Error (MAE) between the decoded signal
(ŷi) and the original signal (yi) is applied. This metric is defined by the following equation:

MAE =
N

∑
i=1

|yi − ŷi| (6)

Concerning the computational and energy cost, the SNNs trained with each of the
encoding-decoding algorithms (Vor and Vopt) are tested 50 times and the average of the
computational and energy costs are computed. The time library of Python is used to
measure the computational cost, while for the energy cost the PyJoules library from Python
is used. Both costs are measured with a PC Intel(R) Core(TM) i7-4770K CPU @ 3.50GHz
Linux 6.2.0-32-generic.

4.3. SNNs Selected for the Validation

The best selected SNN in [10] for each of the datasets is chosen to validate the intro-
duction of Vopt in the training methodology. A summary of the hyperparameters from the
SNNs selected is presented in Table 1. Information about the time-series splitting and the
parameters of the LIF neuron are also detailed in Table 1.

Table 1. SNN selected main hyperparameters.

Main Hyperparameters Time-Series
Spliting

LIF Neuron
ParametersDataset Np npc

Sine-wave 5 128

Training : 70%
Validation:20%

Test: 10%

Tau = 100
Vthreshold = 1

Vreset = 0
Learning rate = 0.001

MGTSD 1 32

Tetouan energy 1 128

PM10 concentration 1 64

ARCTIC 1 64
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5. Results

In this section the results for the datasets are presented. As stated above, the validation
of the proposed methodology is carried out from two different perspectives: (i) the accuracy
of the forecasting results; and (ii) the computational and energy cost of the algorithm.

5.1. Accuracy of the Forecasting Results

In the particular case of SNNs, the forecasting error can be understood as the sum of
the error made by applying an encoding-decoding algorithm and the error committed by
the SNN itself.

Table 2 is shown in order to illustrate the error made by applying the PWM based
encoding-decoding algorithm in the proposed methodology. In this table, MAE is applied
to estimate the difference between the original time-series and the time-series obtained after
being encoded and decoded with Vor and Vopt, respectively. As expected, the modifications
introduced in Vopt lead to improve the accuracy in the encoding and decoding phases,
reducing the MAE of any of the time-series by at least 40%.

Table 2. MAE achieved encoding and decoding the original time-series.

MAE between Decoded Time-Series
and Original Time-Series

Vor Vopt Difference (%)

Sine-wave 0.0047 0.0017 63.83%

MGTSD 0.0196 0.0068 65.31%

Tetouan energy 0.0048 0.002 58.33%

PM10 concentration 0.0115 0.0066 42.61%

ARCTIC 0.0107 0.0057 46.73%

Regarding the error committed by the SNN, in Figure 3A the decoded SNN output
is compared with the target used, being a suitable indicator to assess how well the SNN
has learned the data that has been propagated through it during the training. For this part
of the validation only the test set is used in order to assess the generalization power of
the SNNs trained when they face unfamiliar data. As seen in Figure 3A, in terms of the
training performance of each time-series there is no significant difference between applying
Vor or Vopt, being the worst case the PM10 concentration dataset where the maximum MAE
difference between Vopt and Vor is 0.0038. Hence, it can be highlighted that employing
a more accurate target during the training does not involve a relevant improvement in
the learning.
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Figure 3. Forecasting measures applying Vor and Vopt.

Finally, Figure 3B shows the MAE between the decoded SNN output and the original
time-series in order to infer the accuracy of the forecasting with the proposed methodology.
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As stated above, this graphic can be considered the result of combining the metrics of
Table 2 and Figure 3B.

Regarding sine-wave dataset, it is the only case in which the SNN has learned perfectly
their targets (MAE in Figure 3A are equal to 0 for both Vor and Vopt). Thus, the lowest
forecasting error is achieved applying Vopt since its target is more accurate (see Table 2).

Concerning MGTSD dataset, a better learning is done with Vopt target which leads to
have slightly better forecasting metrics.

In the case of Tetouan energy consumption, PM10 concentration and ARCTIC datasets,
despite employing more accurate targets using Vopt the SNNs are not able to learn those
targets as well as they do with Vor, resulting in slightly better forecasting metrics with the
latter encoding-decoding algorithm. These results can be based on the fact that Vopt in
some cases introduces more noise to the training that may lead to overfitting. For example,
in Figure 4 the original time-series, the targets applied and the decoded SNN outputs are
shown for the ARCTIC dataset. In this figure can be seen that in the case of using Vopt there
are areas (sections A, B and C), specially located around local maximums and minimums,
where the decoded SNN output cannot match to either the original time-series or the target.
Despite making a good forecasting in the rest of the time-series, punctual errors, such as
those occurred in these sections, penalize a great deal in the computation of the MAE. In
addition, there may be cases in which if in these areas there is a greater distance between
the decoded SNN output and the target than between the decoded SNN output and the
original signal, the penalty in MAE computation is such that the error committed during
the training is higher than the forecasting error, such as with ARCTIC dataset.

In any case, broadly speaking it can be observed that there is not a meaningful
difference in terms of accuracy in the forecasting between applying Vor or Vopt.

A A

B B

CC

Figure 4. Comparison among the original time-series, the target and the decoded SNN output with
ARCTIC dataset.

5.2. Computational and Energy Costs

Figure 5 shows the computational and energy costs obtained with Vor (left side of
the figure) and with Vopt (right side). In this part of the validation, the whole time-series
(training, validation and test sets) is used to estimate the cost in order to have a larger
sample size. In addition, in Figure 5 the costs related to the encoding phase, the propagation
of the samples through the SNN and the decoding phase are identified separately.

Regarding the computational and energy costs obtained with Vor, the encoding and de-
coding phases represent more than 50% of total computational and energy costs. However,
when Vopt is applied these costs are drastically reduced, being the use of SNN the main
computational and energy cost with a consumption of more than 98% of total costs. Hence,
it is clear that there are relevant advantages in terms of efficiency when Vopt is applied.
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Figure 5. Computational and energy costs distribution applying Vor and Vopt.

6. Discussion

In view of the results, it can be concluded that the optimised version of the PWM
based encoding-decoding algorithm is suitable to be applied with the training methodology
explained in [10]. In addition, the validation is carried out with 5 different time-series from
5 different application fields, demonstrating that the use of Vopt does not entail a relevant
loss of performance in the training methodology.

Regarding the accuracy in the forecasting process, the modifications introduced in
Vopt lead to improve the accuracy of the encoding and decoding phases and, hence, to
provide the SNNs with more accurate targets. This improvement in the accuracy is higher
than 42.61% for every time-series applied in this paper. However, Figure 3A has proved
that employing a more accurate target during the training does not mean a relevant
improvement in the learning of the SNNs, being cases in which the learning process
is slightly worse with Vopt than with Vor. One possible reason to this fact is that the target
used with Vor is more stable, while the target used with Vopt is capable of adapting to all
the changes that are produced in the time-series, introducing noise to the SNNs learning
process. Nonetheless, in terms of forecasting accuracy there is not a relevant advantage of
using Vor or Vopt, achieving satisfactory results with both algorithms.

Regarding the computational and energy costs, the encoding and decoding phases
when Vor is applied represent approximately more than 50% of the total costs. This is
due to the interpolation carried out during the encoding phase and to encode and decode
point by point the whole time-series. However, one modification introduced to Vopt is the
simplification of the operations during the encoding and decoding phases. Due to this
simplification the computational and energy costs of encoding and decoding with Vopt
are reduced to 2% of the total costs. This is a significant and crucial advantage to use Vopt
because it boosts the great efficiency advantages of SNNs.

7. Conclusions

The efficiency of the encoding-decoding algorithm is crucial in order to exploit the
efficiency advantages of SNNs. In this sense, in this paper an optimisation of the PWM
based encoding-decoding algorithm is introduced to one-step ahead forecasting training
methodology for SNNs. The methodology is validated with 5 datasets from 5 different
application fields.

The results of applying the optimised PWM based encoding-decoding algorithm has
shown that the computational and energy costs of the encoding and decoding phases are
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practically negligible, while the costs of the original version represent 50% of the total
costs. In addition, the methodology provides satisfactory forecasting results, obtaining
MAE ∈ [0.0017, 0.0357] for any dataset.
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